Analogs of Jacobian conditions for subrings

Piotr Jędrzejewicz, Janusz Zieliński

Abstract

We present a generalization of the Jacobian Conjecture for m polynomials in *n* variables: $f_1, \ldots, f_m \in k[x_1, \ldots, x_n]$, where k is a field of characteristic zero and $m \in \{1, \ldots, n\}$. We express the generalized Jacobian condition in terms of irreducible and square-free elements of the subalgebra $k[f_1, \ldots, f_m]$. We also discuss obtained properties in a more general setting – for subrings of unique factorization domains.

Introduction

The Jacobian Conjecture asserts that if k is a field of characteristic zero and polynomials $f_1, \ldots, f_n \in k[x_1, \ldots, x_n]$ satisfy the Jacobian condition

$$
(1) \qquad \qquad \text{jac}(f_1, \ldots, f_n) \in k \setminus \{0\}
$$

(where jac denotes the Jacobian determinant), then $k[f_1, \ldots, f_n] = k[x_1, \ldots,$ x_n . In terms of endomorphisms of the polynomial algebra $k[x_1, \ldots, x_n]$: if a k-endomorphism φ satisfies the Jacobian condition

(2)
$$
jac(\varphi(x_1),\ldots,\varphi(x_n)) \in k \setminus \{0\},
$$

then φ is an automorphism. For more information on the Jacobian Conjecture we refer the reader to van den Essen's book [\[7\]](#page-10-0).

In Section [1](#page-2-0) we present and discuss the following generalization of the Jacobian Conjecture, denoted by $JC(m, n, k)$, where k is a field of characteristic zero, *n* is a positive integer, $m \in \{1, \ldots, n\}$ and jac denotes the Jacobian determinant with respect to given variables:

Keywords: Jacobian Conjecture, irreducible element, square-free element. 2010 Mathematics Subject Classification: Primary 13F20, Secondary 14R15, 13N15.

"For arbitrary polynomials $f_1, \ldots, f_m \in k[x_1, \ldots, x_n]$, if

(3)
$$
\gcd(\mathrm{jac}_{x_1,\dots,x_{i_m}}^{f_1,\dots,f_m}, 1 \leq i_1 < \dots < i_m \leq n) \in k \setminus \{0\},
$$

then $k[f_1, \ldots, f_m]$ *is a ring of constants of some k-derivation of* $k[x_1, \ldots, x_n]$."

This conjecture can be expressed in terms of polynomial homomorphisms (and algebraic closedness) in the following way:

"For every k-homomorphism $\varphi: k[x_1, \ldots, x_n] \to k[x_1, \ldots, x_m]$, if gcd $\left(\text{jac}_{x_{i_1},...,x_{i_m}}^{\varphi(x_1),..., \varphi(x_m)}, 1 \leq i_1 < \ldots < i_m \leq n\right) \in k \setminus \{0\},\$

then $\text{Im}\,\varphi$ *is algebraically closed in* $k[x_1, \ldots, x_n]$ *.*"

One of the authors obtained in [\[12\]](#page-10-1) a characterization of endomorphisms satisfying the Jacobian condition (2) , where k is a field of characteristic zero, as mapping irreducible polynomials to square-free ones. De Bondt and Yan proved in [\[4\]](#page-9-0) that mapping square-free polynomials to square-free ones is also equivalent to (2). We can express it in terms of polynomials $f_1 = \varphi(x_1), \ldots, f_n = \varphi(x_n)$: condition (1) holds if and only if all irreducible (resp. all square-free) elements of the ring $k[f_1, \ldots, f_n]$ are square-free in the ring $k[x_1, \ldots, x_n]$. In Theorem [2.4](#page-6-0) we generalize this fact for m polynomials $f_1, \ldots, f_m \in k[x_1, \ldots, x_n],$ where $m \in \{1, \ldots, n\}.$ Namely, the generalized Jacobian condition (3) is equivalent to each of the following ones:

(4)
\n
$$
\operatorname{Irr} k[f_1, \ldots, f_m] \subset \operatorname{Sqf} k[x_1, \ldots, x_n],
$$
\n
$$
\operatorname{Sqf} k[f_1, \ldots, f_m] \subset \operatorname{Sqf} k[x_1, \ldots, x_n],
$$

where Irr and Sqf denote the sets of irreducible and square-free elements of the respective ring. This fact is a consequence of a multidimensional generalization of Freudenburg's lemma ([\[8\]](#page-10-2)) obtained in Theorem [2.3.](#page-5-0) A presentation of succeding generalizations of this lemma can be found in the Intoduction to [\[13\]](#page-10-3).

