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Abstract

We propose a numerical method to generate the anisotropic meshes and select the

appropriate stabilized parameters simultaneously for convection diffusion equations

by stabilized continuous linear finite elements. Since the discretized error in a suitable

norm can be bounded by the sum of interpolation error and its variants in different

norms, we replace them by some terms which contain the Hessian matrix of the true

solution, convective fields, and the geometric properties such as directed edges and the

area of the triangle. Based on this observation, the shape, size and equidistribution

requirements are used to derive the corresponding metric tensor and the stabilized pa-

rameters. It is easily found from our derivation that the optimal stabilized parameter

is coupled with the optimal metric tensor on each element. Some numerical results

are also provided to validate the stability and efficiency of the proposed numerical

method.
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1 Introduction

This paper is concerned with the finite element solution of the following scalar convection-

diffusion equation {
−ε∆u+ b · ∇u = f, in Ω,

u = g, on ∂Ω,
(1.1)

where Ω ⊂ R2 is a bounded polygonal domain with boundary ∂Ω, ε > 0 is the constant

diffusivity, b ∈ [W 1,∞(Ω)]2 is the given convective field satisfying the incompressibility

condition ∇ · b = 0 in Ω, f ∈ L2(Ω) is the source function, and g ∈ H1/2(∂Ω) represents

the Dirichlet boundary condition.

Despite the apparent simplicity of problem (1.1), its numerical solution become particu-

larly challenging when convection dominates diffusion (i.e., when ε ≪ ‖b‖). In such cases,

the solution usually exhibits very thin layers across which the derivatives of the solution

are large. The widths of these layers are usually significantly smaller than the mesh size

and hence the layers can be hardly resolved. As a result of this, on meshes which do

not resolve the layers, standard Galerkin finite element methods have poor stability and

accuracy properties.

To enhance the stability and accuracy of the Galerkin discretization of (1.1) in the

convection-dominated regime, various stabilization strategies have been developed. Ex-

amples are upwind scheme [16], streamline diffusion finite element method (SDFEM), also

known as streamline-upwind/Petrov-Galerkin formulation (SUPG) [9, 18], the Galerkin/

Least-squares method (GLS) [19], residual free bubbles (RFB) functions [5, 6, 10], expo-

nential fitting [3, 7, 33], discontinuous Galerkin methods [4, 17], and spurious oscillations

at layers diminishing (SOLD) methods (also known as shock capturing methods) [21–23].

we refer to the monograph [30] for an extensive survey of the literature.

However, if uniform meshes are used for stabilized finite element method, oscillations

still exist near the layers in some cases although very fine meshes are used [20]. Hence,

it is more appropriate to generate adaptively anisotropic meshes to capture the layers.

There are some recent efforts directed at constructing adaptive anisotropic meshes which

combine a stabilized scheme and some mesh modification strategies. For example, the

resolution of boundary layers occurring in the singularly perturbed case is achieved using

anisotropic mesh refinement in boundary layer regions [2], where the actual choice of the

element diameters in the refinement zone and the determination of the numerical damping

parameters is addressed. In [29] an adaptive meshing algorithm is designed by combining

SUPGmethod, an adapted metric tensor and an anisotropic centroidal Voronoi tessellation

algorithm, which is shown to be robust in detecting layers and efficient in avoiding non-

physical oscillations in the numerical approximation. Sun et al. [31] develop a multilevel-

homotopic-adaptive finite element method (MHAFEM) by combining SDFEM, anisotropic

mesh adaptation, and the homotopy of the diffusion coefficient. The authors use numerical

experiments to demonstrate that MHAFEM can efficiently capture boundary or interior
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layers and produce accurate solutions.

This list is by no means exhausted, and there are many efforts to construct adaptive

anisotropic meshes by combining a stabilized scheme and some mesh modification strate-

gies. However, so far as we know, there are still two key problems which haven’t been

solved in rigorous ways.

First, although there are many results on optimal anisotropic meshes for minimizing the

interpolation error and also the discretized error of finite element method for solving the

Laplace equation due to céa’s lemma, its extension to the discretized error of stabilized

finite element method for the convection-dominated convection-diffusion equation is not

clear. So far as we know most results on optimal anisotropic meshes for the stabilized

finite element method applied to the convection-dominated convection-diffusion equation

is just the same with that for the interpolation error. In fact, this strategy is not optimal,

which will be illustrated experimentally later in this paper.

Second, there is a crucial factor to make the stabilized finite element method successful,

that is, the proper selection of the stabilization parameter αK on element K. The standard

choice for quasi-uniform triangulations is ( [30, P. 305-306])

αK =

{
α0hK PeK > 1, (convection-dominated case)

α1h
2
K/ε PeK ≤ 1, (diffusion-dominated case)

with appropriate positive constants α0 and α1. Here PeK := ‖b‖0,∞,KhK/(2ε) is the mesh

Peclét number and hK = supx,x′∈K ‖x − x′‖ is the diameter of the mesh cell K. A more

sophisticated choice is to replace the diameter hK of the mesh cell in the above definition

for αK by its streamline diameter hb,K which is the maximal length of any characteristic

running through K. How to extend this strategy to the case of anisotropic meshes? There

are some attempts which basically use the analog of isotopic case to get the following form

of stabilization parameters

αK =
hK

2‖b‖K
min

{
1,

P eK
3

}
, with PeK =

‖b‖KhK
2ε

. (1.2)

For example, Nguyen et al. [29] use the form of stabilization parameters (1.2) by setting

hK as the length of the longest edge of the element K projected onto the convective field

b, denoted by “LEP” in this paper. Another similar choice of hK is the length of the

projection of the longest edge of the element K onto the convective field b, denoted by

