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Analogs of Jacobian conditions for subrings

Piotr Je֒drzejewicz, Janusz Zieliński

Abstract

We present a generalization of the Jacobian Conjecture for m poly-
nomials in n variables: f1, . . . , fm ∈ k[x1, . . . , xn], where k is a field
of characteristic zero and m ∈ {1, . . . , n}. We express the generalized
Jacobian condition in terms of irreducible and square-free elements of
the subalgebra k[f1, . . . , fm]. We also discuss obtained properties in
a more general setting – for subrings of unique factorization domains.

Introduction

The Jacobian Conjecture asserts that if k is a field of characteristic zero
and polynomials f1, . . . , fn ∈ k[x1, . . . , xn] satisfy the Jacobian condition

(1) jac(f1, . . . , fn) ∈ k \ {0}

(where jac denotes the Jacobian determinant), then k[f1, . . . , fn] = k[x1, . . . ,

xn]. In terms of endomorphisms of the polynomial algebra k[x1, . . . , xn]: if
a k-endomorphism ϕ satisfies the Jacobian condition

(2) jac(ϕ(x1), . . . , ϕ(xn)) ∈ k \ {0},

then ϕ is an automorphism. For more information on the Jacobian Conjec-
ture we refer the reader to van den Essen’s book [7].

In Section 1 we present and discuss the following generalization of the Ja-
cobian Conjecture, denoted by JC(m,n, k), where k is a field of characteristic
zero, n is a positive integer, m ∈ {1, . . . , n} and jac denotes the Jacobian
determinant with respect to given variables:
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”For arbitrary polynomials f1, . . . , fm ∈ k[x1, . . . , xn], if

(3) gcd
(

jacf1,...,fmxi1
,...,xim

, 1 6 i1 < . . . < im 6 n
)

∈ k \ {0},

then k[f1, . . . , fm] is a ring of constants of some k-derivation of

k[x1, . . . , xn].”

This conjecture can be expressed in terms of polynomial homomorphisms
(and algebraic closedness) in the following way:

”For every k-homomorphism ϕ : k[x1, . . . , xn] → k[x1, . . . , xm], if

gcd
(

jacϕ(x1),...,ϕ(xm)
xi1

,...,xim
, 1 6 i1 < . . . < im 6 n

)

∈ k \ {0},

then Imϕ is algebraically closed in k[x1, . . . , xn].”

One of the authors obtained in [12] a characterization of endomorphisms
satisfying the Jacobian condition (2), where k is a field of characteristic
zero, as mapping irreducible polynomials to square-free ones. De Bondt
and Yan proved in [4] that mapping square-free polynomials to square-free
ones is also equivalent to (2). We can express it in terms of polynomials
f1 = ϕ(x1), . . . , fn = ϕ(xn): condition (1) holds if and only if all irreducible
(resp. all square-free) elements of the ring k[f1, . . . , fn] are square-free in the
ring k[x1, . . . , xn]. In Theorem 2.4 we generalize this fact for m polynomials
f1, . . . , fm ∈ k[x1, . . . , xn], where m ∈ {1, . . . , n}. Namely, the generalized
Jacobian condition (3) is equivalent to each of the following ones:

(4)
Irr k[f1, . . . , fm] ⊂ Sqf k[x1, . . . , xn],

Sqf k[f1, . . . , fm] ⊂ Sqf k[x1, . . . , xn],

where Irr and Sqf denote the sets of irreducible and square-free elements of
the respective ring. This fact is a consequence of a multidimensional gen-
eralization of Freudenburg’s lemma ([8]) obtained in Theorem 2.3. A pre-
sentation of succeding generalizations of this lemma can be found in the
Intoduction to [13].

The above conjecture motivates us in Section 2 to consider the following
properties for a subring R of a unique factorization domain A:

(5) IrrR ⊂ Sqf A, Sqf R ⊂ Sqf A.
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In Theorem 3.4, under some additional assumptions, we express the second
condition in a kind of factoriality:

(6) ”For every x ∈ A, y ∈ Sqf A, if x2y ∈ R \ {0}, then x, y ∈ R.”

We call a subring R satisfying condition (6) square-factorially closed in A. In
Theorem 3.6 we show that, under the same assumptions, square-factorially
closed subrings are root closed.