The above conjecture motivates us in Section [2](#page-4-0) to consider the following properties for a subring R of a unique factorization domain A :

(5)
$$
\operatorname{Irr} R \subset \operatorname{Sqf} A, \quad \operatorname{Sqf} R \subset \operatorname{Sqf} A.
$$

In Theorem [3.4,](#page-8-0) under some additional assumptions, we express the second condition in a kind of factoriality:

(6) "For every
$$
x \in A
$$
, $y \in \text{Sqf } A$, if $x^2y \in R \setminus \{0\}$, then $x, y \in R$."

We call a subring R satisfying condition (6) square-factorially closed in A. In Theorem [3.6](#page-9-1) we show that, under the same assumptions, square-factorially closed subrings are root closed.

1 A generalization of the Jacobian Conjecture for m polynomials in n variables

Let k be a field of characteristic zero. By $k[x_1, \ldots, x_n]$ we denote the k -algebra of polynomials in n variables.

Recall from [\[11\]](#page-10-4) the following notion of a "differential gcd" for m polynomials $f_1, \ldots, f_m \in k[x_1, \ldots, x_n], m \in \{1, \ldots, n\}$:

$$
dgcd(f_1,...,f_m) = gcd (jac_{x_{i_1},...,x_{i_m}}^{f_1,...,f_m}, 1 \leq i_1 < ... < i_m \leq n),
$$

where $\mathrm{jac}_{x_{i_1},...,x_{i_m}}^{f_1,...,f_m}$ denotes the Jacobian determinant of f_1, \ldots, f_m with respect to x_{i_1}, \ldots, x_{i_m} . For $m = n$ we have

$$
dgcd(f_1,\ldots,f_n)\sim \mathrm{jac}(f_1,\ldots,f_n),
$$

for $m = 1$ we have

$$
\mathrm{dgcd}(f) \sim \mathrm{gcd}\left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right),\,
$$

where $g \sim h$ means that polynomials g and h are associated. We put $\text{dgcd}(f_1,\ldots,f_m) = 0$ if $\text{jac}_{x_{i_1},...,x_{i_m}}^{f_1,...,f_m} = 0$ for every i_1, \ldots, i_m , that is, f_1 , \ldots , f_m are algebraically dependent over k.

Let k be a field and let A be a k-algebra. A k-linear map $d: A \rightarrow A$ such that $d(fg) = d(f)g + fd(g)$ for $f, g \in A$, is called a k-derivation of A. The kernel of d is denoted by A^d and called the *ring of constants* of d. For more information on derivations and their rings of constants we refer the reader to Nowicki's book [\[15\]](#page-10-5).

Consider the following conjecture for m polynomials in n variables.

Conjecture $JC(m, n, k)$. *For arbitrary polynomials* $f_1, \ldots, f_m \in k[x_1, \ldots, k]$ x_n , where k is a field of characteristic zero and $m \in \{1, \ldots, n\}$, if

$$
dgcd(f_1,\ldots,f_m)\in k\setminus\{0\},\
$$

then $k[f_1, \ldots, f_m]$ *is a ring of constants of some k-derivation of* $k[x_1, \ldots, x_n]$ *.*

Recall Nowicki's characterization of rings of constants ([\[16\]](#page-10-6), Theorem 5.4, [\[15\]](#page-10-5), Theorem 4.1.4, p. 47).

Theorem (Nowicki, 1994). *Let* A *be a finitely generated* k*-domain, where* k *is a field of characteristic zero. Let* R *be a* k*-subalgebra of* A*. The following conditions are equivalent:*

- (i) R *is a ring of constants of some* k*-derivation of* A*,*
- (ii) R *is integrally closed in* A and $R_0 \cap A = R$.