“PLE”. As pointed in isotropic case, a more sophisticated choice is to replace the diameter

hK of the mesh cell by its streamline diameter hb,K which is the maximal length of any

characteristic running through K, i.e., the diameter of K in the direction of the convection

b, denoted by “DDC”. There are also some other choices of stabilized parameters derived

by relatively rigorous theory on anisotropic meshes. For example, in [2] an anisotropic a

priori error analysis is provided for the advection-diffusion-reaction problem. It is shown

that the height, say hK , with respect to the diameter of each element K (denoted by

“DEE”), should be used for the design of the stability parameters in the case of external
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boundary layers. In [24] an alternative approach is proposed showing that the diameter of

each element is again the correct choice. Micheletti et al. [27] consider the GLS methods

for the scalar advection-diffusion and the Stokes problems with approximations based on

continuous piecewise linear finite elements on anisotropic meshes, where new definitions

of the stability parameters are proposed. Cangiani and Süli [10] use the stabilizing term

derived from the RFB method to redefine the mesh Péclet number and propose a new

choice of the streamline-diffusion parameters (This well-known fact that the RFB method

and the SDFEM are equivalent under certain conditions was first observed by Brezzi and

Russo [8]. The similar idea was also used in [25].) that is suitable for use on anisotropic

partitions. Although there are so many strategies on selection of the stabilization pa-

rameters, it is still hard to show which is optimal. Besides, there is little result on the

relationship between the strategy to generate the anisotropic meshes and the selection of

stabilized parameters.

In this paper, we propose a strategy to generate the anisotropic meshes and select the

appropriate stabilized parameters simultaneously for stabilized continuous linear finite

elements. As in [13,19,27], the discretized error (the difference between the true solution

and the stabilized finite element solution) in a suitable norm can be bounded by the sum

of interpolation error and its variants in different norms. Based on this result, we use

the idea in our recent work [32] to replace these norms of interpolation error by some

terms which contain the Hessian matrix of the true solution, convective fields b, and

the geometric properties such as directed edges and the area of the triangle. After that,

we use the shape, size and equidistribution requirements to derive the correspond metric

tensor and the stabilized parameters. From our derivation it is easily found that the

optimal stabilized parameter is coupled with the optimal metric tensor on each element.

Specifically, the relationship between the optimal metric tensor and the optimal stabilized

parameter on each element is given approximately by (4.7).

The rest of the paper is organized as follows. In Section 2, we state the GLS stabilized

finite element method for the convection-diffusion equation (1.1). Section 3 is devoted

to obtaining the estimate for the discretized error in a suitable norm via the anisotropic

framework similar to that used in [32]. The optimal choice of the metric tensor and the

stabilized parameters for the stabilized linear finite element method are then derived in

Section 4. Some numerical examples are provided in Section 5 to demonstrate the stability

and efficiency of the proposed numerical method. Some concluding remarks will be given

in the last section.

2 Stabilized finite element discretization

We shall use the standard notations in for the Sobolev spaces Hs(Ω) and their associated

inner products (·, ·)s, norms || · ||s, and seminorms | · |s for s ≥ 0. The Sobolev space H0(Ω)

coincides with L2(Ω), in which case the norm and inner product are denoted by || · || and
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(·, ·), respectively. Let H1
g (Ω) = {v ∈ H1(Ω), v|∂Ω = g} and H1

0 (Ω) = {v ∈ H1(Ω), v|∂Ω =

0}. The variational formulation of problem (1.1) reads as follows: find u ∈ H1
g (Ω) which

satisfies

A(u, v) = F (v), ∀v ∈ H1
0 (Ω), (2.1)

where A(·, ·) and F (·) define the bilinear and linear forms

A(u, v) = (ε∇u,∇v) + (b · ∇u, v),

and

F (v) = (f, v),

respectively.

Given a triangulation Th of Ω, we denote the piecewise linear and continuous finite

element space by V h, i.e.,

V h = {v ∈ H1(Ω), v|K ∈ P1(K),∀K ∈ Th},

where P1(K) is linear polynomial space in one element K. We then define V h
g :=

V h
⋂

H1
g (Ω) and V h

0 := V h
⋂

H1
0 (Ω). The standard finite element method discretization

of (2.1) is to find uh ∈ V h
g such that

A(uh, vh) = f(vh), ∀vh ∈ V h
0 . (2.2)

For convection-dominated problems (ε ≪ ‖b‖) , (2.2) using standard grid sizes are not

able to capture steep layers without introducing non-physical oscillations. To enhance the

stability and accuracy in the convection dominated regime, various stabilization strategies

have been developed. Here we take the GLS stabilized finite element method as an example

which reads as follows: find uh ∈ V h
g such that

Ah(uh, vh) = F (vh), ∀vh ∈ V h
0 , (2.3)

with

Ah(uh, vh) = A(uh, vh) +
∑

K∈Th

αK(−ε∆uh + b · ∇uh,−ε∆vh + b · ∇vh)K ,

and

Fh(vh) = F (vh) +
∑

K∈Th

αK(f,−ε∆vh + b · ∇vh)K .

In this paper we use linear finite element method, so the terms ∆uh|K and ∆vh|K in the

two above equations are identically equal to zero. At this time, the GLS approach is the

same as the SUPG method, which also enjoys the result in this paper if the linear finite

element method is used. We endow the space H1
0 (Ω) with the discrete norm ‖ · ‖h defined,

for any w ∈ H1
0 (Ω), by

‖w‖2h := ε‖∇w‖2L2(Ω) +
∑

K∈Th

αK‖b · ∇w‖2L2(K). (2.4)
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Lemma 2.1. The stabilized finite element approximation uh defined by (2.3) has the

following error estimate

‖u− uh‖2h ≤ C
∑

K∈Th

(
α−1
K ‖u−Πhu‖2L2(K) + ε‖∇(u−Πhu)‖2L2(K)

+αK‖b · ∇(u−Πhu)‖2L2(K) + αKε2‖∆(u−Πhu)‖2L2(K)

)
, (2.5)

where Πh denotes the standard continuous piecewise linear interpolation operator.

