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Abstract

Kronecker product kernel provides the standard approach in the kernel methods literature for learning from pair-input data, where
both data points and prediction tasks have their own feature representations. The methods allow simultaneous generalization to both new
tasks and data unobserved in the training set, a setting known as zero-shot or zero-data learning. Such a setting occurs in numerous
applications, including drug-target interaction prediction, collaborative filtering and information retrieval. Efficient training algorithms
based on the so-called vec trick, that makes use of the special structure of the Kronecker product, are known for the case where the
output matrix for the training set is fully observed, i.e. the correct output for each data point-task combination is available. In this work
we generalize these results, proposing an efficient algorithm for sampled Kronecker product multiplication, where only a subset of the
full Kronecker product is computed. This allows us to derive a general framework for training Kronecker kernel methods, as specific
examples we implement Kronecker ridge regression and support vector machine algorithms. Experimental results demonstrate that the
proposed approach leads to accurate models, while allowing order of magnitude improvements in training and prediction time.

1 INTRODUCTION

This work concerns the problem of how to efficiently learn supervised machine learning models from pair-input
data. By pair-input, we mean that the inputs can be split to two parts (each having its own feature representation),
and real-valued outputs that are known for training inputs, but need to be predicted for future inputs. Further,
the pair-input data tend to appear in such sets, where the same parts will in different combinations form several
different inputs, meaning that the data violates the i.i.d. assumption commonly made in the field of machine
learning. One of the major applications of this setting is the zero-shot or zero-data setting in transfer learning,
where both data points and tasks have their own feature representations, and one needs to predict an output value
for a new data point given the new task (see e.g. [1], [2], [3], [4]). For example, in a multi-class learning setting one
can make predictions for classes not present in the training set, if the classes have feature representations, whereas
in a multi-task ranking setting one may need to rank data points with respect to novel tasks. Even though often not
recognized as transfer learning problems, such settings occur in a wide variety of machine learning applications.
Typical examples include biochemical interaction prediction, where the inputs can be split, for instance, to drugs
and targets (see e.g. [5] for a recent review), recommender systems, where the inputs consist of customers and
products [6] and information retrieval, where they consist of queries and documents [7]. In these problems, both
parts of the inputs tend to appear several times in the training set, for example, the same drug may have been
tested for interaction with several targets and vice versa.

The overall learning problem is described in Figure 1. Let us assume, that our inputs can be naturally split
into two parts, in this paper referred to as the data point and task parts, of which both have their own feature
representations. Let D denote the in-sample data points (corresponding to the rows of the in-sample output matrix
in Figure 1). Further, let T denote the in-sample tasks (corresponding to the columns of the in-sample output matrix
in Figure 1). By in-sample, we mean that the data point or task is encountered in the training set at least once. Now
let x = (d, t) denote a new input, for which the correct output (typically class or real number) is unknown and
needs to be predicted. In this work we focus on the most challenging setting, where it is assumed that d /∈ D and
t /∈ T , that is, neither the data or the task part has been previously observed in the training set. This corresponds
to zero-shot learning, where it is necessary to generalize simultaneously both to such new tasks and data that are
unknown during training time. In Figure 1, this is represented as predicting the unknown target output at the
bottom right.

There exist two related yet distinct learning problems, that have been studied in-depth in the machine learning
literature. First, if d ∈ D and t ∈ T , the problem becomes that of matrix completion (predicting the the unknown
outputs within the center rectangle in Figure 1). Recently this setting has been considered especially in the
recommender systems literature, where matrix factorization methods that generate latent feature representations
have become the de-facto standard approach for solving these problems (see e.g. [8]). The second setting corresponds
to the situation where d ∈ D and t /∈ T , or alternatively d /∈ D and t ∈ T (predicting the block on the right or
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Fig. 1. Zero-shot learning. A predictor trained on (datum, task)-pairs and associated correct outputs generalizes
out-of-sample to such a new pair, for which both the datum and task are not part of the training set.

below in Figure 1). Here predictions are needed only for new rows or columns of the output matrix, but not both
simultaneously. The problem may be solved by training a standard supervised learning method for each row or
column separately, or by using multi-target learning methods that also aim to utilize correlations between similar
rows or columns [9]. While simultaneous use of both datum and task features can and has been integrated to learning
also in these two related settings in order to increase prediction accuracy, they are not essential for generalization,
and can even be harmful (so called negative transfer, see e.g. [10], [11] for experimental results). The learning
algorithms considered in this work are also applicable in these two related settings, provided that both task and
data specific features are available. However, simpler methods that do not need both of these information sources
may often provide a competitive alternative. Thus we do not consider further these two settings in this work,
as these have been already quite thoroughly explored in previous literature, and we do not expect the proposed
methods to offer major advantages there beyond existing state-of-the-art.

In this work we assume that both the tasks and data points have feature representations defined implicitly via
a kernel function [12]. Further, following works such as [6], [13], [14], [15], [16], [17], [18], [19], [20], [10], [4], we
assume that their joint feature representation is defined by the Kronecker product kernel, which is the product of
the data and task kernels. A significant advantage of this approach is that if the data point and task kernels are
universal (e.g. the Gaussian kernel), the Kronecker kernel is also universal, meaning that it allows representing
arbitrarily complex non-linear functions [19].

Several efficient machine learning algorithms have been proposed for the special case, where the training set
contains the outputs for each possible datum-task pair in the training set exactly once (i.e. all the values in the center
output matrix in Figure 1 are known). For minimizing ridge regression types of losses [17], [18], [20], [10], [4] derive
closed form solutions based on Kronecker algebraic optimization (see also [21] for the basic mathematical results
underlying these studies). Further, iterative methods based on Kronecker kernel matrix - vector multiplications,
have been proposed (see e.g. [14], [18], [20]).

