
ar
X

iv
:1

60
1.

01
51

0v
1 

 [
m

at
h.

FA
] 

 7
 J

an
 2

01
6

RECENT RESULTS ON TRUNCATED TOEPLITZ OPERATORS

ISABELLE CHALENDAR, EMMANUEL FRICAIN, AND DAN TIMOTIN

ABSTRACT. Truncated Toeplitz operators are compressions of Toeplitz operators

on model spaces; they have received much attention in the last years. This survey

article presents several recent results, which relate boundedness, compactness,

and spectra of these operators to properties of their symbols. We also connect

these facts with properties of the natural embedding measures associated to these

operators.

1. INTRODUCTION

Truncated Toeplitz operators on model spaces have been formally introduced

by Sarason in [34], although some special cases have long ago appeared in liter-

ature, most notably as model operators for completely nonunitary contractions

with defect numbers one and for their commutant. This new area of study has

been recently very active and many open questions posed by Sarason in [34] have

now been solved. See [5, 8, 12, 21, 9, 20, 36, 19, 35, 6, 13]. Nevertheless, there are

still basic and interesting questions which remain mysterious.

The truncated Toeplitz operators live on the model spaces KΘ, which are the

closed invariant subspaces for the backward shift operator S∗ acting on the Hardy

space H2 (see Section 2 for precise definitions). Given a model space KΘ and a

function φ ∈ L2 = L2(T), the truncated Toeplitz operator AΘ
φ (or simply Aφ if

there is no ambiguity regarding the model space) is defined on a dense subspace

of KΘ as the compression to KΘ of multiplication by φ. The function φ is then

called a symbol of the operator. An alternate way of defining a truncated Toeplitz

operator is by means of a measure; in case φ is bounded, then a possible choice of

the defining measure for AΘ
φ is φ dm (with m Lebesgue measure).

Note that the symbol or the associated measure are never uniquely defined by

the operator. From this and other points of view the truncated Toeplitz operators

have much more in common with Hankel Operators than with Toeplitz operators.

This point of view will be occasionally pursued throughout the paper.

We intend to survey several recent results that are mostly scattered in the lit-

erature. They focus on the relation between the operator and the symbol or the

measure. Obviously the nonuniqueness is a main issue, and in some situations

it may be avoided by considering the so-called standard symbol of the operator.
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The properties under consideration are boundedness, compactness, and spectra.

Most of the results presented are known, and our intention is only to put them in

context and emphasize their connections, indicating the relevant references. Part

of the embedding properties of measures have not appeared explicitely in the lit-

erature, so some proofs are provided only where references seemed to be lacking.

The structure of the paper is the following. After a preliminary section with

generalities about Hardy spaces and model spaces, we discuss in section 3 Car-

leson measures, first for the whole H2 and then for model spaces. Truncated

Toeplitz operators are introduced in Section 4, where one also discusses some

boundedness properties. Section 5 is dedicated to compactness of truncated Toeplitz

operators, and Section 6 to its relation to embedding measures. The last two sec-

tions discuss Schatten–von Neumann and spectral properties, respectively.

2. PRELIMINARIES

For the content of this section, [17] is a classical reference for general facts about

Hardy spaces, while [26] can be used for Toeplitz and Hankel operators as well as

for model spaces.

2.1. Function spaces. Recall that the Hardy space Hp of the unit disk D = {z ∈

C : |z| < 1} is the space of analytic functions f on D satisfying ‖ f‖p < +∞, where

‖ f‖p = sup
0≤r<1

(∫ 2π

0
| f (reit)|p

dt

2π

)1/p

, (1 ≤ p < +∞).

The algebra of bounded analytic functions on D is denoted by H∞. We denote also

H
p
0 = zHp and H

p
− = zHp. Alternatively, Hp can be identified (via radial limits) to

the subspace of functions f ∈ Lp = Lp(T) for which f̂ (n) = 0 for all n < 0. Here

T denotes the unit circle with normalized Lebesgue measure m.

In the case p = 2, H2 becomes a Hilbert space with respect to the scalar product

inherited from L2 and given by

〈 f , g〉2 =
∫

T

f (ζ)g(ζ) dm(ζ), f , g ∈ L2.

The orthogonal projection from L2 to H2 will be denoted by P+. The space H2
−

is precisely the orthogonal of H2, and the corresponding orthogonal projection is

P− = I − P+.

The Poisson transform of a function f ∈ L1 is

(2.1) f̂ (z) =
∫

T

f (ξ)
1 − |z|2

|1 − ξ z̄|2
dξ, z ∈ D.

Suppose now Θ is an inner function, that is a function in H∞ whose radial limits

are of modulus one almost everywhere on T. Its spectrum is defined by

(2.2) s(Θ) := {ζ ∈ D : lim inf
λ∈D,λ→ζ

|Θ(λ)| = 0}.
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Equivalently, if Θ = BS is the decomposition of Θ into a Blaschke product and

a singular inner function, then ρ(Θ) is the union between the closure of the limit

points of the zeros of B and the support of the singular measure associated to S.

We will also define

ρ(Θ) = s(Θ) ∩ T.

We define the corresponding shift-coinvariant subspace generated by Θ (also called

model space) by the formula K
p
Θ
= Hp ∩ ΘH

p
0 , where 1 ≤ p < +∞. We will be es-

pecially interested in the Hilbert case, that is when p = 2. In this case, we also

denote by KΘ = K2
Θ and it is easy to see that KΘ is also given by the following

KΘ = H2 ⊖ ΘH2 =
{

f ∈ H2 : 〈 f , g〉 = 0, ∀g ∈ H2
}

.