Proof. See, for example, [13, 19,27].

3 Estimates for the interpolation error and its variants

As stated in Lemma 2.1, the discretized error in ‖ · ‖h norm is bounded by four terms

of interpolation error and its variants in different norms. In fact the interpolation error

depends on the solution, the size and shape of the elements in the mesh. Understanding

this relation is crucial for generating efficient meshes. In the mesh generation fields, this

relation is often studied for the model problem of interpolating quadratic functions. For

instance, Nadler [28] derived an exact expression for the L2-norm of the linear interpolation

error in terms of the three sides ℓ1, ℓ2, and ℓ3 of the triangle K:

‖u−Πhu‖2L2(K) =
|K|
180

[(
d11 + d22 + d33

)2
+ d211 + d222 + d233

]
, (3.1)

where |K| is the area of the triangle, dij = ℓi ·H(u)ℓj with H(u) being the Hessian of u.

Three element-wise error estimates in different norms are derived by the following lem-

mas, which, together with (3.1), are fundamental for further discussion. Suppose u is a

quadratic function on a triangle K. The function is given by its matrix representation:

∀x ∈ K, u(x) =
1

2
xtH(u)x. (3.2)

Lemma 3.1. Let u be a quadratic function on a triangle K, and Πhu be the Lagrangian

linear interpolation of u on K. The following relationship holds:

‖∇(u−Πhu)‖2L2(K) =
1

48|K|
∑

i,j=1,2
i≤j

Dijℓ
t
iℓj, (3.3)

where

D11 = d212 + d223,D22 = d212 + d213,D12 = 2d212. (3.4)

Proof. The proof is similar to but easier than that of Lemma 3.2.

Remark 3.1. Lemma 3.1 is also used in [32].
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Lemma 3.2. Let u be a quadratic function on a triangle K, and Πhu be the Lagrangian

linear interpolation of u on K. Assume b is a constant vector on K, the following rela-

tionship holds:

‖b · ∇(u−Πhu)‖2L2(K) =
1

48|K|
∑

i,j=1,2
i≤j

Dijkikj , (3.5)

where

k1 = (b2,−b1)ℓ1, k2 = (b2,−b1)ℓ2. (3.6)

Proof. Following [26], we first derive an exact error estimate of the point-wise interpolation

error in K : ∇e(x) = ∇(u − Πhu)(x) for x ∈ K. This error is then integrated over K.

Here the standard reference element technique is used. To do this we define the reference

element Kr by its three vertices coordinates:

x̂1 = (0, 0)t, x̂2 = (1, 0)t, and x̂3 = (0, 1)t.

All the terms are computed on Kr and then converted onto the element K at hand by

using the following affine mapping:

x = x1 +BK x̂ with BK = [ℓ1,−ℓ2], x ∈ K, x̂ ∈ Kr,

where

ℓ1 = x2 − x1, and ℓ2 = x1 − x3.

In the frame of Kr, the quadratic function u turns into:

u(x(x̂)) =
1

2
xt
1H(u)x1 +

1

2
xt
1H(u)BK x̂+

1

2
x̂tBt

KH(u)x1 +
1

2
x̂tBt

KH(u)BK x̂.

Since the linear interpolation is concerned, linear and constant terms of u(x(x̂)) are exactly

interpolated, these terms are neglected and only quadratic terms are kept. So we could

set u(x) = 1
2 x̂

tBt
KH(u)BK x̂, with a matrix form:

u(x(x̂)) =
1

2
x̂tBt

KH(u)BK x̂ =
1

2

(
x̂

ŷ

)t [
d11 −d12
−d21 d22

](
x̂

ŷ

)
.

Then the function u in Kr reads:

u(x(x̂)) =
1

2
(d11x̂

2 + d22ŷ
2 − 2d12x̂ŷ),

with its linear interpolation on Kr:

Πhu(x(x̂)) =
1

2
(d11x̂+ d22ŷ),
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and the exact point-wise interpolation error:

e(x(x̂)) =
1

2
[d11(x̂

2 − x̂) + d22(ŷ
2 − ŷ)− 2d12x̂ŷ]. (3.7)

It is obvious that the following formulas hold

BK = [ℓ1,−ℓ2] =

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

]
, B−1

K =
1

det(BK)

[
y3 − y1 x1 − x3
y1 − y2 x2 − x1

]
.

After that it is easily to obtain

det(BK) · btB−t
k = bt

[
y3 − y1 y1 − y2
x1 − x3 x2 − x1

]
= (b2,−b1)[ℓ2, ℓ1] = (k2, k1).

Then we have
∫

K

(
b · ∇xe(x)

)2
dxdy = det(BK)

∫

Kr

(
btB−t

K ∇x̂e
(
x(x̂)

))2
dx̂dŷ

=
1

det(BK)

[
k22

∫

Kr

(∂e(x(x̂))
∂x̂

)2
dx̂dŷ + k21

∫

Kr

(∂e(x(x̂))
∂ŷ

)2
dx̂dŷ

+ 2k1k2

∫

Kr

∂e(x(x̂))

∂x̂

∂e(x(x̂))

∂ŷ
dx̂dŷ

]
. (3.8)

Due to (3.7), we can easily obtain

∇x̂e(x(x̂)) =

(
∂e(x(x̂))/∂x̂

∂e(x(x̂))/∂ŷ

)
=

1

2

(
d11(2x̂− 1)− 2d12ŷ

d22(2ŷ − 1)− 2d12x̂

)
.

After simple calculation, the following results hold:
∫

Kr

x̂2dx̂dŷ =

∫

Kr

ŷ2dx̂dŷ =
1

12
,

∫

Kr

x̂ŷdx̂dŷ =
1

24
,

∫

Kr

x̂dx̂dŷ =

∫

Kr

ŷdx̂dŷ =
1

6
,

∫

Kr

1dx̂dŷ =
1

2
.