However, the requirement that the outputs are known for each datum-task pair in D × T can be considered a
major limitation on the applicability of these methods. As far as we are aware, similar efficient training algorithms
for regularized kernel methods have not been previously proposed for the case, when the training data is sparse
in the sense that only a subset of the datum-task pairs in D × T has a known output in the training set. Kernel
methods can still be trained also in this setting by explicitly constructing a kernel matrix that contains one entry for
each pair-input. However, this approach soon becomes computationally non-feasible as the number of pair-inputs
grows. In this work, we show how to substantially increase the computational efficiency of kernel methods in this
setting, assuming that same data points and tasks appear several times in the training set.
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Algorithm 1 Compute u← R(M⊗N)CTv

Require: M ∈ Ra×b,N ∈ Rc×d,v ∈ Re,p ∈ [a]f ,q ∈ [c]f , r ∈ [b]e, t ∈ [d]e

1: if ae+ df < ce+ bf then
2: T← 0 ∈ Rd×a
3: for h = 1, . . . , e do
4: i, j ← rh, th
5: for k = 1, . . . , a do
6: Tj,k ← Tj,k + vhMk,i

7: u← 0 ∈ Rf
8: for h = 1, . . . , f do
9: i, j ← ph, qh

10: for k = 1, . . . , d do
11: uh ← uh +Nj,kTk,i

12: else
13: S← 0 ∈ Rc×b
14: for h = 1, . . . , e do
15: i, j ← rh, th
16: for k = 1, . . . , c do
17: Sk,i ← Sk,i + vhNk,j

18: u← 0 ∈ Rf
19: for h = 1, . . . , f do
20: i, j ← ph, qh
21: for k = 1, . . . , b do
22: uh ← uh + Sj,kMi,k

23: return u

We generalize the computational short-cut implied by Roth’s column lemma [22] (often known as vec-trick) to
the sampled Kronecker product, where only a subset of the rows and columns of the full Kronecker product matrix
is needed. Based on this result we derive efficient training algorithms for Kronecker kernel based regularized kernel
methods. As case studies, we show how to apply this framework for training ridge regression and support vector
machine methods; extending the results to other types of loss functions or optimization methods can be done in
a similar manner. In addition to the computational complexity analysis we also experimentally demonstrate, that
the proposed methods are the current state-of-the art in learning with Kronecker kernels. This work extends our
previous work [23], that specifically considered the case of efficient ridge regression with Kronecker product kernel.

2 COMPUTATION WITH SAMPLED KRONECKER PRODUCTS

First, let us introduce some notation. By [n], where n ∈ N, we denote the set {1, ..., n}. By A ∈ Ra×b we denote a
a × b matrix, and by Ai,j the i, j:th element of this matrix. By vec(A) we denote the vectorization of A, which is
the ab× 1 column vector obtained by stacking all the columns of A in order starting from the first column. A⊗C
denotes the Kronecker product of A and C. By a ∈ Rc we denote a column vector of size c× 1, and by ai the i:th
element of this vector.

There exists several studies in the machine learning literature in which the systems of linear equations involving
Kronecker products have been accelerated with the so-called “vec-trick”. This is characterized by the following
result known as the Roth’s column lemma in the Kronecker product algebra:

Lemma 1 ([22]). Let P ∈ Ra×b, Q ∈ Rb×c, and R ∈ Rc×d be matrices. Then,

(RT ⊗P)vec(Q) = vec(PQR). (1)

It is obvious that the right hand size of (1) is considerably faster to compute than the left hand side, because it
avoids the direct computation of the large Kronecker product.

We next shift our consideration to matrices that can not be directly expressed as Kronecker products but whose
rows and columns are sampled from such a product matrix. First, we introduce some further notation. To sample
a sequence of rows or columns from a matrix with replacement, the following construction is widely used (see e.g.
[24]):
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Definition 1 (Sampling matrix). Let M ∈ Ra×b and let s = (s1, . . . , sf )
T ∈ [a]f be a sequence of f row indices of M

sampled with replacement. We say that

S =

 eT
s1
...

eT
sf

 ,

where ei is the ith standard basis vector of Ra, is a row sampling matrix for M determined by s. The column sampling
matrices are defined analogously.

The above type of ordinary sampling matrices can of course be used to sample the Kronecker product matrices as
well. However, the forthcoming computational complexity considerations require a more detailed construction in
which we refer to the indices of the factor matrices rather than to those of the product matrix. This is characterized
by the following lemma which follows directly from the properties of the Kronecker product:

Lemma 2 (Kronecker product sampling matrix). Let M ∈ Ra×b, N ∈ Rc×d and let S be a sampling matrix for the
Kronecker product M⊗N. Then, S can be expressed as

S =

 eT
(p1−1)c+q1

...
eT
(pf−1)c+qf

 ,

where p = (p1, . . . , pf )
T ∈ [a]f and q = (q1, . . . , qf )

T ∈ [c]f are sequences of row indices of M and N, respectively, which
are sampled with replacement. The entries of p and q are given as

p = b(i− 1)/cc+ 1 (2)
q = (i− 1) mod c+ 1 , (3)

where i ∈ [ac] denotes a row index of M⊗N, and p ∈ [a] and q ∈ [c] map to the corresponding rows in M and N,
respectively.

Proof: The claim is an immediate consequence of the definition of the Kronecker product, where the relationship
between the row indices of M and N with those of their Kronecker product is exactly the one given in (2) and (3).