1 A generalization of the Jacobian Conjec-

ture for m polynomials in n variables

Let k be a field of characteristic zero. By k[x1, . . . , xn] we denote the
k-algebra of polynomials in n variables.

Recall from [11] the following notion of a ”differential gcd” for m poly-
nomials f1, . . . , fm ∈ k[x1, . . . , xn], m ∈ {1, . . . , n}:

dgcd(f1, . . . , fm) = gcd
(

jacf1,...,fmxi1
,...,xim

, 1 6 i1 < . . . < im 6 n
)

,

where jacf1,...,fmxi1
,...,xim

denotes the Jacobian determinant of f1, . . . , fm with re-
spect to xi1 , . . . , xim . For m = n we have

dgcd(f1, . . . , fn) ∼ jac(f1, . . . , fn),

for m = 1 we have

dgcd(f) ∼ gcd

(

∂f

∂x1

, . . . ,
∂f

∂xn

)

,

where g ∼ h means that polynomials g and h are associated. We put
dgcd(f1, . . . , fm) = 0 if jacf1,...,fmxi1

,...,xim
= 0 for every i1, . . . , im, that is, f1,

. . . , fm are algebraically dependent over k.

Let k be a field and let A be a k-algebra. A k-linear map d : A → A such
that d(fg) = d(f)g + fd(g) for f, g ∈ A, is called a k-derivation of A. The
kernel of d is denoted by Ad and called the ring of constants of d. For more
information on derivations and their rings of constants we refer the reader to
Nowicki’s book [15].

Consider the following conjecture for m polynomials in n variables.

Conjecture JC(m,n, k). For arbitrary polynomials f1, . . . , fm ∈ k[x1, . . . ,

xn], where k is a field of characteristic zero and m ∈ {1, . . . , n}, if

dgcd(f1, . . . , fm) ∈ k \ {0},
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then k[f1, . . . , fm] is a ring of constants of some k-derivation of k[x1, . . . , xn].

Recall Nowicki’s characterization of rings of constants ([16], Theorem 5.4,
[15], Theorem 4.1.4, p. 47).

Theorem (Nowicki, 1994). Let A be a finitely generated k-domain, where

k is a field of characteristic zero. Let R be a k-subalgebra of A. The following

conditions are equivalent:

(i) R is a ring of constants of some k-derivation of A,

(ii) R is integrally closed in A and R0 ∩ A = R.

Let D be a family of k-derivations of a finitely generated k-domain A,
where k is a field of characteristic zero. It follows from Nowicki’s Theorem
that the ring

AD =
⋂

d∈D

Ad

is a ring of constants of some single k-derivation of A ([16], Theorem 5.5,
[15], Theorem 4.1.5, p. 47).

Daigle observed ([6], 1.4) that condition (ii) of Nowicki’s Theorem can be
shortened to the following form:

(iii) R is algebraically closed in A.

Now we see for example that conjecture JC(2, 3, k) asserts that if poly-
nomials f, g ∈ k[x, y, z] satisfy the condition

gcd
(

jacf, gx, y, jacf, gx, z, jacf, gy, z

)

∈ k \ {0},

then k[f, g] is algebraically closed in k[x, y, z].

Let us note some basic observations according to conjecture JC(m,n, k).

Lemma 1.1. JC(m,n, k) implies the Jacobian Conjecture for m variables

over k.

Proof. Assume that JC(m,n, k) holds and consider polynomials f1, . . . , fm ∈
k[x1, . . . , xm] such that jacf1,...,fmx1,...,xm

∈ k \ {0}.

In k[x1, . . . , xn] we have dgcd(f1, . . . , fm) = jacf1,...,fmx1,...,xm
, so k[f1, . . . , fm] is

algebraically closed in k[x1, . . . , xn] by JC(m,n, k). Hence, k[f1, . . . , fm] is
algebraically closed in k[x1, . . . , xm]. And then k[f1, . . . , fm] = k[x1, . . . , xm],
because f1, . . . , fm are algebraically independent over k.
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Now, recall from [14] and [17] that a polynomial f ∈ k[x1, . . . , xn] over
a field k is called closed if the ring k[f ] is integrally closed in k[x1, . . . , xn].
When char k = 0, a polynomial f is closed if and only if k[f ] is a ring
of constants of some k-derivation of k[x1, . . . , xn] ([14], Theorem 2.1, [15],
Theorem 7.1.4, p. 80). Necessary and sufficient conditions for a polynomial
to be closed were collected and completed by Arzantsev and Petravchuk in [2],
Theorem 1. Ayad proved ([3], Proposition 14) that a polynomial f ∈ k[x, y],
where char k = 0, is closed if

gcd

(

∂f

∂x
,
∂f

∂y

)

∈ k \ {0}.