Let D be a family of k-derivations of a finitely generated k-domain A , where k is a field of characteristic zero. It follows from Nowicki's Theorem that the ring

$$
A^D = \bigcap_{d \in D} A^d
$$

is a ring of constants of some single k-derivation of A ([\[16\]](#page-10-6), Theorem 5.5, [\[15\]](#page-10-5), Theorem 4.1.5, p. 47).

Daigle observed ([\[6\]](#page-10-7), 1.4) that condition (ii) of Nowicki's Theorem can be shortened to the following form:

(iii) R *is algebraically closed in* A*.*

Now we see for example that conjecture $\mathrm{JC}(2,3,k)$ asserts that if polynomials $f, g \in k[x, y, z]$ satisfy the condition

$$
\gcd\left(\mathrm{jac}_{x,y}^{f,g}, \mathrm{jac}_{x,z}^{f,g}, \mathrm{jac}_{y,z}^{f,g}\right) \in k \setminus \{0\},\
$$

then $k[f, g]$ is algebraically closed in $k[x, y, z]$.

Let us note some basic observations according to conjecture $JC(m, n, k)$.

Lemma 1.1. JC(m, n, k) *implies the Jacobian Conjecture for* m *variables over* k*.*

Proof. Assume that $JC(m, n, k)$ holds and consider polynomials $f_1, \ldots, f_m \in$ $k[x_1, \ldots, x_m]$ such that $\text{jac}_{x_1, \ldots, x_m}^{f_1, \ldots, f_m} \in k \setminus \{0\}.$

In $k[x_1, \ldots, x_n]$ we have $\text{dgcd}(f_1, \ldots, f_m) = \text{jac}_{x_1, \ldots, x_m}^{f_1, \ldots, f_m}$, so $k[f_1, \ldots, f_m]$ is algebraically closed in $k[x_1, \ldots, x_n]$ by $JC(m, n, k)$. Hence, $k[f_1, \ldots, f_m]$ is algebraically closed in $k[x_1, \ldots, x_m]$. And then $k[f_1, \ldots, f_m] = k[x_1, \ldots, x_m]$, because f_1, \ldots, f_m are algebraically independent over k. \Box

Now, recall from [\[14\]](#page-10-8) and [\[17\]](#page-10-9) that a polynomial $f \in k[x_1, \ldots, x_n]$ over a field k is called *closed* if the ring $k[f]$ is integrally closed in $k[x_1, \ldots, x_n]$. When char $k = 0$, a polynomial f is closed if and only if $k[f]$ is a ring of constants of some k-derivation of $k[x_1, \ldots, x_n]$ ([\[14\]](#page-10-8), Theorem 2.1, [\[15\]](#page-10-5), Theorem 7.1.4, p. 80). Necessary and sufficient conditions for a polynomial to be closed were collected and completed by Arzantsev and Petravchuk in [\[2\]](#page-9-2), Theorem 1. Ayad proved ([\[3\]](#page-9-3), Proposition 14) that a polynomial $f \in k[x, y]$, where char $k = 0$, is closed if

$$
\gcd\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \in k \setminus \{0\}.
$$

His proof can be generalized to n variables (it was noted in [\[10\]](#page-10-10), Proposition 4.2), so we obtain the following fact.

Theorem (Ayad, 2002). JC(1, n, k) *is true.*

Remark 1.2. The reverse implication in $JC(m, n, k)$ need not to be true if $m < n$.

In this case $n \geq 2$. As an example we may consider a polynomial $f_1 =$ $x_1^2 x_2 \in k[x_1, \ldots, x_n]$ and, if $m > 1$, polynomials $f_2 = x_3, \ldots, f_m = x_{m+1}$.

We have

$$
dgcd(x_1^2x_2, x_3, \dots, x_{m+1}) = gcd(2x_1x_2, x_1^2) = x_1,
$$

so dgcd $(x_1^2 x_2, x_3, \ldots, x_{m+1}) \notin k \setminus \{0\}.$

On the other hand, $k[x_1^2x_2, x_3, \ldots, x_{m+1}]$ is algebraically closed in $k[x_1,$ \ldots, x_n as a ring of constants of a family of derivations

$$
\left\{x_1\frac{\partial}{\partial x_1}-2x_2\frac{\partial}{\partial x_2},\frac{\partial}{\partial x_{m+2}},\ldots,\frac{\partial}{\partial x_n}\right\}.
$$

2 Analogs of Jacobian conditions in terms of irreducible and square-free elements

If R is a commutative ring with unity, then R^* denotes the set of noninvertible elements of R. An element $a \in R$ is called *square-free* if it cannot be presented in the form $a = b^2c$, where $b, c \in R$ and $b \notin R^*$. By Irr R we denote the set of irreducible elements of R and by $S_qf R$ we denote the set of square-free elements of R.