Definition 2 (Sampled Kronecker product). Let M ∈ Ra×b,N ∈ Rc×d, and let R ∈ {0, 1}f×ac and C ∈ {0, 1}e×bd to
be, respectively, a row sampling matrix and a column sampling matrix of M⊗N, such that R is determined by the sequences
p = (p1, . . . , pf )

T ∈ [a]f and q = (q1, . . . , qf )
T ∈ [c]f , and C by r = (r1, . . . , re)

T ∈ [b]e and t = (t1, . . . , te)
T ∈ [d]e.

Further, we assume that the sequences p, q, r and t when considered as mappings, are all surjective. We call

R(M⊗N)CT

the sampled Kronecker product matrix. The surjectivity requirement ensures that all entries of M and N are factors of the
sampled Kronecker product matrix entries. While, this in principle restricts the concept of sampled Kronecker product matrix,
it can still be done without losing generality, because the matrices M and N can be replaced with their appropriate submatrices
omitting the unnecessary rows and columns.

Proposition 1. Let R, M, N and C be as in Definition 2, and v ∈ Re. The product

R(M⊗N)CTv (4)

can be computed in O(min(ae+ df, ce+ bf)) time.

Proof: Since the sequences p, q, r and t, determining R and C are all surjective on their co-domains, we imply
that max(a, c) ≤ f and max(b, d) ≤ e.

Let V ∈ Rd×b be a matrix such that vec(V) = CTv. Then, according to Lemma 1, (4) can be rewritten as

Rvec(NVMT) ,

which does not involve a Kronecker product. Calculating the right hand side can be started by first computing either
S = NV or T = VMT requiring O(ce) and O(ae) time, respectively, due to V having only at most e nonzero entries.
Then, each of the f elements of the product can be computed either by calculating the inner product between a row
of S and a row of M or between a row of N and a column of T, depending whether S or T was computed. The
former inner products require b and the latter d flops, and hence the overall complexity is O(min(ae+ df, ce+ bf)).
The pseudocode for the algorithm following the ideas of the proof is presented in Algorithm 1.
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Remark 1 (Sampling with replacement). If either the rows or columns of the sampled Kronecker product contain duplicates,
the above complexity can be improved even further. Namely, the variables e and f then correspond to the numbers of distinct
rows and columns. This can be achieved by replacing the original sampled Kronecker product with a one that is done by
sampling without replacement so that the vector v contains only a single entry per row of the Kronecker product matrix such
that consists of the sum of all entries of the original v associated with the same row. After running Algorithm 1, entries of u
can be duplicated as many times as indicated by the original setting.

Remark 2 (Roth’s column lemma as a special case). If R = C = I, the sampled Kronecker product reduces to the standard
Kronecker product with no sampling, and the complexity of Algorithm 1 is O(min(abd+ acd, bcd+ abc)), which is the same
as the complexity of computing the product directly based on Roth’s column lemma (1).

3 GENERAL FRAMEWORK FOR SAMPLED KRONECKER PRODUCT KERNEL METHODS

In this section, we connect the above abstract considerations with practical learning problems with pair-input data.
We start by defining some notation which will be used through the forthcoming considerations. As observed from
Figure 1, the relevant data dimensions are the sizes of the two data matrices and the number of inputs with known
outputs. The notations are summarized in the following table:

n # of inputs (task, datum) and outputs in training set.
m # of data points encountered in training set.
q # of tasks encountered in training set.
d # of data features.
r # of task features.

The training data consists of a sequence S = (xh)
n
h=1 ∈ Xn of inputs, X being the set of all possible inputs, and a

sequence of associated outputs y. The most common settings are regression where y ∈ Rn and binary classification
where y ∈ {−1, 1}n, though the output space may also have more complicated structure, for example in structured
prediction problems. As described above, we assume each input can be represented as a pair consisting of a data
point and task x = (d, t) ∈ D×T , where D and T are the sets of all possible data points and tasks, respectively, to
which we refer as the data point space and the task space. Moreover, let D ⊂ D and T ⊂ T denote the in-sample
data points and in-sample tasks, that is, the sets of data points and tasks encountered in the training sequence,
respectively, and let m = |D| and q = |T |. Finally, let r = (r1, . . . , rn)

T ∈ [q]n and s = (s1, . . . , sn)
T ∈ [m]n represent

the index sequences for the training data points and tasks, and R ∈ {0, 1}n×mq be the Kronecker product sampling
matrix determined by these index sequences.

Let k : D×D → [0,∞) and g : T × T → [0,∞) denote positive semi-definite kernel functions [12] defined for the
data points and tasks, respectively. Further, the Kronecker product kernel k⊗(d, t,d′, t′) = k(d,d′)g(t, t′) is defined
as the product of these two base kernels. Let Ki,j = k(di,dj) and Gi,j = g(ti, tj) denote the data- and task kernel
matrices for the training data, respectively, then R(G⊗K)RT is the Kronecker kernel matrix containing the kernel
evaluations corresponding to the training inputs in S.