His proof can be generalized to n variables (it was noted in [10], Proposition
4.2), so we obtain the following fact.

Theorem (Ayad, 2002). JC(1, n, k) is true.

Remark 1.2. The reverse implication in JC(m,n, k) need not to be true if
m < n.

In this case n > 2. As an example we may consider a polynomial f1 =
x2
1x2 ∈ k[x1, . . . , xn] and, if m > 1, polynomials f2 = x3, . . . , fm = xm+1.

We have

dgcd(x2
1x2, x3, . . . , xm+1) = gcd(2x1x2, x

2
1) = x1,

so dgcd(x2
1x2, x3, . . . , xm+1) 6∈ k \ {0}.

On the other hand, k[x2
1x2, x3, . . . , xm+1] is algebraically closed in k[x1,

. . . , xn] as a ring of constants of a family of derivations

{

x1
∂

∂x1
− 2x2

∂

∂x2
,

∂

∂xm+2
, . . . ,

∂

∂xn

}

.

2 Analogs of Jacobian conditions in terms of

irreducible and square-free elements

If R is a commutative ring with unity, then R∗ denotes the set of non-
invertible elements of R. An element a ∈ R is called square-free if it cannot
be presented in the form a = b2c, where b, c ∈ R and b 6∈ R∗. By IrrR we
denote the set of irreducible elements of R and by Sqf R we denote the set
of square-free elements of R.
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Let k be a field of characteristic zero. Consider arbitrary polynomials
f1, . . . , fm ∈ k[x1, . . . , xn], where m ∈ {1, . . . , n}. Let g ∈ k[x1, . . . , xn] be an
irreducible polynomial.

The following lemma is a natural generalization of [12], Lemma 3.1. For
the proof it is enough to add the argument from the beginning of the proof
of [13], Proposition 3.4.a with Q = (g).

Lemma 2.1. For a given i ∈ {1, . . . , m} consider the following condition:

(∗)
there exist s1, . . . , sm ∈ k[x1, . . . , xn], where g ∤ si, such that

g | s1d(f1) + . . . + smd(fm) for every k-derivation d of k[x1, . . . , xn].

a) Then g | dgcd(f1, . . . , fm) if and only if condition (∗) holds for some

i ∈ {1, . . . , m}.

b) If, for a given i ∈ {1, . . . , m}, condition (∗) holds, then fi is algebraic

over the field k( f1, . . . , fi−1, fi+1, . . . , fm ).

Note the following consequence of Lemma 2.1 and [12], Lemma 3.2.b
(where the polynomial w can be obtained as irreducible).

Corollary 2.2. If g | dgcd(f1, . . . , fm), then g | w(f1, . . . , fm) for some

irreducible polynomial w ∈ k[x1, . . . , xm].

The following theorem is a multidimensional generalization of Freuden-
burg’s lemma ([8]).

Theorem 2.3. Let k be a field of characteristic zero, let f1, . . . , fm ∈ k[x1,

. . . , xn] be arbitrary polynomials, where m ∈ {1, . . . , n}, and let g ∈ k[x1, . . . ,

xn] be an irreducible polynomial. The following conditions are equivalent:

(i) g | dgcd(f1, . . . , fm),

(ii) g2 | w(f1, . . . , fm) for some irreducible polynomial w ∈ k[x1, . . . , xm],

(iii) g2 | w(f1, . . . , fm) for some square-free polynomial w ∈ k[x1, . . . , xm].

Proof. Implication (ii) ⇒ (i) was already proved in the proof of [12], Theorem
4.1, (ii) ⇒ (i). Implication (ii) ⇒ (iii) is trivial.

