
On the dispute between Boltzmann and Gibbs entropy

Pierfrancesco Buonsante, Roberto Franzosi,∗ and Augusto Smerzi
QSTAR & CNR - Istituto Nazionale di Ottica, Largo Enrico Fermi 2, I-50125 Firenze, Italy.

(Dated: January 8, 2016)

Very recently, the validity of the concept of negative temperature has been challenged by several
authors since they consider Boltzmann’s entropy (that allows negative temperatures) inconsistent
from a mathematical and statistical point of view, whereas they consider Gibbs’ entropy (that does
not admit negative temperatures) the correct definition for microcanonical entropy.

In the present paper we prove that for systems with equivalence of the statistical ensembles Boltz-
mann entropy is the correct microcanonical entropy. Analytical results on two systems supporting
negative temperatures, confirm the scenario we propose. In addition, we corroborate our proof by
numeric simulations on an explicit lattice system showing that negative temperature equilibrium
states are accessible and obey standard statistical mechanics prevision.

PACS numbers: 05.20.-y, 05.20.Gg, 05.30.-d, 05.30.Ch

INTRODUCTION

The concept of negative absolute temperature was1 in-
voked to explain the results of experiments with nuclear-
spin systems carried out by [2], [3] and [4]. Shortly af-
ter these experiments, [5] discussed the thermodynamic
implications of negative absolute temperature and their
meaning in statistical mechanics, thereby granting this
concept a well-grounded place in physics [6, 7].

The microcanonical ensemble, which provides the sta-
tistical description of an isolated system at equilibrium,
is the most appropriate venue to discuss negative temper-
atures. In this ensemble, the thermodynamic quantities,
like temperature and specific heat, are derived from the
entropy through suitable thermodynamic relations. For
instance, the inverse temperature is proportional to the
derivative of the entropy with respect to the energy. In
equilibrium statistical mechanics, there are at least two
commonly accepted definitions of entropy: the Boltz-
mann entropy is proportional to the logarithm of the
number of microstates in a given “energy shell”, whereas
the Gibbs entropy is proportional to the logarithm of the
number of microstates up to a given energy. The debate
as to which of these definitions of entropy is the correct
one has been going on for a long time, [8–17] although
the general consensus is that they are basically inter-
changeable. In fact, for standard systems2 with a large
number of degrees of freedom they are practically equiv-
alent. Full equivalence is obtained in the thermodynamic
limit. The existence of negative-temperature states pro-
vides a major bone of contention in the debate. In fact,

1 This was not the first place where negative temperatures have
been considered, in fact [1] two years before proposed the exis-
tence of negative temperatures in order to explain the formation
of large scale vortices by clustering of small ones in hydrodynamic
systems.

2 With “standard system” we mean a system with unbounded
energy from above for which the energy goes to infinity when
one of the canonical coordinates goes to infinity.

negative temperatures emerge in the Boltzmann descrip-
tion whenever the number of microstates in a given en-
ergy shell is a decreasing function of the relevant energy.
On the contrary, the Gibbs temperature can never be
negative, since the number of microstates with energy
below a given value is always a non-decreasing function
of such value. Thus, systems admitting negative (Boltz-
mann) temperatures provide an ideal context to address
the question of the correct definition of entropy.
Recently, in several recent papers [18–20] it was argued
that for a broad class of physical systems, including
standard classical Hamiltonian systems, only the Gibbs
entropy yields a consistent thermodynamics, and that,
consequently, negative temperatures are not achievable
within a standard thermodynamical framework. In this
respect, what is usually referred to Boltzmann tempera-
ture would not possess the required properties for a tem-
perature [18, 19, 21–24]. These and other related argu-
ments [25–27] have been contended by several authors
[28–32], in what has become a lively debate.

In the present paper we focus on the class of systems
(standard or not) whose canonical (or, possibly, grand
canonical) ensemble is equivalent to the microcanonical
ensemble. We show that such equivalence can be rig-
orously satisfied only if the thermodynamics of the lat-
ter ensemble is derived by the Boltzmann entropy. For
such systems we show that the Boltzmann temperature
provides a consistent description with those ones of the
canonical and grand canonical ensembles. On the con-
trary, the temperature predicted by Gibbs is irreconcil-
able with that one of the latter ensembles.

The outline of the paper is the following. In Sec. we
summarize the essential features of systems in which neg-
ative Boltzmann temperatures are expected. In Sec. we
consider an isolated Hamiltonian system and, under the
hypothesis of ergodicity, we show that only in the case
of the Boltzmann entropy all the thermodynamic quan-
tities are derived as time averages (along the dynamics)
of suitable functions. In Sec. we prove that, for systems
whose canonical and microcanonical ensembles are equiv-
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alent, the correct correspondence between β and ε is the
one derived with the Boltzmann entropy. Furthermore
we show that, in the thermodynamic limit, the Gibbs
and Boltzmann temperatures do coincide when the lat-
ter is positive whereas the inverse Gibbs temperature is
identically null in the region where Boltzmann provides
negative values for the temperature. In Sec. we show
that the mathematical relations that come from thermo-
dynamic consistence constraint are well satisfied by the
Boltzmann entropy and that, in the case of statistical
ensemble equivalence, sB is the only correct microcanon-
ical entropy. In section , we give two examples of systems
supporting negative Boltzmann temperatures for which
the grand-canonical (or canonical) ensemble and the mi-
crocanonical description given by the Boltzmann entropy
do agree on the whole parameter space and on the com-
plete range of values of the energy-density. We show
that the equipartition theorem fails for system with neg-
ative Boltzmann temperatures in Sec. . In Sec. we
show through numerical simulations on a specific sys-
tem, that negative temperatures are accessible. We show
that irrespective of the sign of the temperature, a large
microcanonical lattice acts as a thermostat for a small
grand canonical sublattice, and this confirms the ensem-
ble equivalence. Furthermore, we have shown that, ir-
respective of the sign of the temperature, two isolated
systems at equilibrium at different inverse temperatures,
reach an equilibrium state at an intermediate inverse
temperature, after that they are brought in contact.

NEGATIVE TEMPERATURES

The microcanonical ensemble describes the equilibrium
properties of an isolated system, that is to say in which
energy, and possibly further quantities, are conserved.
Within the microcanonical description, all the thermo-
dynamic quantities are derived from the entropy, for in-
stance the inverse temperature of the system is defined
as

β =
1

kB

∂s

∂ε
, (1)

where kB is the Boltzmann constant and s(ε) is the en-
tropy density corresponding to a given energy density ε.
The two alternative definitions for the entropy used in
equilibrium statistical mechanics are ascribed to Boltz-
mann and Gibbs3. According to Boltzmann’s definition

sB(ε) = L−1kB ln(ω(ε)∆) , (2)

where ω(ε) is the density of microstates at a fixed value
energy density ε and, possibly, at a fixed value of the

3 We refer to [33] for historical details.

additional conserved quantities, ∆ is a constant with the
same dimension as ε, and L is the number of degrees of
freedom in the system. The Gibbs entropy is

sG(ε) = L−1kB ln Ω(ε) , (3)

where Ω(ε) is the number of microstates with energy den-
sity less than or equal to ε and, possibly, at a fixed value
of the additional conserved quantities. It is known that in
the thermodynamic limit these two definitions of entropy
lead to equivalent thermodynamic results in “standard”
systems [34]. So far, these two entropy definitions are
often used in an alternative (interchangeable) way in sta-
tistical mechanics, by resorting to the most suitable form
depending on the specific problem considered. These two
entropy definitions are connected by the relation between
ω and Ω

ω(ε) =
∂Ω

∂ε
(ε) , (4)

Since ∂Ω/∂ε ≥ 0, Gibbs’ temperatures are not negative
and consequently the two entropies have incompatible
outcomes if applied to systems that admit negative Boltz-
mann temperatures.