We consider the regularized risk minimization problem

f∗ = argmin
f∈H

J(f) (5)

with
J(f) = L((f(x1), ..., f(xn)),y) +

λ

2
‖f‖2H

with L a convex nonnegative loss function and λ > 0 a regularization parameter. Choosing as H the reproducing
kernel Hilbert space defined by k⊗, the generalized representer theorem [25] guarantees that the optimal solutions
are of the form

f∗(d, t) =

n∑
i=1

aik(dri ,d)g(tsi , t),

where we call a ∈ Rn the vector of dual coefficients.
Now let us consider the special case, where the data point space and the task space are real vector spaces, that

is, D = Rd and T = Rr, and hence both the data points and tasks have a finite dimensional feature representation.
Further, if the data- and task kernels are linear, the Kronecker kernel can be written open as the inner product
k⊗(d, t,d′, t′) = 〈d⊗ t,d′ ⊗ t′〉, that is the (datum, task) -pairs have an explicit feature representation with respect
to this kernel as the Kronecker product of the two feature vectors. Let D ∈ Rm×d and T ∈ Rq×r, respectively, contain
the feature representations of the in-sample data points and tasks. Now the joint Kronecker feature representation
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TABLE 1
Loss functions and their (sub)gradients and (generalized) Hessians. For binary classification losses marked * we

assume that yi ∈ {−1, 1}, while for the rest yi ∈ R.

Method L gi Hi,i Hi,j , i 6= j

Ridge [26] 1
2

∑n
i=1(pi − yi)

2 pi − yi 1 0

L1-SVM* [27]
∑n

i=1 max(0, 1− pi · yi)
−yi if pi · yi < 1
0 otherwise. 0 0

L2-SVM* [28] 1
2

∑n
i=1 max(0, 1− pi · yi)2

pi − yi if pi · yi < 1
0 otherwise.

1 if pi · yi < 1
0 otherwise. 0

Logistic* [29]
∑n

i=1 log(1 + e−yipi ) −yi(1 + eyipi )−1 eyipi (1 + eyipi )−2 0
RankRLS [30], [31] 1

4

∑n
i=1

∑n
j=1(yi − pi − yj + pj)

2
∑n

j=1(yj − pj) + n(pi − yi) n− 1 −1

for the training data can be expressed as X = R(T ⊗D). In this case we can equivalently define the regularized
risk minimizer as

f∗(d, t) = 〈d⊗ t,

n∑
i=1

aidri ⊗ tsi〉 = 〈d⊗ t,w〉,

where we call w ∈ Rdr the vector of primal coefficients.

3.1 Efficient prediction
Let T = {zh}sh=1 ∈ X s represent a set of new pair-inputs for which predictions are needed, with u and v denoting
the number of data points and tasks in this set, respectively. Further, we overload our notation defining f(T ) =
[f(z1), ..., f(zs)]

T.
Let R̂ ∈ {0, 1}s×uv denote the sampling matrix defined by these new pair-inputs set, and K̂ ∈ Ru×m and Ĝ ∈ Rv×q

contain the kernel evaluations between the training and new data points and tasks, respectively. For the dual model,
the predictions can be computed as

f(T ) = R̂(Ĝ⊗ K̂)RTa

resulting in a computational complexity of O(min(vn+ms, un+qs)). Further, we note that for sparse models where
a large portion of the ai coefficients have value 0 (most notably, support vector machine predictors), we can further
substantially speed up prediction by removing these entries from a and R and correspondingly replace the term n
in the complexity with the number of non-zero coefficients. In this case, the prediction complexity will be

O(min(v‖a‖0 +ms, u‖a‖0 + qs)), (6)

where ‖a‖0 is the zero-norm measuring the number of non-zero elements in a. This is in contrast to the explicit
computation by forming the full test kernel matrix, which would result in

O(s‖a‖0) (7)

complexity.
In the primal case the predictions can be computed as

f(T ) = R̂(T̂⊗ D̂)w

resulting in a computational complexity of O(min(vdr + ds, udr + rs)). For high-dimensional data (dr >> n) one
will save substantial computation by using the dual model instead of the primal.

3.2 Efficient learning
The regularized risk minimization problem provides a convex minimization problem, whose optimum can be located
with (sub)gradient information. Next, we show how to efficiently compute the gradient of the objective function,
and for twice differentiable loss functions Hessian-vector products, when using the Kronecker kernel. For non-
smooth losses or losses with non-smooth derivatives, we may instead consider subgradients and the generalized
Hessian matrix (see e.g. [28], [32], [33]). In this section, we will make use of the denominator-layout notation.

First, let us consider making predictions on training data in the dual case. Based on previous considerations, we
can compute

f(S) = p = R(G⊗K)RTa. (8)

The regularizer can be computed as λ
2 ‖f‖

2
H = λ

2a
TR(G⊗K)RTa.



7

Algorithm 2 Dual Truncated Newton optimization for regularized risk minimization
Require: R ∈ {0, 1}n×mq , K ∈ Rm×m, G ∈ Rq×q , y ∈ Rn, λ > 0

1: a← 0
2: repeat
3: p← R(G⊗K)RTa
4: COMPUTE H, g
5: SOLVE (HR(G⊗K)RT + λI)x = g + λa
6: a← a− δx (δ constant or found by line search)
7: until convergence

Algorithm 3 Primal Truncated Newton optimization for regularized risk minimization

Require: R ∈ {0, 1}n×mq , D ∈ Rm×d, T ∈ Rq×r, y ∈ Rn, λ > 0
1: w← 0
2: repeat
3: p← R(T⊗D)w
4: COMPUTE H, g
5: SOLVE ((TT ⊗DT)RTHR(T⊗D) + λI)x =

(TT ⊗DT)RTg + λw.
6: w← w − δx (δ constant or found by line search)
7: until convergence

We use the following notation to denote the gradient and the Hessian (or a subgradient and/or generalized
Hessian) of the loss function, with respect to p:

g =
∂L
∂p

and H =
∂2L
∂p2

The exact form of g and H depends on the loss function, Table 1 contains some common choices in machine learning.
While maintaining the full n×n Hessian would typically not be computationally feasible, for univariate losses the
matrix is diagonal. Further, for many multivariate losses efficient algorithms for computing Hessian-vector products
are known (see e.g. [31], [34], [35] for examples of efficiently decomposable ranking losses).