(i) ⇒ (ii) We combine the arguments from proofs of [12], Theorem 4.1,
(i) ⇒ (ii) and [13], Theorem 3.6 (⇒). Assume that g | dgcd(f1, . . . , fm).
By Corollary 2.2, g | w(f1, . . . , fm) for some irreducible polynomial w ∈
k[x1, . . . , xm]. We proceed like in [12], using a derivation d(f) = jacf1,...,fm−1,f

xj1
,...,xjm

for arbitrary j1 < . . . < jm, instead of dn, and applying Lemma 2.1 instead
of [12], Lemma 3.1.
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(iii) ⇒ (ii) We apply the proof of [4], Theorem 2.1, 3) ⇒ 2). Assume
that g2 | w(f1, . . . , fm) for some square-free polynomial w ∈ k[x1, . . . , xm],
so w(f1, . . . , fm) = g2h, where h ∈ k[x1, . . . , xn]. Then there exist poly-
nomials w1, w2 ∈ k[x1, . . . , xm] such that w = w1w2, w1 is irreducible and
g | w1(f1, . . . , fm). Then we proceed like in [4].

As a consequence of Theorem 2.3 we obtain the following generalization
of [12], Theorem 5.1 and [4], Corollary 2.2.

Theorem 2.4. Let A = k[x1, . . . , xn], where k is a field of characteristic

zero. Assume that f1, . . . , fm ∈ A are algebraically independent over k, where

m ∈ {1, . . . , n}. Put R = k[f1, . . . , fm]. Then the following conditions are

equivalent:

(i) dgcd(f1, . . . , fm) ∈ k \ {0},

(ii) IrrR ⊂ Sqf A,

(iii) Sqf R ⊂ Sqf A.

The above theorem allows us call conditions (ii) and (iii) analogs of the
Jacobian condition (i) for a subring R.

Remark 2.5. Conditions (ii) and (iii) of Theorem 2.4 can be expressed in the
following way, respetively:

(ii) for every irreducible polynomial w ∈ k[x1, . . . , xm] the polynomial w(f1,
. . . , fm) is square-free,

(iii) for every square-free polynomial w ∈ k[x1, . . . , xm] the polynomial w(f1,
. . . , fm) is square-free.

3 Square-factorially closed subrings

We will present some basic observations concerning conditions (ii) and
(iii) from Theorem 2.4 for a subring R of an arbitrary unique factorization
domain A. Conjecture JC(m,n, k) motivates us to state the following open
question.

A general question. Let R be a subring of a domain A such that

IrrR ⊂ Sqf A or Sqf R ⊂ Sqf A.

When R is algebraically closed in A?
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Lemma 3.1. Let A be a unique factorization domain. Let R be a subring

of A such that R∗ = A∗. Consider the following conditions:

(i) IrrR ⊂ IrrA,

(ii) Sqf R ⊂ Sqf A,

(iii) IrrR ⊂ Sqf A.

Then the following implications hold:

(i) ⇒ (ii) ⇒ (iii).

Proof. (i) ⇒ (ii)
Assume that IrrR ⊂ IrrA and consider an element a ∈ Sqf R. Let

a = q1 . . . qr, where q1, . . . , qr ∈ IrrR are pairwise non-associated in R. Then,
by the assumption, q1, . . . , qr ∈ IrrA. Moreover, since A∗ = R∗, q1, . . . , qr
are pairwise non-associated in A.

(ii) ⇒ (iii)
Assume that Sqf R ⊂ Sqf A and consider an element a ∈ IrrR. Suppose

that a = b2c, where b ∈ R \ R∗ and c ∈ R. Then a = b · (bc), where
b, bc ∈ R \R∗, a contradiction. Hence, a ∈ Sqf R.

Recall that a subring R of a ring A is called factorially closed in A if the
following implication:

xy ∈ R \ {0} ⇒ x, y ∈ R

holds for every x, y ∈ A. The ring of constants of any locally nilpotent
derivation of a domain of characteristic zero is factorially closed. We refer the
reader to [6] and [9] for more information about locally nilpotent derivations.

Lemma 3.2. Let A be a unique factorization domain. Let R be a subring

of A such that R∗ = A∗. The following conditions are equivalent:

(i) IrrR ⊂ IrrA,

(ii) R is factorially closed in A.

Proof. (i) ⇒ (ii)
Assume that IrrR ⊂ IrrA and consider elements x, y ∈ A such that

xy ∈ R \ {0}. Let xy = q1 . . . qr, where q1, . . . , qr ∈ IrrR. Then q1, . . . , qr ∈
IrrA, so without loss of generality we may assume that x = aq1 . . . qs and
y = bqs+1 . . . qr for some a, b ∈ A∗. Since A∗ = R∗, we infer that x, y ∈ R.