A necessary (although not sufficient) condition for a
system for having negative temperatures is the bounded-
ness of the energy (as in the case of nuclear-spin systems
discussed by Pound et al), in this case a local maximum
inside the system’s density energy interval of the Boltz-
mann entropy sB(ε) is not forbidden and, both positive
and negative Boltzmann temperatures are possible.

Hamiltonians with bounded energies can also be char-
acterized by the existence of more than one first integral
of motion and, for this reason, in addition to the sta-
tistical mechanics of systems with one first integral, we
will consider also the case of systems with more then
one first integrals. Within the latter class for instance
there are models usually employed for describing ultra-
cold atoms. The possibility of observing negative tem-
perature states in ultracold systems, has been theoreti-
cally predicted by some authors with different approaches
[35–37] and, the experimental evidence of the existence of
states for motional degrees of freedom of a bosonic gas at
negative (Boltzmann) temperatures, have been achieved
a few years ago by [38]. The validity of this remarkable
experiment has been contested in the former paper by
Dunkel and Hilbert [18]. Successively, these same au-
thors and Hanggi have co-signed some papers [19, 20] in
which is affirmed that for a broad class of systems that in-
cludes all “standard classical Hamiltonian systems, only
the Gibbs entropy (which implies a non-negative tem-
perature) satisfies all three thermodynamic laws exactly.
The criticisms raised by [18] have engendered a glow-
ing debate between supporters of the Gibbs entropy [19–
24, 26, 27, 31] and the ones that consider the Boltzmann
entropy correct [28–30, 39–41].
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DYNAMICS AND STATISTICAL MECHANICS
FOR CLASSICAL SYSTEMS

Let us consider first a generic classical many-
particle system described by an autonomous Hamiltonian
H(x1, ..., xL), in which the energy is the sole first integral
of motion. The Boltzmann entropy density sB(ε) in this
case is given by

sB(ε) = L−1kB ln

∫
dLx δ(Lε−H(x)) , (5)

whereas the one of Gibbs is

sG(ε) = L−1kB ln

∫
dLxΘ(Lε−H(x)) , (6)

where δ is the Dirac function and Θ is the Heaviside
function.

As a consequence of the conservation of energy, the
system dynamics takes place on energy-level sets. From
Liouville theorem it descends that the measure of the
Euclidean volume is preserved by the dynamics and this
induces a measure µ conserved on each energy level set
Σε of energy density ε which is given by [42, 43]

dµ =
dΣ

‖∇H‖
, (7)

where dΣ is the Euclidean measure induced on Σε and
‖ · ‖ is the Euclidean norm.

This means that, under the hypothesis of ergodicity,
the averages of each dynamical observable Φ of the sys-
tem can be equivalently measured along the dynamics
as

〈Φ〉 = lim
τ→∞

1

τ

∫ τ

0

dtΦ(t) , (8)

or as average on the hypersurface Σε according to

〈Φ〉 =

∫
Σε
dµΦ∫

Σε
dµ

. (9)

Now, it is reasonable to expect that the temperature,
the specific heat, and the other thermodynamic observ-
ables could be measured as time averages of suitable ob-
servables Φ along the dynamics, in a way analogous to
Eq. (8). Consequently, when ergodicity holds, the mea-
sures of these quantities have to be derived from aver-
ages upon the energy level sets Σε, according to Eq. (9).
Furthermore, temperature, specific heat and other ther-
modynamic quantities depend on derivatives of the mi-
crocanoncal entropy with respect to energy. Therefore,
they are computed by means of a functional of the form
(9) if and only if the microcanonical entropy is defined
à la Boltzmann. This fact is proven by [44] in the case of
many-particle systems for which the Hamiltonian is the
only conserved quantity, and in Ref. [45] and Ref. [46]

for the case of two and k ∈ N conserved quantities, re-
spectively. In the simpler case studied in Ref. [44] e.g.,
it results

sB = L−1kB ln

∫
Σε

dµ ,

and from the definition (1) in the case of Boltzmann we
obtain 4

βB =

∫
Σε
dµ∇ · (∇H/‖∇H‖2)∫

Σε
dµ

, (10)

where βB = 1/(kBTB). In the case of sG the expression
for the inverse temperature is

βG =

∫
Σε
dµ∫

Mε
dLx

, (11)

where Mε = {x ∈ RL|H(x) ≤ Lε}, that cannot be ex-
pressed in the form (9). In other words, by adopting the
Gibbs entropy definition when ergodicity holds true, one
has to trust in the very singular fact that time averages
of thermodynamic quantities taken along the dynamics
(and then on the energy level set Σε) coincide with the
averages of quantities taken on a set that includes all
the energy levels below to the one on which the dynamics
takes place, analogously to Eq. (11) of the inverse tem-
perature5. About this point, one could comment that the
Gibbs temperature could be measured as a microcanon-
ical average by resorting to the equipartition theorem.
Nevertheless, as we will show in Sec. , for instance in
the case of systems with negative Boltzmann tempera-
tures, the “standard” equipartition theorem fails. Thus,
we conclude interpreting this as a first signal of inconsis-
tency for the Gibbs entropy.

It is worth emphasizing that in the case of k > 1 con-
served quantities, a geometric structure similar to the
one of Eq. (10) keeps on to be valid. In fact, in Ref. [45]
it has been considered the case k = 2 by studying a gen-
eral classical autonomous many-body Hamiltonian sys-
tem, whose coordinates and canonical momenta are indi-
cated with x ∈ RL, and for which V (x) is a further con-
served quantity in involution with H. For such a system,
the motion takes place on the manifolds M = Σε ∩ Vu,
where Vu = {(x) ∈ RL|V (x) = Lu} are subsets of RL
where V is constant. In Ref. [45] it is shown that

sB =L−1kB ln

∫
dLx δ(H(x)− Lε)δ(V (x)− Lu) =

L−1kB ln

∫
M

dτ

W
, (12)

4 The Federer-Laurence derivation formula [47, 48] is
∂k(

∫
Σε
ψdΣ)/∂εk = Lk

∫
Σε
Ak (ψ) dΣ, where A(•) =

1 / ‖ 5 H ‖ 5 (5H/‖ 5H‖•).
5 In addition to the case of the inverse temperature, the same

scenario hold for the chemical potential.
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where dτ is the volume form of M, and

W =

[
L∑

µ<ν=1

(
∂H

∂xµ
∂V

∂xν
− ∂H

∂xν
∂V

∂xµ

)2
]1/2

. (13)

Furthermore, in [45] it is derived the generalization of
(10) that gives the microcanonical inverse temperature
for these systems, it results

βB =

∫
M dτ Φ2∫
M dτ

, (14)

where the complicated functional is now

Φ2(x)=
W

∇H · nξ

[
∇
(
nξ

W

)
− (nV · ∇) (nξ)

W
· nV

]
,

(15)
that is given in terms of the unitary vectors nH =
∇H/‖∇H‖ and nV = ∇V /‖∇V ‖ through the vector
ξ = nH − (nH · nV )nV , from which is defined the unitary
vector nξ = ξ/‖ξ‖ that appears in Eq. (15). Remarkably,
by exchanging H and V in expression (15) the functional
so obtained allows to measure the chemical potential of
the system. This fact shows a further “esthetic advan-
tage” of the Boltzmann entropy: it leads to expressions
formally identical independently from the number of con-
served quantities.