The gradient of the empirical loss can be decomposed via chain rule as

∂L
∂a

=
∂p

∂a

∂L
∂p

= R(G⊗K)RTg

The gradient of the regularizer can be computed as λR(G ⊗K)RTa. Thus, the gradient of the objective function
becomes

∂J

∂a
= R(G⊗K)RT(g + λa) (9)

The Hessian of L with respect to a can be defined as

∂2L
∂a2

=
∂p

∂a

∂

∂p
(
∂p

∂a

∂L
∂p

) = R(G⊗K)RTHR(G⊗K)RT

Hessian for the regularizer is defined as λR(G⊗K)RT. Thus the Hessian for the objective function becomes

∂2J

∂a2
= R(G⊗K)RT(HR(G⊗K)RT + λI)

For commonly used univariate losses, assuming p has been computed for the current solution, g, and H can be
computed in O(n) time. The overall cost of the loss, gradient and Hessian-vector product computations will then
be dominated by the efficiency of the Kronecker-kernel vector product algorithm, resulting in O(qn+mn) time.

Conversely. in the primal case we can compute the predictions as f(S) = R(T ⊗D)w, loss gradient as (TT ⊗
DT)RTg and Hessian for the loss as (TT⊗DT)RTHR(T⊗D), (both w.r.t. w). For the regularizer the corresponding
values are λ

2w
Tw, λw and λI. The overall complexity of the loss, gradient and Hessian-vector product computations

is O(min(qdr + dn,mdr + rn)).



8

3.3 Optimization framework
As a simple approach that can be used for training regularized risk minimization methods with access to gradient
and and (generalized) Hessian-vector product operations, we consider a Truncated Newton optimization scheme
(Algorithms 2 and 3; these implement approaches similar to [28], [36]). This is a second order optimization method
that on each iteration computes the Newton step direction ∂2J(f)x = ∂J(f) approximately up to a pre-defined
number of steps for the linear system solver. The approach is well suited for Kronecker kernel method optimization,
since while computing the Hessians explicitly is often not computationally feasible, computing Hessian-vector
products can be done efficiently using the sampled Kronecker product algorithm.

Alternative optimization schemes can certainly be used, such as the Limited-memory BFGS algorithm [37], trust-
region Newton optimization [32], and methods tailored for non-smooth optimization such as the bundle method
[33]. Such work is orthogonal to our work, as the proposed algorithm can be used to speed up computations
for any optimization method that is based on (sub)gradient, and possibly (generalized) Hessian-vector product
computations. Optimization methods that process either the samples or the model coefficients individually or in
small batches (e.g. stochastic gradient descent [38], coordinate descent [39], SVM decomposition methods [40])
may however not be a good match for the proposed algorithm, as the largest speed-up is gained when doing the
computations for all of the training data in one single batch.

Each iteration of the Truncated Newton algorithm starts by computing the vector of training set predictions p
for the current solution, after which the gradient g and Hessian H can be computed (see Table 1 for examples on
how to compute these for several widely used loss functions). After this, the algorithm solves approximately the
linear system

∂2J

∂a2
x =

∂J

∂a
,

to find the next direction of descent (for the primal case we solve analogously ∂2J
∂w2x = ∂J

∂w ). Here, we may use
methods developed for solving linear systems, such as the Quasi-Minimal Residual iteration method [41] used
in our experiments. For the dual case, we may simplify this system of equations by removing the common term
R(G⊗K)RT from both sides, resulting in the system

(HR(G⊗K)RT + λI)x = g + λa . (10)

While the optimization approaches can require a large number of iterations in order to converge, in practice often
good predictive accuracy can be obtained using early stopping both in solving the system of linear equations on
line 5 of Algorithm 2 and line 5 of Algorithm 3 and the outer truncated Newton optimization loops, as there is no
need to continue optimization once the error of the prediction function stops decreasing on a separate validation
set (see e.g. [42], [43], [44]).

3.4 Complexity comparison
The operations that dominate the computational cost for Algorithms 2 and 3 are matrix-vector products of the
form R(G⊗K)RTv and (TT ⊗DT)RTv. A natural question to ask is, how much does the proposed fast sampled
Kronecker product algorithm (Algorithm 1) speed these operations up, compared to explicitly forming the sampled
Kronecker product matrices (here denoted the ’Baseline’ method).

We consider three different settings:
• Independent: each data point and task appears only as part of a single input in the training set. That is
n = m = q.

• Dependent: data points and tasks can appear as parts of multiple training inputs, and max(m, q) < n < mq
• Complete: all possible combinations of the training data points and tasks appear as training inputs. That is
n = mq.

’Dependent’ is the default setting assumed in this paper, while ’Independent’ and ’Complete’ are extreme cases of
the setting.

In Table 2 we provide the comparison for the dual case. In the ’Independent’ -case the complexity of the proposed
algorithm reduces to that of the baseline method, since there are no data or tasks shared between the pair-inputs, that
the algorithm could make use of. However, beyond that the complexity of the baseline approach grows quadratically
with respect to the number of pair-inputs, while the complexity of the proposed method grows linearly with respect
to the numbers of data, tasks and pair-inputs. In Table 3 we provide the comparison for the primal case. Again, the
complexity is the same for the ’Independent’ case, but the proposed method is much more efficient for the other
settings assuming m << n and q << n.