Then we have

24

∫

Kr

(∂e(x(x̂))
∂x̂

)2
dx̂dŷ = d212 + d213 = D22, (3.9)

24

∫

Kr

(∂e(x(x̂))
∂ŷ

)2
dx̂dŷ = d212 + d223 = D11, (3.10)

48

∫

Kr

∂e(x(x̂))

∂x̂

∂e(x(x̂))

∂ŷ
dx̂dŷ = 2d212 = D12. (3.11)

Substituting (3.9)-(3.11) into (3.8) we get the desired results (3.3) due to the fact det(Bk) =

2|K|.
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Lemma 3.3. Let u be a quadratic function on a triangle K. The following relationship

holds:

‖∆u‖2L2(K) =

(
|ℓ2|2d11 − 2ℓt1ℓ2d12 + |ℓ1|2d22

)2

16|K|3 . (3.12)

Proof. Similar to that of Lemma 3.2 we can easily obtain

∫

K
(∆u)2dxdy = det(BK)

∫

Kr

(
|ℓ2|2

det(BK)2
d11 − 2

ℓt1ℓ2
det(BK)2

d12 +
|ℓ1|2

det(BK)2
d22

)2

dx̂dŷ

=

(
|ℓ2|2d11 − 2ℓt1ℓ2d12 + |ℓ1|2d22

)2

2 det(BK)3
=

(
|ℓ2|2d11 − 2ℓt1ℓ2d12 + |ℓ1|2d22

)2

16|K|3 .

This is the desired result (3.12) and the proof is complete.

Remark 3.2. Since ∆u is a constant under our assumption, there is a rather direct and

easy way to prove Lemma 3.3. However, we still use the frame of proof for Lemma 3.2 to

make the error expression be a consistent manner.

Theorem 3.1. Assume the exact solution u is quadratic on each element K, the error of

the stabilized finite element approximation has the following estimate

‖u− uh‖2h ≤ C
∑

K∈Th

EK , (3.13)

with

EK =
|K|

180αK

[( 3∑

i=1

dii

)2
+

3∑

i=1

d2ii

]
+

ε

48|K|
∑

i,j=1,2
i≤j

Dijℓ
t
iℓj +

αK

48|K|
∑

i,j=1,2
i≤j

Dijkikj

+
αKε2

16|K|3
(
|ℓ2|2d11 − 2ℓt1ℓ2d12 + |ℓ1|2d22

)2
,

where Dij(i, j = 1, 2, i ≤ j) and ki(i = 1, 2) are defined by (3.4) and (3.6), respectively.

Proof. Together with Lemma 2.1 and Lemma 3.1, 3.2, 3.3, the conclusion is obtained

directly.

Even the error estimate (3.13) is only valid for those piecewise quadratic functions, how-

ever, it could catch the main properties of the errors for general functions. In fact, the

treatment to replace the general solution by its second order Taylor expansion yields a

reliable and efficient estimator of the interpolation error for general functions provided a

saturation assumption is valid [1, 12].
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For simplicity of notation in the following discussion, for each element K ∈ Th, we

denote by

Q1,K =
|K|
180

[( 3∑

i=1

dii

)2
+

3∑

i=1

d2ii

]
, Q2,K =

1

48|K|
∑

i,j=1,2
i≤j

Dijℓ
t
iℓj,

Q̃2,K =
1

48|K|
∑

i,j=1,2
i≤j

Dijkikj, Q3,K =
1

16|K|3
(
|ℓ2|2d11 − 2ℓt1ℓ2d12 + |ℓ1|2d22

)2
.

And then EK in (3.13) can be recast into

EK = Q1,K · α−1
K +Q2,K · ε+ Q̃2,K · αK +Q3,K · αKε2.

4 Metric tensors for anisotropic mesh adaptation

We now use the error estimates obtained in Section 3 to develop the metric tensor for the

discretized error in ‖ · ‖h norm and give a new definition of the stability parameters which

are optimal in a certain sense. As a common practice in anisotropic mesh generation, the

metric tensor, M(x), is used in a meshing strategy in such a way that an anisotropic mesh

is generated as a quasi-uniform mesh in the metric space determined by M(x). Mathe-

matically, this can be interpreted as the shape, size and equidistribution requirements as

follows.

The shape requirement. The elements of the new mesh, Th, are (or are close to

being) equilateral in the metric.

The size requirement. The elements of the new mesh Th have a unitary volume in

the metric, i.e.,
∫

K

√
det(M(x))dx = 1, ∀K ∈ Th. (4.1)

The equidistribution requirement. The anisotropic mesh is required to minimize

the error for a given number of mesh points (or equidistribute the error on every element).

Notice that to derive the monitor function, we just need the shape and equidistribution

requirements.

4.1 Optimal metric tensor and stabilized parameters

We derive the monitor function M(x) first. Assume H(u) is a symmetric positive definite

matrix on every point x and this restriction can be explained by Remark 2 in [26]. Set

M(x) = C(x)H(u). Denoted by HK and CK the L2 projection of H(u) and C(x) to the

constant space onK, andMK = CKHK . SinceHK is a symmetric positive definite matrix,
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FK

x1

x2

x3

K

ℓ1

ℓ2

ℓ3

x̂1

x̂2

x̂3

K̂

ℓ̂1

ℓ̂2

ℓ̂3

θ

Figure 1: Affine map x̂ = FKx from triangle K to the reference triangle K̂.

we do the singular value decomposition HK = RTΛR, where Λ = diag(λ1,K , λ2,K) is the

diagonal matrix of the corresponding eigenvalues (λ1,K , λ2,K > 0) and R is the orthogonal

matrix with rows being the eigenvectors of HK. Denote by FK and tK the matrix and

the vector defining the invertible affine map x̂ = FK(x) = FKx + tK from the generic

element K to the reference triangle K̂ (see Figure 1). Here we take K̂ as an equilateral

triangle with one edge which has angle θ with the horizontal line. Let MK = F T
KFK , then

FK = C
1

2

KΛ
1

2R. Mathematically, the shape requirement can be expressed as

|ℓ̂1| = |ℓ̂2| = |ℓ̂3| = L, (4.2)

and

ℓ̂1 · ℓ̂3
|ℓ̂1| · |ℓ̂3|

=
ℓ̂2 · ℓ̂3

|ℓ̂2| · |ℓ̂3|
=

ℓ̂1 · ℓ̂2
|ℓ̂1| · |ℓ̂2|

= cos(2π/3) = −1

2
, (4.3)

where L is a constant.