COMPARISON BETWEEN STATISTICAL
ENSEMBLES

In a statistical description of a many-body system,
temperature has a different meaning depending on the
statistical ensemble. In the canonical ensemble and in the
grand-canonical one, (inverse) temperature is just a La-
grangian parameter that is introduced in order to fix the
mean energy. On the contrary, in the microcanonical en-
semble the temperature is a quantity derived from the en-
tropy density s, according to the relation T = (∂s/∂ε)−1.
Therefore it is clear that T (ε) will depend on the entropy
definition assumed within the microcanonical statistical
description. The main point here is that the meaning of
temperature cannot be reduced to the issue of the coher-
ent definition inside to microcanonical ensemble, at least
if there is equivalence of ensembles. In the latter case,
one expects that temperature, or more in general ther-
modynamics, defined for a system by two microscopic
models, for instance canonical and microcanonical, coin-
cide in the thermodynamic limit and they coincide with
the experimentally known thermodynamics of such sys-
tem [49]. This amounts to requiring that the thermody-
namics of a large isolated (microcanonical) system and
the thermodynamics of a “small” (even if big enough)
subsystem of it coincide. In fact, in the thermodynamic
limit, the complement of the subsystem, acts on it as a

thermostat and the subsystem is well described in the
canonical ensemble. The problem of equivalence of en-
sembles is only incompletely solved [50], for instance it
is known that systems with long-range interaction can
violate this equivalence. In fact, for this class of systems
the energy is not additive: a system cannot be divided
into independent macroscopic parts at variance of the
case of the short-range interaction. In the following we
show that if there is equivalence between statistical en-
sembles, Helmholtz free energy density is the Legendre
transform of Boltzmann entropy density and vice versa.
Consequently, thermodynamics derived for a systems by
Boltzmann entropy and by canonical partition function
rigorously coincide in the thermodynamic limit. We con-
sider this as a strong evidence supporting the legitimacy
of the Boltzmann entropy. Let us now discuss about a
case where there is not equivalence between canonical
and microcanonical ensembles. This is the case of a sys-
tem with long-range interaction that undergoes a first-
order phase transition. We refer to [51] for details. In
summary the Boltzmann entropy for a system with these
features is not a concave function, consequently it cannot
be the Legendre transformation of the Helmholtz free-
energy density, and βB(ε) is a not-invertible function. In
cases like this, the canonical ensemble has not founda-
tion since it cannot be derived from the microcanonical
ensemble, unlike the case of the additive systems [52],
where it can. Therefore, the case of the long-range in-
teractions are outside the class of systems to which our
proof applies. Nevertheless we consider Boltzmann’s en-
tropy the correct definition also for this class of systems.

In the following we will consider two explicit systems,
one of which has two conserved quantities, accordingly
in this section we give our proof for a system with this
feature. The restriction of our derivation to the case
of a system where energy is the sole conserved quantity
is straightforward. Let us consider an arbitrary classical
many-body Hamiltonian system with k = 2 first integrals
of motion, H and a further conserved quantity V which
is in involution with H. In order to compare the canon-
ical and the microcanonical description for such class of
systems, we decompose the canonical partition function
as follows [49]

Z(β, L) =

∫
dLxe−βH(x)δ(Lu− V (x)) =

= L

∫ εM

εm

dεe
−βL

(
ε− sB (ε)

kBβ

)
(16)

where εm and εM are the minimum and the maximum
of the admitted energy density ε := E/L, respectively
and sB (ε) is exactly Boltzmann’s microcanonical entropy
density. Furthermore, note that we have made use of
the generalization [45] of the co-area formula [47] which
is of very general validity and holds also for Hausdorff
measurable sets. It is worth emphasizing that in Eq.
(16) β represents just a (Lagrangian) parameter and it
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is only thanks to the comparison between canonical and
microcanonical ensemble that one can ascribe to β the
meaning of inverse temperature [49]. In order to connect
the canonical description to the microcanonical descrip-
tion one has to observe that, roughly speaking, the par-
tition function ZL depends on the competition between
the two terms e−βεL and eLsB /kB which are exponentially
decreasing and increasing with L, respectively. Thus, by
the saddle point/Laplace method, the following asymp-
totic approximation (L � 1) for the partition function
holds

ZL(β) ≈ L

√
2πkB
−Ls′′B

e
−βL

(
ε∗− sB (ε∗)

kBβ

)
(17)

where s′′B = ∂2sB
∂ε2 (ε∗), and ε∗ := ε(β) is the solution of

β =
1

kB

∂sB

∂ε
(ε) . (18)

Therefore the canonical free energy f is

f(β) := lim
L→∞

− 1

βL
lnZL(β) =

(
ε∗ − s

∞
B (ε∗)

kBβ

)
, (19)

where β and ε∗ are related by Eq. (18), the Boltzmann
definition of microcanonical temperature. In other words,
the thermodynamic limit of the dimensionless Boltz-
mann’s entropy s

∞
B (ε)/kB , as a function of the density

energy ε, and the dimensionless Helmholtz free energy
βf(β), as a function of the inverse Boltzmann absolute
temperature β, are connected by a Legendre transforma-
tion

βf(β) = inf
ε

(
βε− s∞B (ε)/kB

)
, (20)

and this relation is valid only in the case of Boltzmann’s
definitions. This fact shows that whenever there is equiv-
alence between the canonical and the microcanonical en-
semble, the only possible definition for the microcanonical
temperature is the Boltzmann’s.

It is worth remarking a general behaviour of system
admitting negative Boltzmann temperatures. From Eqs.
(4) and (5) it follows

Ω(ε) =

∫ ε

εmin

dε′eLsB(ε′)/kB , (21)

thus when sB(ε) has a local maximum at ε̃ by using the
Laplace method we deduce the following asymptotic ap-
proximate (L� 1) expressions

Ω(ε) ≈ kB
Ls′B(ε)

eLsB(ε)/kB , ε < ε̃ (22)

Ω(ε) ≈

√
− 2πkB
Ls′′B(ε̃)

eLsB(ε̃)/kB , ε > ε̃ , (23)

which, in the thermodynamic limit, yields

βG(ε) := βB(ε) , ε < ε̃ (24)

βG(ε) := 0 , ε > ε̃ . (25)

The peculiar behaviour just here summarized shows in
which way the Gibbs entropy and the Boltzmann entropy
are inequivalent in the thermodynamic limit in the case
of systems that allow negative Boltzmann temperatures.