Let k be a field of characteristic zero. Consider arbitrary polynomials $f_1, \ldots, f_m \in k[x_1, \ldots, x_n],$ where $m \in \{1, \ldots, n\}.$ Let $g \in k[x_1, \ldots, x_n]$ be an irreducible polynomial.

The following lemma is a natural generalization of [\[12\]](#page-10-1), Lemma 3.1. For the proof it is enough to add the argument from the beginning of the proof of [\[13\]](#page-10-3), Proposition 3.4.a with $Q = (q)$.

Lemma 2.1. For a given $i \in \{1, \ldots, m\}$ consider the following condition:

(∗) *there exist* $s_1, \ldots, s_m \in k[x_1, \ldots, x_n]$ *, where* $g \nmid s_i$ *, such that* $g \mid s_1d(f_1) + \ldots + s_md(f_m)$ *for every* k -derivation d of $k[x_1, \ldots, x_n]$.

a) *Then* $g \mid \text{dgcd}(f_1, \ldots, f_m)$ *if and only if condition* (*) *holds for some* $i \in \{1, \ldots, m\}.$

b) If, for a given $i \in \{1, \ldots, m\}$, condition (*) holds, then f_i is algebraic *over the field* $k(f_1, ..., f_{i-1}, f_{i+1}, ..., f_m)$ *.*

Note the following consequence of Lemma [2.1](#page-5-1) and [\[12\]](#page-10-1), Lemma 3.2.b (where the polynomial w can be obtained as irreducible).

Corollary 2.2. *If* g | dgcd (f_1, \ldots, f_m) *, then* g | $w(f_1, \ldots, f_m)$ *for some irreducible polynomial* $w \in k[x_1, \ldots, x_m]$.

The following theorem is a multidimensional generalization of Freudenburg's lemma ([\[8\]](#page-10-2)).

Theorem 2.3. *Let* k *be a field of characteristic zero, let* $f_1, \ldots, f_m \in k[x_1,$ \dots, x_n] *be arbitrary polynomials, where* $m \in \{1, \dots, n\}$ *, and let* $g \in k[x_1, \dots, x_n]$ x_n be an irreducible polynomial. The following conditions are equivalent:

$$
(i) g \mid \mathrm{dgcd}(f_1,\ldots,f_m),
$$

(ii) $g^2 \mid w(f_1, \ldots, f_m)$ *for some irreducible polynomial* $w \in k[x_1, \ldots, x_m]$ *,*

(iii) $g^2 \mid w(f_1, \ldots, f_m)$ *for some square-free polynomial* $w \in k[x_1, \ldots, x_m]$ *.*

Proof. Implication (ii) \Rightarrow (i) was already proved in the proof of [\[12\]](#page-10-1), Theorem 4.1, (ii) \Rightarrow (i). Implication (ii) \Rightarrow (iii) is trivial.

(i) \Rightarrow (ii) We combine the arguments from proofs of [\[12\]](#page-10-1), Theorem 4.1, (i) \Rightarrow (ii) and [\[13\]](#page-10-3), Theorem 3.6 (\Rightarrow). Assume that g | dgcd(f_1, \ldots, f_m). By Corollary [2.2,](#page-5-2) $g \mid w(f_1, \ldots, f_m)$ for some irreducible polynomial $w \in$ $k[x_1, \ldots, x_m]$. We proceed like in [\[12\]](#page-10-1), using a derivation $d(f) = \text{jac}_{x_{j_1}, \ldots, x_{j_m}}^{f_1, \ldots, f_{m-1}, f}$ for arbitrary $j_1 < \ldots < j_m$, instead of d_n , and applying Lemma [2.1](#page-5-1) instead of [\[12\]](#page-10-1), Lemma 3.1.