Finally, we note that for both the primal and the dual settings, for the ’Complete’ case where R = I, the
multiplication could as efficiently be computed using the ’VecTrick’ - method implied by Roth’s column lemma (1).
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TABLE 2
Dual case: complexity comparison of the proposed method and the baseline approach that constructs the Kronecker

kernel matrix explicitly.

Baseline Proposed
Independent O(n2) O(n2)
Dependent O(n2) O(qn+mn)
Complete O(m2q2) O(m2q +mq2)

TABLE 3
Primal case: complexity comparison of the proposed method and the baseline approach that constructs the

Kronecker data matrix explicitly.

Baseline Proposed
Independent O(ndr) O(ndr)
Dependent O(ndr) O(min(qdr + dn,mdr + rn))
Complete O(mqdr) O(min(mdr +mqr, drq + dmq))

To conclude, we observe that the proposed algorithm considerably outperforms previously known methods, if
max(m, q) << n < mq.

4 CASE STUDIES: RIDGE REGRESSION AND SUPPORT VECTOR MACHINES

Next, as an example on how our framework may be applied we consider two commonly used losses, deriving fast
ridge regression and support vector machine training algorithms for the Kronecker kernel.

4.1 Kronecker ridge regression
As our first example learning algorithm that uses the above defined concepts, let us consider the well-known
ridge regression method (aka regularized least-squares, aka least-squares SVM) [26], [45]. For this specific case, the
resulting algorithm is simpler than the general optimization framework of Algorithms 2 and 3, as the linear system
appearing in the algorithms needs to be solved only once.

In this case, L = 1
2 (p− y)T(p− y), H = I and g = p− y (see Table 1). For the dual case, based on (9) it can be

observed that the full gradient for the ridge regression is

R(G⊗K)RT(p− y + λa)

Writing p open (8) and setting the gradient to zero, we recover a linear system

R(G⊗K)RT(R(G⊗K)RT + λI)a = R(G⊗K)RTy

A solution to this system can be recovered by canceling out R(G ⊗K)RT from both sides, resulting in the linear
system

(R(G⊗K)RT + λI)a = y

This system can be solved directly via standard iterative solvers for systems of linear equations. Combined with
the sampled Kronecker product algorithm, this results in O(mn+ qn) cost for each iteration of the method.

For the primal case, the gradient can be expressed as

(TT ⊗DT)RT(p− y) + λw

Again, writing p open and setting the gradient to zero, we recover a linear system

(TT ⊗DT)RTR(T⊗D) + λI)w = (TT ⊗DT)RTy

Solving this system with a linear system solver together with the sampled Kroneker product algorithm, each iteration
will require O(min(mdr + nr, drq + dn)) cost.

The naive approach of training ridge regression with the full sampled Kronecker kernel or data matrix using
standard solvers of systems of linear equations would result in O(n2) and O(ndr) cost per iteration for the dual
and primal cases, respectively.
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4.2 Kronecker support vector machine
Support vector machine is one of the most popular classification methods in machine learning. Two of the most
widely used variants of the method are the so-called L1-SVM and L2-SVM (see Table 1). Following works such as
[28], [36], [32] we consider the L2-SVM variant, since unlike L1-SVM it has an objective function that is differentiable
and yields a non-zero generalized Hessian matrix, making it compatible with the presented Truncated Newton
optimization framework.

The loss can be defined as L = 1
2

∑n
i=1 max(0, 1 − pi · yi)2, where y ∈ {−1, 1}. Let S = {i|y · p(xi) < 1, i ∈ [n]}

denote the set of training data that have non-zero loss for given prediction function. Further, let SS denote the
sampling matrix corresponding to this index set. Now we can re-write the loss in a least-squares form as L =
1
2 (SSp−SSy)

T(SSp−SSy), its gradient as g = ST
S(SSp−SSy), and the Hessian as H = ST

SSS , which is a diagonal
matrix with entry 1 for all members of S, and 0 otherwise.

By inserting g to (9) and writing p open (8) we recover the gradient of the L2-SVM objective function, with
respect to a, as

R(G⊗K)RT(ST
S(SSR(G⊗K)RTa− SSy) + λa) (11)

And inserting g and H to (10), we see that ∂J
∂a∂ax = ∂J

∂a can be solved from:

(ST
SSSR(G⊗K)RT + λI)x = (ST

S(SSR(G⊗K)RTa

− SSy) + λa) (12)

The gradient and Hessian-vector products can be computed again at O(qn +mn) time. However, it should be
noted that the support vector machine algorithm encourages sparsity, meaning that as the optimization progresses
a may come to contain many zero coefficients, and the set S may shrink (at the optimal solution these two sets
coincide, denoting the so-called support vectors). Thus given a new solution a, we may compute p = R(G ⊗
K)RTa and thus also the right-hand size of (12) in O(min(q‖a‖0 +mn,m‖a‖0 + qn) time, by removing the zero-
coefficients from a and the corresponding columns from RT . Further, when solving (12) with Truncated Newton
optimization, we can on each inner iteration of the method compute matrix-vector multiplication SSR(G⊗K)RTv
in O(min(q‖v‖0 +m|S|,m‖v‖0 + q|S|) time.

In the primal case the gradient can be written as

(TT ⊗DT)RTST
S(SSp− SSy) + λw

And, a generalized Hessian matrix can be defined as

H = (TT ⊗DT)RTST
SSSR(T⊗D) + λI

The most efficient existing SVM solvers can be expected at best to scale quadratically with respect to sample size
when solving the dual problem, and linearly with respect to sample size and number of features when solving the
primal case [46], [47]. Thus using the full Kronecker kernel or data matrices, such solvers would have O(n2) and
O(ndr) scaling for the dual and primal cases, respectively.

