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Analogs of Jacobian conditions for subrings

Piotr Jedrzejewicz, Janusz Zielinski

Abstract

We present a generalization of the Jacobian Conjecture for m poly-
nomials in n variables: fi,..., f;m € k[z1,..., 2], where k is a field
of characteristic zero and m € {1,...,n}. We express the generalized
Jacobian condition in terms of irreducible and square-free elements of
the subalgebra k[f1,..., fin]. We also discuss obtained properties in
a more general setting — for subrings of unique factorization domains.

Introduction

The Jacobian Conjecture asserts that if k is a field of characteristic zero
and polynomials f1,..., f, € k[xq, ..., z,] satisfy the Jacobian condition
(1) JaC(fl,,fn)Ek\{O}
(where jac denotes the Jacobian determinant), then k[fi, ..., f,] = klz1, ...,
z,]. In terms of endomorphisms of the polynomial algebra k[zy,...,x,]: if
a k-endomorphism ¢ satisfies the Jacobian condition
(2) jac(p(@1), - - -, (xa)) € k\ {0},

then ¢ is an automorphism. For more information on the Jacobian Conjec-
ture we refer the reader to van den Essen’s book [7].

In Section [Il we present and discuss the following generalization of the Ja-
cobian Conjecture, denoted by JC(m, n, k), where k is a field of characteristic
zero, n is a positive integer, m € {1,...,n} and jac denotes the Jacobian
determinant with respect to given variables:
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"For arbitrary polynomials f1, ..., fm € klx1, ..., 2,], if

(3) ged (Jacflf;"m, 1<ip <...<in<n)€k\{0},
then k[f1,..., fm] is a ring of constants of some k-derivation of
klxy, ..., x,].”

This conjecture can be expressed in terms of polynomial homomorphisms
(and algebraic closedness) in the following way:

“For every k-homomorphism ¢ k[x1,...,x,] = k[z1,. .., 2], if

ged (jacgrho#lom) 1 Ly <L <y, < n) € K\ {0},

LiqyeesTipy

”»

then Im ¢ is algebraically closed in kxq,. .., x,].

One of the authors obtained in [12] a characterization of endomorphisms
satisfying the Jacobian condition (2), where k is a field of characteristic
zero, as mapping irreducible polynomials to square-free ones. De Bondt
and Yan proved in [4] that mapping square-free polynomials to square-free
ones is also equivalent to (2). We can express it in terms of polynomials
fi=w(z1), ..., fn = @(x,): condition (1) holds if and only if all irreducible
(resp. all square-free) elements of the ring k[f1, ..., f,] are square-free in the
ring k[xy,...,2z,]. In Theorem 2.4 we generalize this fact for m polynomials
fi,-os fm € K[x1,...,2,], where m € {1,...,n}. Namely, the generalized
Jacobian condition (3) is equivalent to each of the following ones:

e k[fy, ..., f) € Saf k[zq, ..., 2],

(4)
Saf k[f1, .-, fm) C Saf k[z1, ..., 2],

where Irr and Sqf denote the sets of irreducible and square-free elements of
the respective ring. This fact is a consequence of a multidimensional gen-
eralization of Freudenburg’s lemma ([8]) obtained in Theorem 23l A pre-
sentation of succeding generalizations of this lemma can be found in the
Intoduction to [13].

The above conjecture motivates us in Section 2 to consider the following
properties for a subring R of a unique factorization domain A:

(5) Irr R € Sqf A, Sqf R C Sqf A.



In Theorem [B.4] under some additional assumptions, we express the second
condition in a kind of factoriality:

(6) "For everyx € A, y € Sqf A, ifz*y € R\ {0}, thenx,y € R.”

We call a subring R satisfying condition (6) square-factorially closed in A. In
Theorem we show that, under the same assumptions, square-factorially
closed subrings are root closed.

1 A generalization of the Jacobian Conjec-
ture for m polynomials in n variables

Let k be a field of characteristic zero. By k[z1,...,x,] we denote the
k-algebra of polynomials in n variables.

Recall from [I1] the following notion of a ”differential ged” for m poly-
nomials fi,..., fm € k[z1,...,2,], m € {1,...,n}:

dged(fi, ..., fm) = ged (jacic;'“’f"fm, 1<iy <...<ip<n),

where Jacf;llf;” denotes the Jacobian determinant of fy, ..., f,, with re-

spect to z;,, ..., x;, . For m = n we have

deged(fi, .-, fn) ~jac(fi, ..oy fu),

for m = 1 we have

of of
dged(f) ~ged [ =—, ...
where g ~ h means that polynomials g and h are associated. We put
dged(f1,..., fm) = 0 if Jacgilf;flm = 0 for every iy, ..., i,,, that is, fi,

..., fm are algebraically dependent over k.