(iii) \Rightarrow (ii) We apply the proof of [\[4\]](#page-9-0), Theorem 2.1, 3) \Rightarrow 2). Assume that $g^2 \mid w(f_1, \ldots, f_m)$ for some square-free polynomial $w \in k[x_1, \ldots, x_m],$ so $w(f_1, \ldots, f_m) = g^2 h$, where $h \in k[x_1, \ldots, x_n]$. Then there exist polynomials $w_1, w_2 \in k[x_1, \ldots, x_m]$ such that $w = w_1w_2, w_1$ is irreducible and $g \mid w_1(f_1, \ldots, f_m)$. Then we proceed like in [\[4\]](#page-9-0). \Box

As a consequence of Theorem [2.3](#page-5-0) we obtain the following generalization of $[12]$, Theorem 5.1 and $[4]$, Corollary 2.2.

Theorem 2.4. Let $A = k[x_1, \ldots, x_n]$, where k is a field of characteristic *zero.* Assume that $f_1, \ldots, f_m \in A$ are algebraically independent over k, where $m \in \{1, \ldots, n\}$. Put $R = k[f_1, \ldots, f_m]$. Then the following conditions are *equivalent:*

- (i) dgcd $(f_1, ..., f_m) \in k \setminus \{0\},$
- (ii) Irr R ⊂ Sqf A*,*
- (iii) Sqf $R \subset S$ qf A.

The above theorem allows us call conditions (ii) and (iii) analogs of the Jacobian condition (i) for a subring R.

Remark 2.5*.* Conditions (ii) and (iii) of Theorem [2.4](#page-6-0) can be expressed in the following way, respetively:

(ii) for every irreducible polynomial $w \in k[x_1, \ldots, x_m]$ the polynomial $w(f_1, \ldots, f_m)$ \ldots , f_m) is square-free,

(iii) for every square-free polynomial $w \in k[x_1, \ldots, x_m]$ the polynomial $w(f_1, \ldots, f_m)$ \ldots , f_m) is square-free.

3 Square-factorially closed subrings

We will present some basic observations concerning conditions (ii) and (iii) from Theorem [2.4](#page-6-0) for a subring R of an arbitrary unique factorization domain A. Conjecture $JC(m, n, k)$ motivates us to state the following open question.

A general question. *Let* R *be a subring of a domain* A *such that*

Irr $R \subset$ Sqf A *or* Sqf $R \subset$ Sqf A .

When R *is algebraically closed in* A*?*

Lemma 3.1. *Let* A *be a unique factorization domain. Let* R *be a subring of* A *such that* R[∗] = A[∗] *. Consider the following conditions:*

- (i) Irr R ⊂ Irr A*,*
- (ii) Sqf R ⊂ Sqf A*,*
- (iii) Irr $R \subset \operatorname{Sqf} A$.

Then the following implications hold:

$$
(i) \Rightarrow (ii) \Rightarrow (iii).
$$

Proof. (i) \Rightarrow (ii)

Assume that Irr $R \subset \text{Irr } A$ and consider an element $a \in \text{Sqf } R$. Let $a = q_1 \dots q_r$, where $q_1, \dots, q_r \in \text{Irr } R$ are pairwise non-associated in R. Then, by the assumption, $q_1, \ldots, q_r \in \text{Irr } A$. Moreover, since $A^* = R^*, q_1, \ldots, q_r$ are pairwise non-associated in A.

 $(ii) \Rightarrow (iii)$

Assume that $\operatorname{Sqf} R \subset \operatorname{Sqf} A$ and consider an element $a \in \text{Irr } R$. Suppose that $a = b^2c$, where $b \in R \setminus R^*$ and $c \in R$. Then $a = b \cdot (bc)$, where $b, bc \in R \setminus R^*$, a contradiction. Hence, $a \in \text{Sqf } R$. \Box

Recall that a subring R of a ring A is called *factorially closed* in A if the following implication:

$$
xy \in R \setminus \{0\} \Rightarrow x, y \in R
$$

holds for every $x, y \in A$. The ring of constants of any locally nilpotent derivation of a domain of characteristic zero is factorially closed. We refer the reader to [\[6\]](#page-10-7) and [\[9\]](#page-10-11) for more information about locally nilpotent derivations.