CRITIQUE OF CONSISTENCY OF
BOLTZMANN ENTROPY

The criticisms to the thermodynamic consistency of
the Boltzmann’s entropy raised by [18] and [20] are based
on the fact that, Gibbs entropy (s = sG) satisfies the
identities (

∂s

∂ε

)−1

a

(
∂s

∂aµ

)
ε,aν 6=aµ

= −
(
∂ε

∂aµ

)
s,aν 6=aµ

(26)

(
∂s

∂ε

)−1

a

(
∂s

∂aµ

)
ε,aν 6=aµ

= −
〈
∂h

∂aµ

〉
, (27)

whereas Boltzmann entropy (s = sB) does not. Here
aµ are intensive parameters of the Hamiltonian density
h = H/L and 〈·〉 denotes the microcanonical average
calculated with the density operator

ρ =
δ(H − E)∫

dNx δ(H(x)− E)
.

Actually, it is easy to prove that Eq. (26) holds also in
the case s = sB . In fact, identity (26) is a trivial conse-
quence of the chain relation (see pag. 20 of [53]) which is
valid independently from the chosen entropy definition,
and it is a mere consequence of the fact that there ex-
ists an equation of state for the entropy density s, energy
density ε and some further density parameters a (e.g.
the system volume density). Let us prove this point. Let
F be a differentiable function which defines a surface by
means of the equation F (s, ε, a) = const, it is easy matter
to verify that(

∂s

∂ε

)
a

(
∂ε

∂a

)
s

(
∂a

∂s

)
ε

= −1 , (28)

in fact it is ∂sFds + ∂εFdε + ∂aFda = 0, and hence, in
the case of a variation with da = 0, we get(

∂s

∂ε

)
a

= −
(
∂εF

∂sF

)
.

By a cyclic permutation of the symbols s, ε, a, we get the
identities(

∂ε

∂a

)
s

= −
(
∂aF

∂εF

)
,

(
∂a

∂s

)
ε

= −
(
∂sF

∂aF

)
,
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and hence Eq. (28). Now, for both the entropies we can
write the following equation

F (s, ε, a) := s− k lnO(ε,a) = 0 , (29)

where in the case of Gibbs’ entropy density, sG, O :=
Ω, whereas for case of Boltzmann’s entropy density, sB ,
O := ω. In both the cases, from Eq. (28) we get(

∂ε

∂aµ

)
s,aν 6=aµ

(
∂aµ
∂s

)
ε,aν 6=aµ

(
∂s

∂ε

)
a

= −1 ,

and hence

T

(
∂s

∂aµ

)
ε,aν 6=aµ

= −
(
∂ε

∂aµ

)
s,aν 6=aµ

, (30)

where T = (∂s/∂ε)−1
a . This proves that the equality of

Eq. (26) is valid both in the case of the Gibbs’ entropy
and in the Boltzmann case.

Let us now consider Eq. (27). By resorting to the
Gauss theorem, one can prove that this identity is rig-
orously verified only in the case of the Gibbs entropy
s = sG. Thus, [18] have concluded that the identity be-
tween the second members of Eqs. (26) and (27) is the
proof of the thermodynamic and mathematical consis-
tency of Gibbs entropy and a proof of inconsistency for
the Boltzmann entropy, since the latter does not satisfies
such identities.

Nevertheless, identity(
∂ε

∂aµ

)
s,aν 6=aµ

:=

(
∂ 〈h〉
∂aµ

)
s,aν 6=aµ

=

〈
∂h

∂aµ

〉
(31)

is rigorously valid only when 〈·〉 is the canonical aver-
ages whereas it does not hold for the case of the micro-
canonical density operator ρ. See appendix for further
considerations about this point.

On the contrary, one can derive a robust consistency
condition for systems for which there is statistical en-
semble equivalence. In fact, the first member of equation
(27) is minus the generalized pressure pµ and, from the
thermodynamic Maxwell relations that are valid indepen-
dently from any given statistical ensemble, it results [53]

pµ = −
(
∂f

∂aµ

)
T,aν 6=aµ

.

Now, we have proved Eq. (19) that holds when entropy is
a concave function, e.g. for standard systems with short
range interaction. Thus for this class of systems Eq. (19)
yields6

pµ = −

 ∂ε∗

∂aµ
−

∂s
∞
B (ε∗)

∂aµ

kBβ
−

∂s
∞
B (ε∗)

∂ε∗

kBβ

∂ε∗

∂aµ

 =
1

kBβ

∂s
∞
B (ε∗)

∂aµ

(32)

6 note ε∗ = ε∗(aµ), s
∞
B (ε∗) = s

∞
B (ε∗(aµ), aµ)

that compared with the first member of Eq. (27) states
that s = sB is the only one consistent choice for the
entropy.

A further point that deserves a discussion concerns the
question of the integrating factor raised by [24]. In his
work, he deduces that microcanonical entropy is an ex-
act differential form if and only if it is a function of Ω.
The proof of the above assertion, is affected by the same
mistake as the proof of inconsistency given by [18]. In-
deed a key point in the proof given by Campisi is the
identification

pµ ≡
(
∂ε

∂aµ

)
s,aν 6=aµ

=

〈
∂h

∂aµ

〉
that, as we have recalled above, is true only for the canon-
ical ensemble, i.e. when 〈〉 is the canonical average. The
second law of thermodynamics for the heat density q
reads

δq = dε+
∑
µ

pµdaµ ,

thus, in systems where all the statistical ensembles are
equivalent, from Eq. (32) we get

δq = dε+
∑
µ

1

kBβ

(
∂s
∞
B

∂aµ

)
s,aν 6=aµ

daµ

which yields

ds ≡ δq

T
=
dε

T
+
∑
µ

(
∂s
∞
B

∂aµ

)
s,aν 6=aµ

daµ .

Thus, the choice s = s∞B and T = (∂s∞B /∂ε)
−1

makes s∞B
an exact differential form, and this ensures the perfect
thermodynamic consistency of Boltzmann’s entropy.

While we were finalizing the present paper we have
came to knowledge of paper [39] that contains results in
agreement with that of the present section.

PARADIGMATIC EVIDENCES

In this section we consider two different systems sup-
porting negative-temperature states. The first one is a
collection of N undistinguishable uncoupled 1/2 spins in
a magnetic field B, like the one considered in [18] and
[24]. This is a particular case of the class of systems dis-
cussed in the seminal work by [5]. Next, we address a
tight-binding model describing N classical, or quantum,
particles hopping across the sites of a lattice of length
L, which bears relevance to a recent experiment where
negative-temperature states have been created for mo-
tional degrees of freedom of ultracold atoms loaded in an
optical lattice [38]. In our calculation we assume the sys-
tems as at the thermodynamic equilibrium without con-
sidering the dynamical process necessary to realize such



7

equilibrium. For both models we show that the Boltz-
mann microcanonical ensemble produces results that are
equivalent to those obtained in the canonical (and, pos-
sibly, grand canonical) ensemble, where the inverse tem-
perature is just an external parameter.