5 EXPERIMENTS

Computational costs for iterative Kronecker kernel method training depend on two factors. The first one is the cost
of a single iteration, where operations such as gradient or Hessian-vector product computations dominate the costs.
These can be speeded up with the sampled Kronecker product algorithm introduced in this work. The second is the
number of iterations needed to reach a good solution. While training Kronecker kernel methods requires solving
optimization problems with a huge number of variables, in practice it is enough to obtain an approximate solution
that generalizes well to new data. For prediction times, the dominating costs are the data matrix or kernel matrix
multiplications with the primal or (possibly sparse) dual coefficient vectors, both operations that can be speeded
up with the sampled Kronecker product algorithm.

In the experiments, we aim to demonstrate the following three things:
1) Utility of early stopping: often only a small number of iterations is needed to learn an accurate predictor.
2) Fast training: the combination of the proposed short-cuts and early stopping allows orders of magnitude faster

training than with regular kernel method solvers.
3) Fast prediction: proposed short-cuts allow orders of magnitude faster prediction for new data, than with

regular kernel predictors.
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TABLE 4
Data sets

Data set drugs targets pair-inputs pos. interactions
Ki 1421 156 93356 3200
GPCR 223 95 21185 635
IC 210 204 42840 1476
E 445 664 295480 2926

Training
set

Test
set

Fig. 2. Ninefold cross-validation. The output matrix is divided into nine non-overlapping blocks. On each round, the
test set is formed from all the pair-inputs corresponding to one of the blocks. Then training set is formed from all the
blocks, that share no common rows or columns with the test set, resulting in four blocks being assigned to the training
set. Four blocks are left unused, as either their rows or columns overlap with the test set.

We implement the Kronecker SVM and ridge regression methods in Python, the methods are made freely available
under open source license as part of the RLScore machine learning library1. For comparison, we consider the LibSVM
software [48], which implements a highly efficient support vector machine training algorithm [49].

5.1 Data and general setup
As a typical zero-shot learning problem from the field of bioinformatics, we consider the problem of predicting
drug-target interactions. From a data base of known drugs, targets and their binary interactions, the goal is to
learn a model that can for new previously unseen drugs and targets predict whether they interact. Such a model
would be useful for example for suggesting promising candidate pair-inputs for further laboratory experiments.
We experiment on four drug-target interaction data sets, the GPCR, IC, and E and datasets [50], and the kinase
inhibition constant (Ki) data [51]. Each data set contains a number of drugs and targets, as well as binary outputs
for drug-target pairs denoting whether they are known to interact or not. The Ki-data is a naturally sparse data set
where the class information is available only for a subset of the pair-inputs. For the other four data sets the full
drug-target matrix is available, we simulate a setting with sparse data by randomly sampling 25% of the outputs
in each of these. We use exactly the same preprocessing of the data as [11], where more details about the data sets
and features can be found. The characteristics of the data sets are described in Table 4.

For pair-input data cross-validation is more complicated than for standard i.i.d. data, since same data points and
tasks can appear as parts of different inputs. For example the standard leave-one-out cross-validation approach
does not measure correctly generalization in the zero-shot learning case, since the holdout input may share the
data point or task parts, or both, with inputs in the training folds. In cross-validation one needs to ensure that the

1. https://github.com/aatapa/RLScore

https://github.com/aatapa/RLScore
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inputs selected for the holdout set contain neither common data points nor tasks with the training set, by leaving
all such inputs out of the training set. This approach is illustrated in Figure 2, for a more detailed description of
the cross-validation approach, see [52], [11].

The ridge regression implementation is trained using the Minimum Residual iteration algorithm [53] implemented
in the scipy.sparse.linalg.minres package, while the inner optimization loop of the SVM training algorithm (i.e.
the one solving the system of linear equations) uses the scipy.sparse.linalg.qmr package implementing the Quasi-
Minimal Residual iteration method [41] (SciPy version 0.14.1), with δ = 1. Experiments were performed for
regularization parameter values on the grid [2−20, ..., 220]. In order to present the results in a human interpretable
form, we restrict our plots to values [2−10, 2−5, 20, 25, 210], as these allow representing all the main trends observed
in the experiments. Both ridge regression and SVM were run for 100 iterations, and the classification performance
on test data was measured with area under ROC curve (AUC). In order to allow comparing the primal and dual
optimization, the experiments were run using the linear kernel, with the exception of the LibSVM comparison
considered later. The experiments were run on a desktop computer with Intel Core i7-3770 CPU (3.40GHz) running
Ubuntu Linux 15.04.

LibSVM does not directly support the Kronecker product kernel, however this issue can be resolved as follows.
Let us consider using both as task and datum kernels the Gaussian kernel, with width γ same for both. In this
case k(d,d′)k(t, t′) = e−γ‖t−t

′‖2e−γ‖d−d
′‖2 = e−γ‖[t,d]

T−[t′,d′]T‖2 , that is, the Kronecker kernel is equal to using the
Gaussian kernel with concatenated features of the datum and the task.

5.2 Early stopping experiments
Training Kronecker kernel methods requires solving optimization problems with a huge number of variables. In the
dual and primal Truncated Newton algorithms (Algorithms 2 and 3), one needs to repeatedly solve a linear system,
with sizes corresponding either to the number of training inputs, or to the product of data and task dimensions.
However, as discussed in Section 3.3, the classical approach of early stopping can be used to make the optimization
more efficient; optimization can be terminated once the accuracy of the model stops increasing on separate validation
data. We test how well this approach works both for the SVM and ridge regression methods. We consider only the
dual optimization case, since we observed that the behavior was very similar also for the primal case.