Theorem 4.1. Under the shape requirement, the following results hold:

Q1,K =
L4|K|
15C2

K

, Q2,K =
L4tr(HK)

32
√
3C2

K det(HK)
1

2

, Q3,K =
3L4tr(HK)2

16C2
K |K|det(HK)

,

and

Q̃2,K =
L4 det(HK)

1

2

24C2
K

( A2
1

λ1,K
+

A2
2

λ2,K

)
=

L4

32
√
3C2

K

· btHKb

det(HK)
1

2

,
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where

A =

(
A1

A2

)
= R

[
0 1

−1 0

]
b.

Proof. From the definition for Q1,K and the relation between ℓi and ℓ̂i, we have

Q1,K =
|K|

180C2
K

[( 3∑

i=1

|ℓ̂i|2
)2

+

3∑

i=1

|ℓ̂i|4
]
=

L4|K|
15C2

K

.

Similarly, together with (4.2) and (4.3), the following reduction is straight-forward:

Q2,K =
1

48|K|
∑

i,j=1,2
i≤j

Dijℓ
t
iℓj =

1

48|K|
(
|ℓ1|2(d212 + d223) + |ℓ2|2(d212 + d213) + 2(ℓ1 · ℓ2)d212

)

=
1

48C2
K |K|

(
|ℓ1|2

(
(ℓ1 ·MKℓ2)

2 + (ℓ2 ·MKℓ3)
2
)
+ |ℓ2|2

(
(ℓ1 ·MKℓ2)

2

+(ℓ1 ·MKℓ3)
2
)
+ 2(ℓ1 · ℓ2)(ℓ1 ·MKℓ2)

2
)

=
1

48C2
K |K|

(
|ℓ1|2

(
(ℓ̂1 · ℓ̂2)2 + (ℓ̂2 · ℓ̂3)2

)
+ |ℓ2|2

(
(ℓ̂1 · ℓ̂2)2 + (ℓ̂1 · ℓ̂3)2

)

+2(ℓ1 · ℓ2)(ℓ̂1 · ℓ̂2)2
)

=
L4

48C2
K |K|

(
|ℓ1|2

(
cos2

(2π
3

)
+ cos2

(2π
3

))
+ |ℓ2|2

(
cos2

(2π
3

)
+ cos2

(2π
3

))

+2(ℓ1 · ℓ2) cos2
(2π

3

))

=
L4

96C2
K |K|

∑

i,j=1,2
i≤j

ℓtiℓj =
L4 det(HK)

1

2

96CK |K̂|
∑

i,j=1,2
i≤j

(
C

− 1

2

K R−1Λ− 1

2 ℓ̂i

)
·
(
C

− 1

2

K R−1Λ− 1

2 ℓ̂j

)

=
L4 det(HK)

1

2

96C2
K |K̂|

∑

i,j=1,2
i≤j

(
Λ− 1

2 ℓ̂i

)
·
(
Λ− 1

2 ℓ̂j

)
,

where we use the equality |K| = |K̂|/
(
CK

√
det(HK)

)
. Since ℓ̂1 = L(cos θ, sin θ)t and

ℓ̂2 = −L
(
cos(π3 + θ), sin

(
π
3 + θ

))t
, using simple calculation, we obtain

Λ− 1

2 ℓ̂1 = L
(
λ
− 1

2

1,K cos θ, λ
− 1

2

2,K sin θ
)t
, Λ− 1

2 ℓ̂2 = −L
(
λ
− 1

2

1,K cos
(π
3
+ θ
)
, λ

− 1

2

2,K sin
(π
3
+ θ
))t

,

and then the following three equalities hold:
(
Λ− 1

2 ℓ̂1

)
·
(
Λ− 1

2 ℓ̂1

)
= L2

(
λ−1
1,K cos2 θ + λ−1

2,K sin2 θ
)
,

(
Λ− 1

2 ℓ̂2

)
·
(
Λ− 1

2 ℓ̂2

)
= L2

(
λ−1
1,K cos2(

π

3
+ θ) + λ−1

2,K sin2
(π
3
+ θ
))

,

12



(
Λ− 1

2 ℓ̂1

)
·
(
Λ− 1

2 ℓ̂2

)
= −L2

(
λ−1
1,K cos θ cos

(π
3
+ θ
)
+ λ−1

2,K sin θ sin
(π
3
+ θ
))

.

Thus, we get

∑

i,j=1,2
i≤j

(
Λ− 1

2 ℓ̂i

)
·
(
Λ− 1

2 ℓ̂j

)
=

3

4

(
λ−1
1,K + λ−1

2,K

)
,

which gives to

L4 det(HK)
1

2

96C2
K |K̂|

∑

i,j=1,2
i≤j

(
Λ− 1

2 ℓ̂i

)
·
(
Λ− 1

2 ℓ̂j

)
=

L6 det(HK)
1

2

128C2
K |K̂|

tr(HK)

det(HK)
=

L4tr(HK)

32
√
3C2

K det(HK)
1

2

.

And then the formula for Q2,K is proved.