The Hamiltonian for the first system is

H = −mB
N∑
j=1

σj (33)

where m is the magnetic moment of the individual spin
and σj = ±1. The canonical partition function for this
system is easily evaluated as

Z = 2N coshN (βmB) = e−βA , (34)

where A is the Helmoltz free energy. The internal energy
and the entropy are then

E =− ∂

∂β
logZ = −NmB tanh(βmB) , (35)

S =kBβ
2 ∂

∂β
A = kBN

[
log 2 + log(cosh(βmB))

− βmB tanh(βmB)
]
. (36)

Inverting Eq. (35) for h = E/(NmB), where h ∈ [−1, 1],
and plugging the result into Eq. (36) yields

β =− arctanh(h) (37)

S =
kBN

2
[2 log 2− (1 + h) log(1 + h)−

(1− h) log(1− h)] . (38)

Thus, the temperature is positive for h < 0 and nega-
tive for h > 0. Note that the entropy in Eq. (38) is a
concave function featuring a maximum at h = 0 and,
more importantly, its derivative with respect to h coin-
cides with the function giving the temperature at a fixed
energy density, Eq. (37). In other words, the inverse tem-
perature and entropy obtained in the canonical ensemble
are linked by the relation that is expected to hold true
in the microcanonical ensemble. In fact, this is a specific
instance of the general relation discussed in Sec. .

It is not hard to show that Eq. (38) coincides with
the microcanonical Boltzmann entropy SB = kB log(ω),
where ω(h) is the number of microstates corresponding to
energy density h. It is sufficient to observe that a state at
energy density h is such that (1−h)N/2 spins are aligned
along the magnetic field, and N − n = (1 + h)N/2 spins
are aligned against it. Therefore

ω(h) =

(
N

n

)
=

N !

( 1+h
2 N)!( 1−h

2 N)!
(39)

and our claim is easily proven by making use of Stirling’s
approximation, in view of the large number of spins.

As to the Gibbs entropy,

Ω(h) =

(1−h)N/2∑
k=0

(
N

k

)
=

∫ h

−1

ω̃(h′) dh′ (40)

with ω̃(h) = N
2 ω(h) = e

N
2 f(h), with f(h) = 2

N log
(
N
2

)
+

2 log 2− (1 + h) log(1 + h)− (1− h) log(1− h), a concave
function having a maximum at h = 0. Thus, repeating
the general argument illustrated in Sec. , βG(h) = βB(h)
for h < 0, and βG(h) = 0 for h ≥ 0.

In passing, we observe that the severe shortcomings
attributed to the Boltzmann entropy in Ref. [24] are an
artifact of the erroneous definition of the Boltzmann en-
tropy adopted there. Indeed, the argument of the loga-
rithm in the formula for SB should be a pure number,
namely the number of microstates corresponding to a
given energy.

In Ref. [24], the Boltzmann entropy is defined
as the logarithm of the density of states, ω̄(E) =
ω(E/mBN)/2mB, that one has to introduce in the cal-
culation of Ω when switching from a sum to an integral
over energies:

Ω(E) =

∫ E

−mBN
ω̄(E) dE′ (41)

Equation (41) is surely equivalent to Eq. (40) — where
the integral is over adimensional energy densities —, ex-
cept for the fact that ω̄(E) cannot be the argument of
a logarithm, in that it has the dimension of an inverse
energy. In order to use it in the definition of the Boltz-
mann entropy, it must be multiplied by ε = mB, as cor-
rectly stated in Eq. (1) of Ref. [24]. Expectedly, this
produces the original number of microstates ω(E/mBN)
and, in turn, the correct Boltzmann entropy. When this
is plugged into Eq. (31) of Ref. [24], the expected magne-
tization is obtained, M = −E/B, and no spurious phase
transition appears at h = 0. In fact, it is SG that ap-
pears to signal such a spurious phase transition, through
the nonanaliticity of βG(h) at h = 0.

As second case, we consider a quantum and a classical
model, of an ideal gas of noninteracting bosons hopping
on a one-dimensional lattice. In the former case the dy-
namics is defined by Hamiltonian

Ĥ = −
L∑
j=1

âj â
†
j+1 + h.c. , (42)

where âj (â†j) is the boson annihilation (creation) opera-
tor at site j and where periodic boundary conditions have
been assumed. In addition to the energy, the present sys-
tem has a further conserved quantity, the total number
of bosons

N̂ =

L∑
j=1

â†j âj . (43)
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By plugging âj = 1/
√
L
∑L−1
k=0 exp(−i2πkj/L)b̂k into

Eqs. (42) and (43) we get

Ĥ = −
L−1∑
k=0

εk b̂k b̂
†
k + h.c. , and N̂ =

L−1∑
k=0

b̂†j b̂j (44)

respectively, where the indices k run over the dual lattice
sites and b̂†k and b̂k are creation and annihilation boson
operators, respectively. The energy density levels ε{nk}
of system are

ε{nk} = L−1
L−1∑
k=0

εknk , (45)

where nk are integer numbers of the spectrum of b̂†k b̂k.
The single particle energies εk for a uniform lattice result

εk = −2 cos(2πk/L) , k = 0, . . . , L− 1 . (46)

Furthermore, each energy level has also a given total
number of atoms N =

∑L−1
k=0 nk. The classical model for

this system is obtained when bk → zk and consistently
b†k → z∗k, where zk = (xk + iyk) ∈ C (k = 0, . . . , L − 1).
Also in this case, the Hamiltonian and the total number
of particles

H =

L−1∑
k=0

εk|zk|2 , N =

L−1∑
k=0

|zk|2 (47)

are conserved quantities. In the following of the present
section, we compare β(ε) derived in the canonical or
grand-canonical ensembles, βB(ε) derived in the micro-
canonical ensemble with the Boltzmann entropy, and
βG(ε) derived with the Gibbs entropy. Our analysis
shows clearly a great agreement between β(ε) and βB(ε),
whereas β(ε) and βG(ε) are absolutely irreconcilable on
half of the domain of ε.