Let k be a field and let A be a k-algebra. A k-linear map d: A — A such
that d(fg) = d(f)g + fd(g) for f,g € A, is called a k-derivation of A. The
kernel of d is denoted by A? and called the ring of constants of d. For more

information on derivations and their rings of constants we refer the reader to
Nowicki’s book [15].

Consider the following conjecture for m polynomials in n variables.

Conjecture JC(m,n, k). For arbitrary polynomials fi, ..., fm € kl[z1, ...,
x,], where k is a field of characteristic zero and m € {1,...,n}, if

dged(fy, ..., fm) € K\ {0},
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then k[f1,. .., fm] is a ring of constants of some k-derivation of klxy, ..., x,].

Recall Nowicki’s characterization of rings of constants ([16], Theorem 5.4,
[15], Theorem 4.1.4, p. 47).

Theorem (Nowicki, 1994). Let A be a finitely generated k-domain, where
k is a field of characteristic zero. Let R be a k-subalgebra of A. The following
conditions are equivalent:

(i) R is a ring of constants of some k-derivation of A,
(ii) R is integrally closed in A and RyN A = R.

Let D be a family of k-derivations of a finitely generated k-domain A,
where k is a field of characteristic zero. It follows from Nowicki’s Theorem

that the ring
AP =] A
deD
is a ring of constants of some single k-derivation of A ([I6], Theorem 5.5,

[15], Theorem 4.1.5, p. 47).

Daigle observed ([6], 1.4) that condition (ii) of Nowicki’s Theorem can be
shortened to the following form:

(iii) R is algebraically closed in A.
Now we see for example that conjecture JC(2,3, k) asserts that if poly-
nomials f, g € klx,y, z] satisfy the condition
ged (jacl§, jack? jac)?) € k\ {0},

xT

then k[f, g] is algebraically closed in k[z,y, z].

Let us note some basic observations according to conjecture JC(m,n, k).

Lemma 1.1. JC(m,n, k) implies the Jacobian Conjecture for m wvariables
over k.

Proof. Assume that JC(m,n, k) holds and consider polynomials fi,..., f,, €
klz1,...,2,) such that jac/~/m e |\ {0}.

.....

In k[zy, ..., z,] we have dged(fi, ..., fm) = jaclivm so k[f1, ..., fm] is
algebraically closed in k[z1,...,x,] by JC(m,n,k). Hence, k[fi,..., f] is
algebraically closed in k[zy,...,x,]. And then k[f1,..., fi] = klz1, ..., 2w,

because f1,..., f,, are algebraically independent over k. O



Now, recall from [14] and [17] that a polynomial f € k[zy,...,x,] over
a field k is called closed if the ring k[f] is integrally closed in k[xy, ..., z,].
When chark = 0, a polynomial f is closed if and only if k[f] is a ring
of constants of some k-derivation of k[xy,...,z,| ([I4], Theorem 2.1, [15],
Theorem 7.1.4, p. 80). Necessary and sufficient conditions for a polynomial
to be closed were collected and completed by Arzantsev and Petravchuk in [2],
Theorem 1. Ayad proved ([3], Proposition 14) that a polynomial f € k[x, y],
where char k = 0, is closed if

of of
d| ==, = kE\ {0}.
His proof can be generalized to n variables (it was noted in [10], Proposition
4.2), so we obtain the following fact.

Theorem (Ayad, 2002). JC(1,n, k) is true.

Remark 1.2. The reverse implication in JC(m,n, k) need not to be true if
m < n.

In this case n > 2. As an example we may consider a polynomial f; =
1ix9 € k[, .., 2,] and, if m > 1, polynomials fo = z3, ..., fin = Timi1-

We have
dng(ﬂU%I‘Q, T3, ... 7xm+1) = ng(2x1x27 .T%) = T,

S0 dng(I‘%LUQ, T3,. .. ,.Terl) ¢ k \ {O}

On the other hand, k[z?xs, 3, ..., Tmi1] is algebraically closed in k[zy,
.., T, as a ring of constants of a family of derivations
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2 Analogs of Jacobian conditions in terms of
irreducible and square-free elements

If R is a commutative ring with unity, then R* denotes the set of non-
invertible elements of R. An element a € R is called square-free if it cannot
be presented in the form a = b*c, where b,c € R and b ¢ R*. By Irr R we
denote the set of irreducible elements of R and by Sqf R we denote the set
of square-free elements of R.