Similar calculation can produce the corresponding formula for Q3,K :

Q3,K =
1

16|K|3
(
|ℓ2|2d11 − 2ℓt1ℓ2d12 + |ℓ1|2d22

)2
=

L4

16C2
K |K|3

( ∑

i,j=1,2
i≤j

ℓtiℓj

)2

=
L4

16C4
K |K|3 · 9

16

(
λ−1
1,K + λ−1

2,K

)2
=

9L8

256C4
K |K|3

tr(HK)2

det(HK)2
=

3L4tr(HK)2

16C2
K |K|det(HK)

.

To analyze the term Q̃2,K , more patience should be paid. First,

Q̃2,K =
1

48|K|
(
k21(d

2
12 + d223) + k22(d

2
12 + d213) + 2k1k2d

2
12

)

=
1

48C2
K |K|

(
k21
(
(ℓ1 ·MKℓ2)

2 + (ℓ2 ·MKℓ3)
2
)
+ k22

(
(ℓ1 ·MKℓ2)

2

+(ℓ1 ·MKℓ3)
2
)
+ 2k1k2

(
ℓ1 ·MKℓ2

)2)
=

L4

96C2
K |K|

∑

i,j=1,2
i≤j

kikj . (4.4)

Second, using ℓ̂1 = L(cos θ, sin θ)t, we have

k1 = (b2,−b1)ℓ1 = C
− 1

2

K (b2,−b1)R
−1Λ− 1

2 ℓ̂1 = C
− 1

2

K (A1, A2)Λ
− 1

2 ℓ̂1

= C
− 1

2

K L
(
A1λ

− 1

2

1,K cos θ +A2λ
− 1

2

2,K sin θ
)
.

Thus

k21 = C−1
K L2

(
A2

1λ
−1
1,K cos2 θ +A2

2λ
−1
2,K sin2 θ +A1A2(λ1,Kλ2,K)−

1

2 sin(2θ)
)
.

Using ℓ̂2 = −L
(
cos
(
π
3 + θ

)
, sin

(
π
3 + θ

))t
, we have

k2 = (b2,−b1)ℓ2 = C
− 1

2

K (b2,−b1)R
−1Λ− 1

2 ℓ̂2 = C
− 1

2

K (A1, A2)Λ
− 1

2 ℓ̂2

13



= −C
− 1

2

K L
(
A1λ

− 1

2

1,K cos
(π
3
+ θ
)
+A2λ

− 1

2

2,K sin
(π
3
+ θ
))

.

Thus

k22 = C−1
K L2

(
A2

1λ
−1
1,K cos2(

π

3
+ θ) +A2

2λ
−1
2,K sin2

(π
3
+ θ
)

+A1A2(λ1,Kλ2,K)−
1

2 sin(2
π

3
+ 2θ)

)
,

and

k1k2 = −C−1
K L2

(
A2

1λ
−1
1,K cos θ cos

(π
3
+ θ
)
+A2

2λ
−1
2,K sin θ sin

(π
3
+ θ
)

+A1A2(λ1,Kλ2,K)−
1

2 sin(
π

3
+ 2θ)

)
.

That is

∑

i,j=1,2
i≤j

kikj =
3

4
C−1
K L2

(
A2

1λ
−1
1,K +A2

2λ
−1
2,K

)
. (4.5)

Finally, insert (4.5) into (4.4), it is easily got that

Q̃2,K =
L6

128C3
K |K|

( A2
1

λ1,K
+

A2
2

λ2,K

)
=

L6
√

det(HK)

128C2
K |K̂|

( A2
1

λ1,K
+

A2
2

λ2,K

)

=
L4
√

det(HK)

32
√
3C2

K

( A2
1

λ1,K
+

A2
2

λ2,K

)
. =

L4

32
√
3C2

K

· btHKb√
det(HK)

Now, we have obtained all the desired results in Theorem 4.1 and the proof is complete.

To summarize,

EK = Q1,K · α−1
K +Q2,K · ε+ Q̃2,K · αK +Q3,K · αKε2

=
L4

C2
K

(
|K|
15αK

+
εtr(HK)

32
√
3
√

det(HK)
+

αK

32
√
3

btHKb√
det(HK)

+
3ε2αKtr(HK)2

16|K|det(HK)

)

=:
L4

C2
K

P (αK).

To minimize the term

P (αK) =
|K|
15αK

+
αK

32
√
3

(
btHKb√
det(HK)

+
6
√
3ε2tr(HK)2

|K|det(HK)

)
+

εtr(HK)

32
√
3
√
det(HK)

,

the following condition should be satisfied

|K|
15αK

=
αK

32
√
3

(
btHKb√
det(HK)

+
6
√
3ε2tr(HK)2

|K|det(HK)

)
.
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This equation gives the following choice for the optimal stabilized parameters

α∗
K =

√
32
√
3

15
· |K| ·

(
|K|btHKb√
det(HK)

+
6
√
3ε2tr(HK)2

det(HK)

)− 1

2

. (4.6)

At this time,

P (α∗
K) =

√√√√ 1

120
√
3

(
|K|btHKb√
det(HK)

+
6
√
3ε2tr(HK)2

det(HK)

)
+

εtr(HK)

32
√
3
√

det(HK)

≈

√√√√ 1

120
√
3

(
|K|btHKb√
det(HK)

+
6
√
3ε2tr(HK)2

det(HK)

)
=

2|K|
15α∗

K

.

Here we omit the small term εtr(HK)

32
√
3
√

det(HK)
to simplify the formula of the metric tensor.

Of course if we do not omit this term the derivation can be carried out similarly, however,

in this case the expression of the metric tensor will seem rather complicated. In fact the

numerical efficiency is almost the same no matter this term is omitted or not (we have

done numerical experiments to verify this point, however, due to the length reason we do

not list the comparison in this paper). To proceed the derivation, at this time

EK =
L4

C2
K

P (α∗
K) ≈ 2L4|K|

15α∗
KC2

K

.