Ideal quantum gas: grand-canonical description. By
the canonical partition function for the quantum model

ZN (β) =
∑
{nk}

exp[−βLε{nk}] , (48)

where
∑L−1
k=0 nk = N , we get grand-partition function

Q =

∞∑
N=0

eβµNZN (β) =

L−1∏
k=0

e−β(µ−εk)

e−β(µ−εk) − 1
, (49)

where the chemical potential µ has been introduced in
order to fix the mean number of particles. From the
mean number of bosons in the level εk

〈nk〉 =
1

eβ(εk−µ) − 1
(50)

we calculate the average number of bosons

N =

L−1∑
k=0

1

eβ(εk−µ) − 1
, (51)

and the energy density of the system

ε = L−1
L−1∑
k=0

εk
eβ(εk−µ) − 1

. (52)

After Eq. (50), the condition 〈nk〉 ≥ 0 imposes the con-
strain β(εk − µ) > 0 that can be satisfied in two cases:
First, when µ < εk (k = 0, . . . , L − 1), β > 0; Second,
for µ > εk (k = 0, . . . , L− 1) necessarily it results β < 0.
Hence, in the latter case, we observe an inversion of pop-
ulation, namely 〈nk〉 < 〈n′k〉 with ε′k > εk. For a given
value of N/L, the inverse temperature β is a function of
the energy density ε, in fact, by using Eq. (51) and (52)
it is possible to getting rid of the chemical potential and
β is thus expressed as a function of ε. Figure 1 shows
(gray) numerical results for β vs ε for the case a = 1
with L = 20 sites where it is evident that positive and
negative values of β are allowed.

Ideal quantum gas: canonical description. From the
partition function (48) it is possible to compute the av-
erage of the energy density as a function of β. We have
done this numerically by generating all the microscopic
configurations with N = L = 20, and by averaging the
density energy (45) with respect to the canonical weight

e−βLε{nk}

ZN (β)
,

as a function of β. The resulting curve is shown in Fig. 1
(red).

Ideal quantum gas: microcanonical description. In
this case we have to calculate the density of states ωN (ε)
at energy density ε for a system with N particles. We
have obtained an approximation to ωN (ε) by binning the
energies of all the configurations with N = L = 20, which
we generated as described above. In Fig. 1 we compare
the inverse temperature βB vs the energy density ε (blue),
obtained from the Boltzmann entropy and β(ε) derived
in the grand-canonical (gray) and in the canonical en-
semble (red) for the case of N = L = 20. Already for
this small system size it is evident the great agreement
of β(ε) between the case of Boltzmann definition and the
corresponding relations derived in the grand-canonical
and canonical ensembles. As we have recalled earlier, the
Gibbs entropy yields a non-negative inverse temperature,
irrespective of the energy density, βG(ε) > 0. Now we
show that the condition β > 0 and ε > 0 cannot be satis-
fied in the grand canonical ensemble. Since 〈nk〉 ≥ 0 for
all k, from Eq. (50) we deduce β(εk − µ) > 0 and, given
that β > 0 necessarily (εk − µ) > 0, and, in this manner
εk > ε′k implies 〈n′k〉 > 〈nk〉. Furthermore, the single
particle density levels εk have zero average (

∑
k εk = 0),

therefore for this weighted average we get

L−1∑
k=0

εk〈nk〉 < 0 ,
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which proves our assertion. As it is clearly shown in Fig.
1, β(ε) (gray) derived with the grand canonical ensemble
and βG(ε) (black) derived with the Gibbs’ entropy are
absolutely irreconcilable in the region of ε > 0.
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FIG. 1. Quantum system. Relation between β and ε for the
three ensembles. All the curves refer to a lattice comprising
L = 20 sites with a density of one particle per site.

Classical limit of the ideal quantum gas: grand
canonical description. For the classical model the grand
canonical partition

Qc =

L−1∏
k=0

π

β(εk − µ)
, (53)

yields

〈nk〉 = 〈|zk|2〉 =
1

β

1

εk − µ
. (54)

Hence the average energy density is

ε =
1

βL

L−1∑
k=0

εk
εk − µ

(55)

where the chemical potential µ is determined by the con-
dition

N =
1

β

L−1∑
k=0

1

εk − µ
, (56)

and it is µ < εk (k = 0, . . . , L − 1) in the region of pos-
itive temperatures, whereas for negative-temperature it
results µ > εk

7. Thus, one can derive the energy density

ε =
1

βL
[L+ µNβ] . (57)

7 Notably, Eq. (54) is the classical limit (a � 1) of the quantic
result in Eq. (50).

In the thermodynamic limit N,L� 1, we can consider
the continuous limit for our system

N =
1

β

L−1∑
k=0

1

εk − µ
≈ L

|β|
√
µ2 − 4

. (58)

Solving for the chemical potential we get

µ = −2 sign(β)

√
1 +

1

4β2a2
, (59)

where a = N
L is the particle density. Plugging Eq. (59)

in the continuous limit of Eq. (55) we get

ε =
1

β
− 2a sign(β)

√
1 +

1

4β2a2
. (60)

By Eqs. (57) and (60) we get

µ =
ε2 + 4a2

2aε

that plugged in (57) yields

β = − 2ε

(4a2 − ε2)
, (61)

in which is evident that β(ε) and ε(β) are smooth func-
tions. Therefore, as expected, the energy density can be
used to determine the inverse temperature and chemical
potential of the system at equilibrium.

A few comments are worthwhile. The expression for
the grand canonical partition function, Eq. (53), could
suggest that the point β = 0 corresponds to a singular
point where some kind of phase transition takes place.
This is not the case. Indeed it is easy to show from Eq.
(59) that for β → 0, βεk → 0 but βµ → −(a)−1 and,
hence, Qc does not diverge at β = 0. In figure 2 it is
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FIG. 2. Classical system. Relation between β and ε for the
three ensembles. All the curves refer to a lattice comprising
L = 20 sites with a density of one particle per site.

plotted the curve (61) (gray).
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Classical limit of the ideal quantum gas: canonical
description. The basic object in this ensemble is the
canonical partition function

ZN (β) =

∫
dx dy e−β

∑L−1
k=0 εk(x2

k+y2k)δ

[
N −

L−1∑
k=0

(x2
k + y2

k)

]
,

(62)
which, in the case of an even number of sites L, can be
recast as

ZN (β) =
πL

β(L−1)L2
BN (β) (63)

where

BN (β) = −1

2

L−1∑
k=0

[
β(4− ε2k)N + εk

]
e−βεkN . (64)

The energy density in this case is

ε =
L− 1

Lβ
− 1

L

∂

∂β
lnBN (β) (65)

In Fig. 2 (red) we show the curve β(ε) derived by nu-
merically solving Eq. (65) for β.

Classical limit of the ideal quantum gas: microcanon-
ical description. We want to calculate the Boltzmann
entropy for the classical system introduced above. Ac-
cording to Boltzmann, the entropy depends on the den-
sity of states

ω(ε,N) =∫
dx dy δ

[
εN −

L−1∑
k=0

εk(x2
k + y2

k)

]
δ

[
N −

L−1∑
k=0

(x2
k + y2

k)

]
(66)

through Eq. (5). By a direct calculation, in the case of
a lattice of L = 2` sites, one gets

ω(ε,N) =
πLNL−2

(L− 2)!L2
χ(ε,N) (67)

where ε0 < ε < ε`, the single particle energies ε0, ε` are
defined in (46), and

χ(ε,N) = (ε− ε0)L−2−
`−1∑

k=1,εk<ε

[
(L− 2)(ε` − εk)(εk − ε0)(ε− εk)L−3 + εk(ε− εk)L−2

]
(68)

from which it is possible to derive βB(ε) by means the
standard definition βB = ∂εω/ω. Fig. 2 compares the
inverse microcanonical temperature βB vs ε (blue) for a
lattice of L = 20 sites and one particle per site, Eq. (61)
obtained in the grand canonical ensemble (gray) and the
analogue relation derived in the canonical ensemble (red).