Let k£ be a field of characteristic zero. Consider arbitrary polynomials
fi,--os fm € klxy, ..., x|, where m € {1,...,n}. Let g € k[z1,...,x,] be an
irreducible polynomial.

The following lemma is a natural generalization of [12], Lemma 3.1. For
the proof it is enough to add the argument from the beginning of the proof
of [13], Proposition 3.4.a with @ = (g).

Lemma 2.1. For a given i € {1,...,m} consider the following condition:

(%) there exist sq, ..., 8y, € k[x1,...,2,], where g1 s;, such that
g | s1d(f1) + ...+ $md(fm) for every k-derivation d of k[x1, ..., x,].

a) Then g | dged(fi,..., fm) if and only if condition (x) holds for some
ie{l,...,m}.

b) If, for a given i € {1,...,m}, condition () holds, then fi is algebraic
over the ﬁeld k:( f17 R fi—la fi+17 R fm )

Note the following consequence of Lemma 2.1] and [12], Lemma 3.2.b
(where the polynomial w can be obtained as irreducible).

Corollary 2.2. If g | dged(f1,..., fm), then g | w(fi,..., fm) for some
irreducible polynomial w € klz1, ..., xp].

The following theorem is a multidimensional generalization of Freuden-
burg’s lemma ([§]).

Theorem 2.3. Let k be a field of characteristic zero, let fi,..., fm € k[x1,
.o, Ty be arbitrary polynomials, where m € {1,...,n}, and let g € klzy, ...,
x,] be an irreducible polynomial. The following conditions are equivalent:

(i) gldged(fi,.. - fm),

(i) ¢* | w(fi,..., fm) for some irreducible polynomial w € k[xy,. .., Ty,

(iii) ¢® |w(f1,..., fm) for some square-free polynomial w € klxy, ..., xp).

Proof. ITmplication (ii) = (i) was already proved in the proof of [12], Theorem
4.1, (ii) = (i). Implication (ii) = (iii) is trivial.

(i) = (ii) We combine the arguments from proofs of [12], Theorem 4.1,
(i) = (ii) and [13], Theorem 3.6 (=). Assume that g | dged(fi,..., fm).
By Corollary 22, g | w(fi,..., fm) for some irreducible polynomial w €
klxy,...,zy]. We proceed like in [12], using a derivation d(f) = jacg""_'jfgljfl’f
for arbitrary j; < ... < j, instead of d,, and applying Lemma 21l instead
of [12], Lemma 3.1.



(iii) = (ii) We apply the proof of [4], Theorem 2.1, 3) = 2). Assume

that ¢ | w(fy,..., fmm) for some square-free polynomial w € k[x, ..., z,,],
so w(fi,..., fm) = g*h, where h € k[zy,...,z,]. Then there exist poly-
nomials wy, wy € k[xq,...,2,] such that w = wjws, wy is irreducible and
g | wi(fi,-.., fm). Then we proceed like in [4]. O

As a consequence of Theorem 2.3 we obtain the following generalization
of [12], Theorem 5.1 and [4], Corollary 2.2.

Theorem 2.4. Let A = k[xq,...,x,], where k is a field of characteristic
zero. Assume that f1, ..., fm € A are algebraically independent over k, where
m € {1,...,n}. Put R = k[fi,...,fn]. Then the following conditions are
equivalent:

(ii) Irr R C Sqf A,
(iii) Sqf R C Sqf A.

The above theorem allows us call conditions (ii) and (iii) analogs of the
Jacobian condition (i) for a subring R.

Remark 2.5. Conditions (ii) and (iii) of Theorem 2.4 can be expressed in the
following way, respetively:

(ii) for every irreducible polynomial w € k[xq,. .., x,,] the polynomial w(f1,
..+, fm) is square-free,

(iii) for every square-free polynomial w € k[xy, ..., z,,] the polynomial w(f;,
..y fm) 18 square-free.

3 Square-factorially closed subrings

We will present some basic observations concerning conditions (ii) and
(iii) from Theorem 24 for a subring R of an arbitrary unique factorization
domain A. Conjecture JC(m,n, k) motivates us to state the following open
question.

A general question. Let R be a subring of a domain A such that
Irr R C Sqf A or Sqf R C Sqf A.

When R is algebraically closed in A?



Lemma 3.1. Let A be a unique factorization domain. Let R be a subring
of A such that R* = A*. Consider the following conditions:

(i) rR C Iir A,
(ii) Sqf R C Sof A,
(iii) Irr R C Sqf A.

Then the following implications hold:

(i) = (ii) = (iii).
Proof. (i) = (ii)

Assume that Irr R C Irr A and consider an element a € Sqf R. Let
a=q...q,whereq,...,q € Irr R are pairwise non-associated in R. Then,
by the assumption, ¢q,...,q. € Irr A. Moreover, since A* = R*, q1,...,q,
are pairwise non-associated in A.