Lemma 3.2. *Let* A *be a unique factorization domain. Let* R *be a subring of* A such that $R^* = A^*$. The following conditions are equivalent:

- (i) Irr R ⊂ Irr A*,*
- (ii) R *is factorially closed in* A*.*

Proof. (i) \Rightarrow (ii)

Assume that Irr $R \subset \text{Irr } A$ and consider elements $x, y \in A$ such that $xy \in R \setminus \{0\}$. Let $xy = q_1 \ldots q_r$, where $q_1, \ldots, q_r \in \text{Irr } R$. Then $q_1, \ldots, q_r \in$ Irr A, so without loss of generality we may assume that $x = aq_1 \dots q_s$ and $y = bq_{s+1} \dots q_r$ for some $a, b \in A^*$. Since $A^* = R^*$, we infer that $x, y \in R$. $(ii) \Rightarrow (i)$

Assume that condition (ii) holds and consider an element $a \in \text{Irr } R$. Let $a = bc$, where $b, c \in A$. By the assumption, $b, c \in R$, so $b \in R^*$ or $c \in R^*$. Hence, $b \in A^*$ or $c \in A^*$. \Box Note the following easy fact.

Lemma 3.3. *Let* A *be a domain, let* R *be a subring of* A*. The following conditions are equivalent:*

- (i) $R_0 \cap A = R$,
- (ii) *for every* $x \in R$ *,* $y \in A$ *, if* $xy \in R \setminus \{0\}$ *, then* $y \in R$ *.*

Theorem 3.4. *Let* A *be a unique factorization domain. Let* R *be a subring of* A *such that* $R^* = A^*$ *and* $R_0 \cap A = R$ *. The following conditions are equivalent:*

(i) Sqf R ⊂ Sqf A*,*

(ii) *for every* $x \in A$, $y \in \text{Sqf } A$, if $x^2y \in R \setminus \{0\}$, then $x, y \in R$.

Proof. (i) \Rightarrow (ii)

Assume that Sqf $R \subset S$ qf A and consider $x, y \in A$ such that $y \in S$ qf A and $x^2y \in R \setminus \{0\}$. If $x \in R$, then $x^2 \in R$, and hence $y \in R$ by Lemma [3.3.](#page-8-1)

Now suppose that $x \notin R$ and x is a minimal element (with respect to a number of irreducible factors in A) with this property. In this case $x \notin A^*$, so $x^2y \notin S$ qf A, and then $x^2y \notin S$ qf R. Hence, $x^2y = z^2t$ for some $z, t \in R$, $z \notin R^*$. We can present t in the form $t = u^2v$, where $u, v \in A$, $v \in S$ qf A. We have $u^2v \in R \setminus \{0\}$, so $u \in R$ by the minimality of x. We obtain $x^2y = z^2u^2v$, where $y, v \in \text{Sqf } A$, hence $x = czu$ for some $c \in A^*$. By the assumptions, $c \in R$, so $x \in R$, a contradiction.

 $(ii) \Rightarrow (i)$

Assume that condition (ii) holds. Consider an element $r \in S$ of R. Suppose that $r \notin S$ qf A, so $r = x^2y$ for some $x, y \in A$ such that $x \notin A^*$ and $y \in \text{Sqf } A$. Since $x^2y \in R \setminus \{0\}$, we obtain that $x, y \in R$. We have $x \notin R^*$, so $x^2y \notin \text{Sqf } R$, a contradiction. \Box

Definition 3.5*.* Let A be a UFD. A subring R of A such that the implication

$$
x^2y \in R \setminus \{0\} \implies x, y \in R
$$

holds for every $x \in A$, $y \in S$ of A, will be called *square-factorially closed* in A.

Recall that a subring R of a ring A is called *root closed* in A if the following implication:

$$
x^n \in R \implies x \in R
$$

holds for every $x \in A$ and $n \geq 1$. The properties of root closed subrings were investigated in many papers, see [\[1\]](#page-9-4) and [\[5\]](#page-9-5) for example.

Theorem 3.6. *Let* A *be a unique factorization domain. Let* R *be a subring of* A such that $R^* = A^*$ and $R_0 \cap A = R$. If R is square-free closed in A, *then* R *is root closed in* A*.*

Proof. Assume that R is square-free closed in A. Consider an element $x \in A$, $x \neq 0$, such that $x^n \in R$ for some $n \geq 1$. Let $n = 2^r(2l + 1)$, where $r, l \geq 0$. Observe first that since $(x^{2l+1})^{2r} \in R$, then applying Theorem [3.4](#page-8-0) we obtain $x^{2l+1} \in R$.