Fig. 2 shows beyond a shadow of a doubt the agreement
between the functions β(ε) derived from the Boltzmann’s
definition, and the one in the grand canonical ensemble.
In particular they both predict negative temperatures
in the domain of positive-energy densities. Furthermore
from (68) we have derived Ω(ε,N) from which it is pos-
sible to derive the inverse Gibbs temperature by means
the standard definition βG = ω/Ω. In Fig. 2 we show
the curve βG(ε) (black) derived in such way. Also for the
classical model, βG(ε) does not agree with the curves β(ε)
obtained in the grand canonical and canonical ensembles.

For the first system considered in this section, we have
shown that β(ε) derived within the canonical description
agrees with βB(ε) derived within the Boltzmann micro-
canonical description. Furthermore, we have considered
a second system, an ideal gas both in the classical and
in the quantum case, and we have shown that β(ε) de-
rived within the grand canonical and canonical descrip-
tions agree with the same quantity derived within a mi-
crocanonical description à la Boltzmann, whereas are ir-
reconcilable with the analogues quantity derived using
the Gibbs entropy. We have shown that, for these sys-
tems the ensemble equivalence holds true provided that
the Boltzmann entropy is used within microcanonical en-
semble. Furthermore, we have seen that for the classical
case of the second system, the grand canonical approach
gives an explicit form for β(ε), i.e. Eq. (61). In view of
the clear agreement between the grand canonical and the
microcanonical result, we can conclude

ω(ε) ≈ ω0
(
4a2 − ε2

)L
, (69)

where ω0 = exp(Ls0
B/kB) does not depend on ε. Plug-

ging sB = s0
B + kB ln

(
4a2 − ε2

)
and ε̃ = 0 in the Eqs.

(22) - (25), we deduce: First, TB(ε) is well defined within
the whole range of value of ε 6= 0, Second, for L → ∞
TG(ε) → TB(ε) in ε < 0, Third, in the thermodynamic
limit TG is well defined only in the domain of ε corre-
sponding to positive temperatures TB and it is infinity
for ε ≥ 0. This fact has dramatic consequences about the
thermodynamic consistency of Gibbs’ entropy, as we will
show in Sec. .

In the light of these facts, it is evident that thermo-
dynamics derived from Boltzmann’s entropy is perfectly
consistent, both mathematically and thermodynamically,
with the thermodynamics derived in the grand-canonical
and canonical ensembles, whereas the thermodynamics
derived from Gibbs’ entropy is inconsistent with that of
these latter ensembles.

EQUIPARTITION THEOREM

While the Hamiltonian dynamics takes place on the
phase-space hypersurface corresponding to a given value
of the energy density (and possibly of the other conserved
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quantities), the Gibbs entropy requires measures involv-
ing all the energy level sets with density energy below
such value. It is therefore not immediately clear how βG
can be measured as an ensemble or time average. The
usual answer to this question given by the supporters of
the Gibbs entropy is to use the equipartition theorem.
This can be cast into the form

β−1
G = 〈xk

∂H

∂xk
〉 , (70)

where xk denotes any component of the set of dynamical
coordinates and the angle brackets denote the standard
microcanonical average. Nevertheless Eq. (70) fails ex-
actly in the case of systems that admit negative temper-
ature. For instance, in the case of system (47) reported
in Sec. , in the region ε > 0 (corresponding to negative
Boltzmann temperatures) the r.h.s. of Eq. (70) with
xk = zk is εk〈|zk|2〉 which is a well defined quantity for
any system size L. On the contrary, as we have proved
above, l.h.s. goes to infinity as L increases, therefore
Eq. (70) cannot be satisfied. The reason of this failure of
the equipartition theorem, in the case of systems that ad-
mit negative temperatures, stems from ignoring bound-
ary terms in the derivation of Eq. (70). For instance,
in the case of systems with bounded energy spectrum,
like the systems admitting negative Boltzmann tempera-
tures, the identity of Eq. (70) is no more valid and must
be corrected with

〈xj
∂H

∂xk
〉 =

δjk
βG
− 1

ω

∫
dx∂j [xkΘ(E −H)] , (71)

that includes boundary terms. In fact, such terms in the
case of systems with bounded energy spectrum (and/or
bounded coordinates), can be not null, at variance with
standard systems where x→∞ yields H →∞.

In the case of standard systems, i.e. with unbounded
energy spectrum, Eq. (70) holds, but in this case the
thermodynamic quantities derived from the Gibbs en-
tropy differ from those obtained with the Boltzmann’s
definition of entropy for quantities which are irrelevant
from the statistical point of view, since they vanish in
the thermodynamic limit.

In the case of the classical model of lattice ideal gas
(47), by a direct calculation one can show that even in
the canonical ensemble the equipartition theorem does
not have the celebrated form of Eq. (70), with the micro-
canoncal average replaced by the canonical one, but the
following

〈xk∂jH〉c = −δj,k
εk
β

∂ lnBN (β)

∂εk
. (72)

where, with a glance at (64), the dependence on the mode
index k is evident. For the same system (71) is

〈xk∂jH〉 = −1

2
δj,k

N

L− 1

∂εkχ(ε, L)

χ(ε, L+ 1)
. (73)

Therefore, for systems with bounded energy spectrum,
the equipartition theorem assumes an unexpected math-
ematical form which is perfectly defined within the Boltz-
mann description. On the contrary, identity (70) be-
comes meaningless for this class of systems proving in
such a way the flimsiness of Gibbs microcanonical ther-
modynamics.

We conclude that the identity (70) cannot be advo-
cated as proof in favour of Gibbs entropy, since it fails
in the case of systems where Gibbs and Boltzmann dis-
agree. The correct identity (71), shows that there is not
equipartition. Furthermore, since Eq. (70) is incorrect,
it cannot used to measure the Gibbs temperature as a mi-
crocanonical average at variance with what affirmed in
several papers [18, 19, 24].

MEASURING TEMPERATURE

Making a temperature measurement on a system
brings about, inevitably, a contact between the system
and a second “small system”. Especially in the present
context a particular care has to be employed when we
choose a second calibrated system (thermometer) to at-
tach to the first one (sample) in order to determine the
temperature of the latter. The thermometer has to de-
tect the sample temperature without destroying its equi-
librium. This means that a thermometer capable of sus-
taining negative temperatures must be employed with
a sample admitting negative temperatures. Indeed, the
whole system, obtained by glueing together a “small”
system with unbounded energies, like an harmonic oscil-
lator, to the sample would be a system with unbounded
energies, that is without negative temperatures. This as-
pect that appears as a good reasoning, has been diffusely
discussed by Ramsey in its paper [5] even if several au-
thors [18, 19, 25] seem to have missed this point.

Furthermore, it makes sense to ask oneself if (and how)
two systems admitting negative temperatures reach equi-
librium when joined together at an initial different tem-
perature.