We run the optimization up to 100 iterations measuring two quantities: the regularized risk J(f), and AUC
on the test set (we also did selected experiments running the methods further up to 500 iterations, and found
little improvements in the results). For ridge regression the results are presented in Figure 3. For SVM we run
two variants, one where the inner optimization loop is terminated at 10 iterations (Figure 4), and one where it is
terminated at 100 iterations (Figure 5).

A trend that holds over all the methods and data sets considered is that the optimal test set AUC is obtained
within tens of iterations. Beyond this point reduction in regularized risk no longer translates into better predictions.
Further, for SVMs increasing the number of inner iterations from 10 to 100 allows achieving much faster decrease in
regularized risk. However, this comes at the cost of having to perform ten times more computation each iteration,
and does not lead into faster increase in test set AUC. Thus it can be observed, that rather than having to solve
exactly the large optimization problems corresponding to training Kronecker kernel methods, often only a handful
of iterations need to be performed in order to obtain maximal predictive accuracy.
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Fig. 3. Ridge regression regularized risk (left) and test set AUC (right) as a function of optimization iterations.
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iterations.
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Fig. 5. SVM with 100 inner iterations. Regularized risk (left) and test set AUC (right) as a function of outer optimization
iterations.

5.3 Training time
In order to demonstrate the improvements in training speed that can be realized using the sparse Kronecker product
algorithm, we compare our Kronecker SVM algorithm to the LibSVM solver on the Ki-data set. Based on preliminary
tests, we set γ = 10−5, as this value produces informative (not too close to identity matrix, or to matrix full of
ones) kernel matrices for both the datums and the tasks. For the Kronecker SVM, we perform 10 inner and 10
outer iterations with λ = 2−5. For LibSVM, we present the values for the grid [2−7, 2−5, 2−3, 2−1], as results for
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Fig. 6. Runtime comparison between KronSVM and LIBSVM (left) and the corresponding cross-validated AUCs
(middle). Prediction times for regular LibSVM decision function, and one that uses the sparse Kronecker product
shortcuts (right).

it vary more based on the choice of regularization parameter. We perform 9-fold cross-validation on the Ki data,
subsampling the number of inputs in the training data. In Figure 6 (left) we present the running times for training
the methods for different numbers of training inputs, as well as the corresponding cross-validated AUCs. The
KronSVM results, while similar as before, are not directly comparable to those in the earlier experiments due to
different kernel function being used.

As can be expected based on the computational complexity considerations, the KronSVM algorithm has superior
scalability compared to the regular SVM implemented in the LibSVM package. In the experiment on 42000 pair-
inputs the difference is already 25 seconds versus 15 minutes. The LibSVM runtimes could certainly be improved
for example by using earlier termination of the optimization. Still, this would not solve the basic issue that without
using computational shortcuts such as the sampled Kronecker product algorithm (Algorithm 1) proposed in our
work, one will need to construct a significant part of the kernel matrix for the inputs. For LibSVM, the scaling is
roughly quadratic in the number of inputs, while for KronSVM it is linear. Considering the cross-validated AUCs
(Figure 6 (middle)), it can be observed that the AUC of the KronSVM with early stopping is very much competitive
with that of LibSVM. To conclude, the proposed Kronecker product algorithm allows substantially faster training
for pairwise data than if one uses current state-of-the-art solvers, that are however not able to make use of the
pairwise structure.

5.4 Prediction time
Finally, we show how the sparse Kronecker product algorithm can be used to accelerate predictions made for new
data. As in previous experiment, we train LibSVM on the Ki-data for varying sample sizes, with the training and
test set split done as in the 9-fold cross-validation experiment. We use λ = −5, and the same kernel and kernel
parameters as before. We use the predictor learned by the SVM to make predictions for the 10000 drug-target pairs
in the test set.

We compare the running times for two approaches for doing the predictions. ’Baseline’ refers to the standard
decision function implemented in LibSVM. ’Kronecker’, refers to implementation that computes the predictions
using the sparse Kronecker product algorithm. The ’Kronecker’ method is implemented by combining the LibSVM
code with additional code that after training LibSVM, reads in the dual coefficients of the resulting predictor and
generates a new predictor that uses the shortcuts proposed in this paper. Both predictors are equivalent in the sense
that they produce (within numerical accuracy) exactly the same predictions.

The results are plotted in Figure 6 (right). For both methods the prediction time increases linearly with the
training set size (see equations (6) and (7)). However, the Kronecker method is more than 1000 times faster than
Baseline, demonstrating that significant speedups can be realized by using the sparse Kronecker product algorithm
for computing predictions.

6 CONCLUSION

In this work, we have proposed a sampled Kronecker product algorithm. A simple optimization framework is
described in order to show how the proposed algorithm can be used to develop efficient training algorithms
for pairwise kernel methods. Both computational complexity analysis and experiments show that the resulting
algorithms can provide order of magnitude improvements in computational efficiency both for training and making
predictions, compared to existing kernel method solvers. Our work opens future avenues of research both for
developing even better optimized training algorithms for individual kernel methods, as well as for improving
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the efficiency of any other such methods that can be expressed in terms of sampled Kronecker products. The
implementations for the sampled Kronecker product algorithm, as well as for Kronecker ridge regression and
Kronecker SVM are made freely available under open source license.
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