(ii) = (iii)

Assume that Sqf R C Sqf A and consider an element a € Irr R. Suppose
that a = b%c, where b € R\ R* and ¢ € R. Then a = b - (bc), where
b,bc € R\ R*, a contradiction. Hence, a € Sqf R. O

Recall that a subring R of a ring A is called factorially closed in A if the
following implication:

xy € R\ {0} ==z,y€R

holds for every x,y € A. The ring of constants of any locally nilpotent
derivation of a domain of characteristic zero is factorially closed. We refer the
reader to [6] and [9] for more information about locally nilpotent derivations.

Lemma 3.2. Let A be a unique factorization domain. Let R be a subring
of A such that R* = A*. The following conditions are equivalent:

(i) mrRC Iir A,
(ii) R is factorially closed in A.
Proof. (i) = (ii)

Assume that Irr R C Irr A and consider elements z,y € A such that
xy € R\ {0}. Let xzy = ¢1 . ..q,, where qq,...,q, € Irr R. Then qq,...,q, €
Irr A, so without loss of generality we may assume that © = aq ...qs and
Yy = bgsyi1 - . .q, for some a,b € A*. Since A* = R*, we infer that x,y € R.
(i) = (i)

Assume that condition (ii) holds and consider an element a € Irr R. Let

a = be, where b,c € A. By the assumption, b,c € R, so b € R* or ¢ € R*.
Hence, b € A* or c € A*. O



Note the following easy fact.

Lemma 3.3. Let A be a domain, let R be a subring of A. The following
conditions are equivalent:

(i) ReNA=R,
(ii) for everyx € R, y € A, if xy € R\ {0}, then y € R.

Theorem 3.4. Let A be a unique factorization domain. Let R be a subring
of A such that R* = A* and Ry N A = R. The following conditions are
equivalent:

(i) Sqf R C Sqf A,
(ii) for everyx € A, y € Saf A, if 2*y € R\ {0}, then z,y € R.

Proof. (i) = (ii)
Assume that Sqf R C Sqf A and consider z,y € A such that y € Sqf A
and z?y € R\ {0}. If z € R, then 2? € R, and hence y € R by Lemma 3.3

Now suppose that x ¢ R and x is a minimal element (with respect to
a number of irreducible factors in A) with this property. In this case = & A*,
so 2y & Sqf A, and then 2%y & Sqf R. Hence, 2%y = 2t for some z,t € R,
2z & R*. We can present ¢ in the form ¢t = u?v, where u,v € A, v € Sqf A. We
have u*v € R\ {0}, so u € R by the minimality of z. We obtain z?y = z?u’v,
where y,v € Sqf A, hence x = czu for some ¢ € A*. By the assumptions,
c € R, sox € R, a contradiction.

(if) = (i)

Assume that condition (ii) holds. Consider an element r € Sqf R. Sup-
pose that r & Sqf A, so r = 2%y for some z,y € A such that x ¢ A* and
y € Sqf A. Since 2%y € R\ {0}, we obtain that x,y € R. We have x & R*,
so 2%y € Sqf R, a contradiction. O

Definition 3.5. Let A be a UFD. A subring R of A such that the implication
vy e R\ {0} = z,y€R

holds for every z € A, y € Sqf A, will be called square-factorially closed in A.
Recall that a subring R of a ring A is called root closed in A if the
following implication:
" eR = reR

holds for every x € A and n > 1. The properties of root closed subrings were
investigated in many papers, see [I] and [5] for example.



Theorem 3.6. Let A be a unique factorization domain. Let R be a subring
of A such that R* = A* and Ry N A = R. If R is square-free closed in A,
then R is root closed in A.

Proof. Assume that R is square-free closed in A. Consider an element z € A,
x # 0, such that " € R for some n > 1. Let n = 2"(2] + 1), where r,1 > 0.
Observe first that since (z%*1)? € R, then applying Theorem .4 we obtain
¢ R.

. —1
Now, note that = can be presented in the form z = s3" 52" ... 52 S,

where sg, ..., S, € Sqf A and m > 0. We will show by induction on m that
the following implication:

?'eR = z€eR

holds for every z € A, x # 0. Let m > 0 and assume that the above
implication holds for m — 1. Put t = s2" s ...8m_1, 50 © = %5, and
P = (216l )2s, . Tf 22FY € R, then t2F1s! s, € R by Theorem B4, so

t?#1 ¢ R by Lemma B3 Hence, t € R by the induction assumption and,
finally, x € R. O
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