To satisfy the equidistribution requirement, we require that

L4

C2
K

P (α∗
K) ≈ 2L4|K|

15αKC2
K

=
e

N
,

where N is the number of elements of Th. Then CK could be the form

CK ∼
√

|K|
α∗
K

, (4.7)

and M(x) could be the form

M(x) = 4

√
|K|btHKb√
det(HK)

+
6
√
3ε2tr(HK)2

det(HK)
H(u). (4.8)

To establish the metric tensor M(x), set M(x) = θM(x). At this time, the size require-

ment (4.1) should be used, which leads to

θ

∫

K
ρ(x)dx = 1,

where

ρ(x) =
√

det(M(x)).
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Summing the above equation over all the elements of Th, one gets

θσ = N,

where

σ =

∫

Ω
ρ(x)dx.

Thus, we have

M(x) =
N

σ
CKH(u). (4.9)

FK

b

ℓ1

ℓ2
ℓ3

b̂

ℓ̂1

ℓ̂2

ℓ̂3

Figure 2: Affine map x̂ = FKx from triangle K to the reference triangle K̂: isotropic case.

4.2 Practical use of stabilized parameters

Since there exists a constant C in equation (2.5), the exact ratios between the terms

α−1
K ‖u − Πhu‖2L2(K), ε‖∇(u − Πhu)‖2L2(K), αK‖b · ∇(u − Πhu)‖2L2(K), and αKε2‖∆(u −

Πhu)‖2L2(K) can hardly be precisely estimated. So the stabilized parameters αK (4.6) and

the monitor function (4.8) can be regarded just as quasi-optimal. To establish the practical

form of the stabilized parameters with the same scale with other stabilized strategies,

consider the special case: the true solution is isotropic. Due to (4.6), when convection

dominates diffusion, that is,

|K|btHKb√
det(HK)

≫ ε2tr(HK)2

det(HK)
,

the following estimate holds:

15

32
√
3
· (α∗

K)2 =
|K|
√

det(HK)

btHKb
=

CK |K|
√

det(HK)

btCKHKb
=

|K̂|
btMKb

=
|K̂|
b̂tb̂

=
|K|
btb

.

16



And then
√

15

32
√
3
· α∗

K =

√
|K|

‖b‖ =
4
√
3‖ℓ1‖
2‖b‖ .

On the contrary, when diffusion dominates convection,

|K|btHKb√
det(HK)

≪ ε2tr(HK)2

det(HK)
,

we have
√

15

32
√
3
· α∗

K =
1√
6
√
3
· |K|

√
det(HK)

εtr(HK)
=

1√
6
√
3
·
√
3‖ℓ1‖2
8ε

.

To compare with the other stabilized parameters in the same scale we suggest

α∗
K = |K| ·

(√
3 · |K|btHKb√

det(HK)
+

27ε2tr(HK)2

4 det(HK)

)− 1

2

. (4.10)

5 Numerical examples

In this section, we will demonstrate several numerical examples to see the superiority of

our strategy to others. All the presented experiments are performed using the BAMG

project [15] via software FreeFem++ [14]. Given a background mesh, the nodal values

of the solution are obtained by solving a PDE through the GLS stabilized finite ele-

ment method. Then the second order derivatives of the solution are obtained by using

some recovery techniques (we use the gradient recovery technique [34] twice to obtain the

approximated Hessian in our computation). After that, the metric tensor is computed

according to the formulas derived in the previous section. Finally, a new mesh according

to the computed metric tensor is generated by BAMG. The process is repeated several

times in the computation until the approximate solution satisfies the prescribed tolerance.

We compare our new stabilized parameters (4.10) denoted by “new stabilized param-

eter” with the form of stabilization parameters (1.2) using different definition of hK ,

namely LEP, PLE, DEE and DDC. Also we will demonstrate that metric tensors suitable

for diffusion-dominated equations are not always optimal choices for convection-dominated

cases.

5.1 Stability vs parameters

Example 5.1. We consider the problem (1.1) with Ω = (0, 1)2, ε = 10−4, 10−6, 10−8,

b = (1, 0)T , f = 1 and the homogeneous boundary condition. The solution for this problem

possess an exponential boundary layer at x1 = 1 and parabolic boundary layers at x2 = 0

and x2 = 1.
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Figure 3: Example 5.1: ε = 10−4, solution generated by the stabilized strategy (1.2)

with hK being (a) PLE, (b) LPE, (c) DDC, and (d) new stabilized parameter (4.10),

respectively, using monitor function (4.8).
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Figure 4: Example 5.1: ε = 10−6, solution generated by the stabilized strategy (1.2)

with hK being (a) PLE, (b) LPE, (c) DDC, and (d) new stabilized parameter (4.10),

respectively, using monitor function (4.8).
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Figure 5: Example 5.1: ε = 10−8, solution generated by the stabilized strategy (1.2)

with hK being (a) PLE, (b) LPE, (c) DDC, and (d) new stabilized parameter (4.10),

respectively, using monitor function (4.8).
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Four stabilized strategies using monitor function (4.8) are compared in stability for

ε = 10−4 (Figure 3), ε = 10−6 (Figure 4), ε = 10−8 (Figure 5). We could see from Figures

3-5 that the stability for the form of stabilization parameters (1.2) using definition of hK as

“the longest edge of projection” and “projection of the longest edge” are good for relatively

large ε, e.g., ε = 10−4. However, with the decreasing of ε the stability becomes worse for

these two strategies. For the form of stabilization parameter (1.2) using definition of hK
as the diameter in the convection direction, the stability seems to be the similar pattern

for different ε, however, there still exists obvious oscillation. Our new stabilized parameter

(4.10) has better stability for wide range of ε from 10−4 to 10−8.