(ii) ⇒ (i)
Assume that condition (ii) holds and consider an element a ∈ IrrR. Let

a = bc, where b, c ∈ A. By the assumption, b, c ∈ R, so b ∈ R∗ or c ∈ R∗.
Hence, b ∈ A∗ or c ∈ A∗.
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Note the following easy fact.

Lemma 3.3. Let A be a domain, let R be a subring of A. The following

conditions are equivalent:

(i) R0 ∩A = R,

(ii) for every x ∈ R, y ∈ A, if xy ∈ R \ {0}, then y ∈ R.

Theorem 3.4. Let A be a unique factorization domain. Let R be a subring

of A such that R∗ = A∗ and R0 ∩ A = R. The following conditions are

equivalent:

(i) Sqf R ⊂ Sqf A,

(ii) for every x ∈ A, y ∈ Sqf A, if x2y ∈ R \ {0}, then x, y ∈ R.

Proof. (i) ⇒ (ii)
Assume that Sqf R ⊂ Sqf A and consider x, y ∈ A such that y ∈ Sqf A

and x2y ∈ R \ {0}. If x ∈ R, then x2 ∈ R, and hence y ∈ R by Lemma 3.3.

Now suppose that x 6∈ R and x is a minimal element (with respect to
a number of irreducible factors in A) with this property. In this case x 6∈ A∗,
so x2y 6∈ Sqf A, and then x2y 6∈ Sqf R. Hence, x2y = z2t for some z, t ∈ R,
z 6∈ R∗. We can present t in the form t = u2v, where u, v ∈ A, v ∈ Sqf A. We
have u2v ∈ R\{0}, so u ∈ R by the minimality of x. We obtain x2y = z2u2v,
where y, v ∈ Sqf A, hence x = czu for some c ∈ A∗. By the assumptions,
c ∈ R, so x ∈ R, a contradiction.

(ii) ⇒ (i)
Assume that condition (ii) holds. Consider an element r ∈ Sqf R. Sup-

pose that r 6∈ Sqf A, so r = x2y for some x, y ∈ A such that x 6∈ A∗ and
y ∈ Sqf A. Since x2y ∈ R \ {0}, we obtain that x, y ∈ R. We have x 6∈ R∗,
so x2y 6∈ Sqf R, a contradiction.

Definition 3.5. Let A be a UFD. A subring R of A such that the implication

x2y ∈ R \ {0} ⇒ x, y ∈ R

holds for every x ∈ A, y ∈ Sqf A, will be called square-factorially closed in A.

Recall that a subring R of a ring A is called root closed in A if the
following implication:

xn ∈ R ⇒ x ∈ R

holds for every x ∈ A and n > 1. The properties of root closed subrings were
investigated in many papers, see [1] and [5] for example.
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Theorem 3.6. Let A be a unique factorization domain. Let R be a subring

of A such that R∗ = A∗ and R0 ∩ A = R. If R is square-free closed in A,

then R is root closed in A.

Proof. Assume that R is square-free closed in A. Consider an element x ∈ A,
x 6= 0, such that xn ∈ R for some n > 1. Let n = 2r(2l + 1), where r, l > 0.
Observe first that since (x2l+1)2

r

∈ R, then applying Theorem 3.4 we obtain
x2l+1 ∈ R.

Now, note that x can be presented in the form x = s2
m

0 s2
m−1

1 . . . s2m−1sm,
where s0, . . . , sm ∈ Sqf A and m > 0. We will show by induction on m that
the following implication:

x2l+1 ∈ R ⇒ x ∈ R

holds for every x ∈ A, x 6= 0. Let m > 0 and assume that the above
implication holds for m − 1. Put t = s2

m−1

0 s2
m−2

1 . . . sm−1, so x = t2sm and
x2l+1 = (t2l+1slm)2sm. If x2l+1 ∈ R, then t2l+1slm, sm ∈ R by Theorem 3.4, so
t2l+1 ∈ R by Lemma 3.3. Hence, t ∈ R by the induction assumption and,
finally, x ∈ R.

Acknowledgements. The authors would like to thank Prof. Holger Brenner
for valuable discussions on the matter of this paper.
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