In particular, a relevant question is whether the two
joined systems reach eventually the same inverse tem-
perature and if, or not, this latter is intermediate respect
to the initial inverse temperatures of the two systems as
we expect from statistical mechanics of positive temper-
atures [53]. In order to directly verify if the Boltzmann
temperature complies with this requisite, we have simu-
lated an experiment in which two different systems that
admit negative temperatures, at different initial temper-
atures, are brought to contact with each other. Thus we
have considered two systems described by the following
Hamiltonians

Hj = −
∑
rr′

z∗rArr′zr′ − Uj
∑
r

log(1 + |zr|2) , j = 1, 2 ,

(74)
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where, for each system, the indices r and r′ run over a
two-dimensional lattice and Arr′ is the adjacency matrix
that describes the nearest-neighbour interaction in two
spatial dimensions. In (74) we have added to a kinetic a
term similar that of Hamiltonian (47), an onsite nonlinear
potential, in order to make the systems not integrable.
Note, that also with the addition of this latter term, the
system admits negative temperatures. We started with
the two systems isolated with each other. In our simula-
tions we have prepared the initial configuration of equilib-
rium for the two systems at different temperatures (β0

j ,
j = 1, 2), by means of a long time integration of the
equations of motion of the two separated systems. The
inverse temperatures β0

j (j = 1, 2), have been measured
with Eq. (14), that descends from the Boltzmann en-
tropy. The two systems of 64× 64 sites have been joined
to form a single lattice. In the simulation reported in
Fig. 3 we set U1 = 0.1 and β0

1 ≈ −1.38, U2 = 0.75 and
β0

2 ≈ 29.89. We integrated the equations of motion of the
whole system. In Fig. 3 we report the inverse temper-
ature for the whole system (black), subsystem 1 (blue)
and subsystem 2 (red). As it was expected, we observe
that the inverse temperature of the whole system, after
a short transient, reaches an asymptotic value βf ≈ 0.09
intermediate between the initial values of the inverse tem-
peratures of the two original systems. Also, the inverse
temperatures of the two subsystems approach the value of
β(t) along the time. Furthermore, this value remains sta-
ble on long time scales. For detail about these numerical
results we refer to [41], where we have presente analytical
and numerical evidence that Boltzmann microcanonical
entropy allows the description of phase transitions occur-
ring at (negative Boltzmann temperatures) high energy
densities, at variance with Gibbs temperature.

It is worth remarking that, whereas this process of
thermalization is well explained with the Boltzmann tem-
perature, we cannot say the same for the inverse temper-
ature of Gibbs for which it is β0

1 = ∞ with β0
2 ≈ 29.89

and βf <∞.
Finally we have verified that, irrespective of the sign

of the temperature, a large lattice (that realizes a mi-
crocanonical ensemble) acts as a thermostat for a small
sublattice (that realizes a grand canonical ensemble) and
that the temperatures measures for the two systems
agree, thus confirming the equivalence between the the
microcanonical and the grand canonical ensemble.

FINAL REMARKS

We have addressed the question of the right defini-
tion of microcanonical entropy, for systems for which the
equivalence of the statistical ensembles is verified. We
have shown that the correct map between the canonical
average of the energy for systems with one or more con-
served quantities and the Lagrangian parameter β is that
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FIG. 3. The figure shows the thermalization of the subsys-
tems 1 and 2 after that they are attached at initially different
inverse temperatures. The black line is the evolution of the
inverse temperature of the whole system, the blue line is the
inverse temperature of system 1 and the red line is the inverse
temperature of the subsystem 2. The inset shows a zoom of
the last part of evolution.

descending from the Boltzmann entropy. Moreover, we
have shown that the only consistent definition for the mi-
crocanonical entropy is that of Boltzmann. In fact, while
for standard systems both these entropies lead to equiva-
lent thermodynamic results in the thermodynamic limit
[34], in the case of systems with bounded energy spec-
trum, negative Boltzmann temperatures are admitted,
and the two microcanonical entropies lead to irreconcili-
able results. In particular, when the latter circumstance
is verified, the inverse temperature derived by the Gibbs’
entropy coincides with the one of Boltzmann within the
region of energy density where the latter is positive, and
is identically null where the Boltzmann temperature is
negative. In this way, it could happen that in corre-
spondence of the energies where βB changes sign, βG is
not a differentiable function of ε. But this conflicts with
the fact that the canonical and grand canonical partition
functions are smooth functions of ε in correspondence of
such points. On the contrary, βB(ε) is a smooth function
of ε, and no consistence issue of this kind arises for Boltz-
mann entropy. For all these reasons we conclude that the
correct definition for the microcanonical entropy is the
one of Boltzmann.

Microscopic dynamics and Eq. (31)

In Supplementary Information of Ref. [18], the au-
thors try to pave the link between the second member of
Eq. (31) and the microcanonical dynamics in order to
prove the second of identity in (31). They consider an
isolated system whose dynamics is governed by a Hamil-
tonian H(A(t)) that doesn’t depend explicitly on time
and, through the Hamilton-Heisenberg equation, [18] de-
rive the following expression for the time derivative of



13

H

dH

dt
=
∑
µ

∂H

∂Aµ

dAµ
dt

. (A.75)

Then, the authors operate an average over some suit-
able defined ensemble of the latter equation. The only
meaningful measure that one can consider for the micro-
canonical dynamics is the measure ergodic invariant for
the dynamics, that is that one of Eq. (7). Therefore we
obtain 〈

dH

dt

〉
=
∑
µ

〈
∂H

∂Aµ

〉
dAµ
dt

, (A.76)

where average 〈·〉 is defined in Eq. (9). At this point in
Ref. [18] the authors write〈

dH

dt

〉
=
d 〈H〉
dt

=
dE

dt
, (A.77)

but this identity is incorrect. In fact, both the hyper-
surface ΣE on which the microcanonical averages are
computed, according to Eq. (9), and the term 1/‖∇H‖,
appearing in the measure (7), depend on A, and then
on time t. One can verify that Eq. (A.77) has to be
corrected according to

d 〈H〉
dt

=

〈
dH

dt

〉
−
〈
H

1

‖∇H‖
d‖∇H‖
dt

〉
+

〈H〉
〈

1

‖∇H‖
d‖∇H‖
dt

〉
, (A.78)

from which we get

dE

dt
=
∑
µ

[〈
∂H

∂Aµ

〉
−
〈
H

1

‖∇H‖
∂‖∇H‖
∂Aµ

〉
+

〈H〉
〈

1

‖∇H‖
∂‖∇H‖
∂Aµ

〉]
dAµ
dt

, (A.79)

from the latter by using the identities h = H/L and aµ =
Aµ/L we obtain an expression that differs dramatically
from Eq. (31).

A further, and even more basic issue in this proof is
that it presumes to be able to design a microscopic dy-
namics, in which a the thermodynamic transformation
driven by the functions Aµ(t), realizes a transformation
in which the entropy is constant. But this is possible only
after having adopted a specific definition for entropy: this
is a tautology.

We are grateful to Marco Gabrielli for the appreciate
help.
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