5.2 Accuracy vs metric tensors

Example 5.2. Let Ω = (0, 1)2, ε = 10−8, b = (2, 3)T and c = 0 be in (1.1). The

right-hand side f and the Dirichlet data g are chosen in such a way that

u(x1, x2) = x1x
2
2 − x22 exp

(2(x1 − 1)

ε

)
− x1 exp

(3(x2 − 1)

ε

)

+exp
(2(x1 − 1) + 3(x2 − 1)

ε

)
,

which exhibits layers at the outflow boundary part.

Consider Example 5.2, since the exact solution is given, we demonstrate in this sub-

section that the metric tensor proposed in this paper is more suitable for stabilized finite

element method approximating the convection-diffusion equation than those optimal ones

for the interpolation error in some norms, e.g. L2 norm ( [11]) which is defined in term of

monitor function by

M(x) =
1

6

√
det(HK)

H(u). (5.1)

From Figures 6 we conclude as follows:

(1) For every type of stabilized parameter, the error in L2 norm by using monitor

function (4.8) is smaller than that of (5.1). Since the differences are not so obvious just

from Figure 6, we list a part of comparison in Table 1. However, we don’t list rest details

due to the length reason.

(2) Our new stabilized parameter (4.10) behaves better than other strategies no matter

which monitor function is used.

(3) We could divide these stabilized parameters into two types by the errors of L2 norm.

The first type contains the strategy (1.2) with hK being the diameter of each element,

projection of the longest edge, and the longest edge of projection. The second type contains

the strategy (1.2) with hK being the diameter in the convection direction, and our new

stabilized parameter (4.10). This type of stabilized parameters behaves better than the

first one no matter which metric tensor is used.
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Figure 6: Example 5.2: ε = 10−8, error of L2 norm by different stabilized strategies using

monitor functions (a) (4.8), and (b) (5.1).

(4) For the two stabilized parameters of the second type, our new stabilized parameter

(4.10) behaves better than the strategy (1.2) with hK being the diameter in the convection

direction in the sense of stability. However, the contrary conclusion will be found when

the error of L2 norm is concerned. To be specific we list the errors of L2 norm for two

parameters in Table 1, where nbv1,L and nbv1,N stand for the number of vertices using

our new parameter strategy (4.10) using monitor functions (5.1) and (4.8), respectively.

While nbv2,L and nbv2,N stand for the number of vertices using the strategy (1.2) with

hK being the diameter in the convection direction using monitor functions (5.1) and (4.8),

respectively. u1h and u2h are defined similarly. We could find that the error in L2 norm by

our parameter strategy is slightly larger than that by the parameter strategy (1.2) with

hK being the diameter in the convection direction no matter which monitor function is

used.

5.3 Relationship between our parameter and the best one among others

In view of the above considerations, besides our new stability parameter (4.10) it seems to

be the best choice to select the stabilized parameter as (1.2) with hK as the diameter of

K in the direction of the convection b. It is interesting to study the relationship between

(1.2) with hK as the diameter of K in the direction of the convection b and (4.10), so we

give the following analysis. First, we set bh as the unit vector in the direction of b, that
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nbv1,N ‖u− u1,Nh ‖ nbv2,N ‖u− u2,Nh ‖ nbv1,L ‖u− u1,Lh ‖ nbv2,L ‖u− u2,Lh ‖
142 1.171e-01 142 1.171e-01 142 1.171e-01 142 1.171e-01

188 8.796e-02 176 6.500e-02 195 8.886e-02 185 7.038e-02

260 4.820e-02 249 3.817e-02 266 5.234e-02 260 4.297e-02

381 2.852e-02 363 2.193e-02 400 3.182e-02 360 2.594e-02

582 1.664e-02 560 1.186e-02 595 1.941e-02 579 1.566e-02

925 8.942e-03 885 6.101e-03 915 1.149e-02 895 9.054e-03

1413 4.940e-03 1363 3.114e-03 1381 7.123e-03 1397 5.092e-03

2142 2.692e-03 2121 1.660e-03 2129 3.964e-03 2158 2.745e-03

3257 1.477e-03 3247 9.909e-04 3207 2.267e-03 3289 1.484e-03

4858 8.536e-04 4862 6.374e-04 4944 1.274e-03 4953 7.889e-04

Table 1: Error tendency in L2 norm

is b = |b|bh, then

|K|btHKb√
det(HK)

=
|K||b|2bt

hHKbh

|bh|2
√

det(HK)
=

|K||b|2bt
hCKHKbh

|bh|2CK

√
det(HK)

=
|K|2|b|2b̂t

hb̂h

h2K |K̂|

∈ (4/
√
3,
√
3)

|K|2|b|2
h2K

On the triangle where convection dominates diffusion,

α∗
K ≈ 4

√
1

3
|K| ·

(
|K|btHKb√
det(HK)

)− 1

2

∈ (
1

2
, 1/

√
3) · hK|b| ,

the lower bound is the same as the choice of (1.2) with hK as the diameter of K in the

direction of the convection b. This result shows that the two parameters are very similar

on those triangles where convection dominates diffusion. So the difference between the

two strategies comes from those triangles where diffusion dominates convection, which

indicates that the selection of stabilized parameter in the diffusion-dominated area play

an important role in the stabilized finite element element.

6 Conclusion

In this paper, we propose a strategy which generate optimal anisotropic meshes and select

the optimal stabilized parameters for the GLS or SUPG linear finite element method

to solve the convection-dominated convection-diffusion equation. This strategy basically

solve the two key problems mentioned at the beginning of this paper in a relatively rigorous

way, i.e., (1) how to generate optimal anisotropic meshes for minimizing the discretized

error of stabilized finite element method for the convection-dominated convection-diffusion

equation, and (2) based on (1) how to select optimal stabilized parameters. Numerical
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examples also indicate that the new strategy proposed in this article is superior than

any existed one in term of stability and competitive with the best existed one in term

of accuracy (“the best one” here is in fact not the complete existing one but combining

the best existed way to select stabilized parameters and our strategy to generate optimal

anisotropic meshes).
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