Now, note that x can be presented in the form $x = s_0^{2^m} s_1^{2^{m-1}} \dots s_{m-1}^2 s_m$, where $s_0, \ldots, s_m \in \text{Sqf } A$ and $m \geq 0$. We will show by induction on m that the following implication:

$$
x^{2l+1} \in R \implies x \in R
$$

holds for every $x \in A$, $x \neq 0$. Let $m > 0$ and assume that the above implication holds for $m - 1$. Put $t = s_0^{2^{m-1}} s_1^{2^{m-2}} \dots s_{m-1}$, so $x = t^2 s_m$ and $x^{2l+1} = (t^{2l+1}s_m^l)^2 s_m$. If $x^{2l+1} \in R$, then $t^{2l+1}s_m^l$, $s_m \in R$ by Theorem [3.4,](#page-8-0) so $t^{2l+1} \in R$ by Lemma [3.3.](#page-8-1) Hence, $t \in R$ by the induction assumption and, finally, $x \in R$. \Box

Acknowledgements. The authors would like to thank Prof. Holger Brenner for valuable discussions on the matter of this paper.

References

- [1] D.F. Anderson, *Root closure in integral domains*, J. Algebra 79 (1982), 51–59.
- [2] I.V. Arzhantsev, A.P. Petravchuk, *Closed polynomials and saturated subalgebras of polynomial algebras*, Ukrainian Math. J. 59 (2007), 1783–1790.
- $[3]$ M. Ayad, *Sur les polynômes* $f(X, Y)$ *tels que* $K[f]$ *est intégralement fermé dans* K[X, Y], Acta Arith. 105 (2002), 9–28.
- [4] M. de Bondt, D. Yan, *Irreducibility properties of Keller maps*, [arXiv:1304.0634.](http://arxiv.org/abs/1304.0634)
- [5] J.W. Brewer, D.L. Costa, K. McCrimmon, *Seminormality and root closure in polynomial rings and algebraic curves*, J. Algebra 58 (1979), 217– 226.
- [6] D. Daigle, *Locally nilpotent derivations*, *Lecture notes for the "September* School" of Algebraic Geometry, Lukecin, Poland, September 2003 (unpublished), aix1.uottawa.ca/~ddaigle/.
- [7] A. van den Essen, *Polynomial automorphisms and the Jacobian Conjecture*, Birkhäuser Verlag, Basel, 2000.
- [8] G. Freudenburg, *A note on the kernel of a locally nilpotent derivation*, Proc. Amer. Math. Soc. 124 (1996), 27–29.
- [9] G. Freudenburg, *Algebraic theory of locally nilpotent derivations*, Springer Verlag, Berlin, 2006.
- [10] P. Jędrzejewicz, *Positive characteristic analogs of closed polynomials*, Cent. Eur. J. Math. 9 (2011), 50–56.
- [11] P. Jędrzejewicz, *Jacobian conditions for p-bases*, Comm. Algebra 40 (2012), 2841–2852.
- [12] P. Jędrzejewicz, *A characterization of Keller maps*, J. Pure Appl. Algebra 217 (2013), 165–171.
- [13] P. Jędrzejewicz, *A characterization of p-bases of rings of constants*, Cent. Eur. J. Math. 11 (2013), 900–909.
- [14] A. Nowicki, *On the Jacobian equation J*(f, g) = 0 *for polynomials in* $k[x, y]$, Nagoya Math. J. 109 (1988), 151–157.
- [15] A. Nowicki, *Polynomial derivations and their rings of constants*, Nicolaus Copernicus University, Toruń, 1994, www.mat.umk.pl/~anow/.
- [16] A. Nowicki, *Rings and fields of constants for derivations in characteristic zero*, J. Pure Appl. Algebra 96 (1994), 47–55.
- [17] A. Nowicki and M. Nagata, *Rings of constants for* k*-derivations in* $k[x_1, \ldots, x_n]$, J. Math. Kyoto Univ. 28 (1988), 111–118.