The orthogonal projection of L2 onto KΘ is denoted by PΘ. It is well known (see

[26, page 34]) that PΘ = P+ − ΘP+Θ̄. Since P+ acts boundedly on Lp, 1 < p < ∞,

this formula shows that PΘ can also be regarded as a bounded operator from Lp

into K
p
Θ

, 1 < p < ∞.

The spaces H2 and KΘ are reproducing kernel spaces over the unit disc D. The

respective reproducing kernels are, for λ ∈ D,

kλ(z) =
1

1 − λ̄z
,

kΘ
λ (z) =

1 − Θ(λ)Θ(z)

1 − λ̄z
.

Evaluations at certain points ζ ∈ T may also be bounded sometimes; this hap-

pens precisely when Θ has an angular derivative in the sense of Caratheodory at

ζ [1]. In this case the function kΘ
ζ (z) =

1−Θ(ζ)Θ(z)
1−ζ̄z

is in KΘ, and it is the reproducing

kernel for the point ζ.

It easy to check that, if f , g ∈ KΘ, then f g ∈ H1 ∩ z̄Θ2H1
− ⊂ K1

Θ2 . In particular,

if f , g are also bounded, then f g ∈ KΘ2 . So (kΘ
λ )

2 ∈ KΘ2 for all λ ∈ D.

The map CΘ defined on L2 by

(2.3) CΘ f = Θz̄ f̄ ;

is a conjugation (i.e. CΘ is anti-linear, isometric and involutive), which has the

convenient supplementary property of mapping KΘ precisely onto KΘ.

2.2. One-component inner functions. In view of their main role in the study of

operators on model spaces, we devote this subsection to a particular class of inner

functions. Fix a number 0 < ǫ < 1, and define

(2.4) Ω(Θ, ǫ) = {z ∈ D : |Θ(z)| < ǫ}.

The function Θ is called one-component if there exists a value of ǫ for which Ω(Θ, ǫ)

is connected. (If this happens, then Ω(Θ, δ) is connected for every ǫ < δ < 1.) One-

component functions have been introduced by Cohn [15]. An extensive study of

these functions appears in [4, 3]; all results quoted below appear in [3].
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The above definition is not very transparent. In fact, one-component functions

are rather special: a first immediate reason is that they must satisfy m(ρ(Θ)) = 0.

This condition, of course, is not sufficient, but it suggests examining some simple

cases.

The set ρ(Θ) is empty for finite Blaschke products, which are one-component.

The next simplest case is when ρ(Θ) consists of just one point. One can prove

easily that the elementary singular inner functions Θ(z) = e
z+ζ
z−ζ (for ζ ∈ T) are

indeed one-component.

Suppose then that Θ is a Blaschke product whose zeros an tend nontangentially

to a single point ζ ∈ T. If

(2.5) inf
n≥1

|ζ − an+1|

|ζ − an|
> 0,

then Θ is one-component. So, in particular, if 0 < r < 1 and Θ is the Blaschke

product with zeros 1 − rn, n ≥ 1, then Θ is one-component. If condition (2.5) is

not satisfied, then usually Θ is not one-component. A detailed discussion of such

Blaschke products is given in [3], including the determination of the classes Cp(Θ)

(see Subsection 3.2).

One-component inner functions can be characterized by an estimate on the H∞

norm of the reproducing kernels kΘ
λ . While for a general inner function Θ we

have ‖kΘ
λ ‖∞ = O(1 − |λ|−1), this estimate can be improved for one-component

functions: Θ is one-component if and only if there exists a constant C > 0 such

that for every λ ∈ D, we have

‖kΘ
λ ‖∞ ≤ C

1 − |Θ(λ)|

1 − |λ|
.

2.3. Multiplication operators and their cognates. For φ ∈ L∞, we denote by

Mφ f = φ f the multiplication operator on L2; we have ‖Mφ‖ = ‖φ‖∞. The Toeplitz

operator Tφ : H2 −→ H2 and the Hankel operator Hφ : H2 −→ H2
− = L2 ⊖ H2 are

given by the formulae

Tφ = P+Mφ, Hφ = P−Mφ.

In the case where φ is analytic, Tφ is just the restriction of Mφ to H2. We have

T∗
φ = Tφ and H∗

φ = P+MφP−.

It should be noted that, while the symbols of Mφ and Tφ are uniquely defined by

the operators, this is not the case with Hφ. Indeed, it is easy to check that Hφ = Hψ

if and only if φ − ψ ∈ H∞. So statements about Hankel operators often imply only

the existence of a symbol with corresponding properties.

The Hankel operators have the range and domain spaces different. It is some-

times preferable to work with an operator acting on a single space. For this, we

introduce in L2 the unitary symmetry J defined by

J ( f )(z) = z̄ f (z̄).



RECENT RESULTS ON TRUNCATED TOEPLITZ OPERATORS 5

We have then J (H2) = H2
− and J (H2

−) = H2. Define Γφ : H2 → H2 by

(2.6) Γφ = J Hφ.

Obviously properties of boundedness or compactness are the same for Hφ and Γφ.

The definition of Mφ, Tφ and Hφ can be extended to the case when the symbol

φ is only in L2 instead of L∞, obtaining (possibly unbounded) densily defined

operators. Then Mφ and Tφ are bounded if and only if φ ∈ L∞ (and ‖Mφ‖ =

‖Tφ‖ = ‖φ‖∞). The situation is more complicated for Hφ. Namely, Hφ is bounded

if and only if there exists ψ ∈ L∞ with Hφ = Hψ, and

‖Hφ‖ = inf{‖ψ‖∞ : Hφ = Hψ}

This is known as Nehari’s Theorem; see, for instance, [24, p. 182]. Moreover (but

we will not pursue this in the sequel) an equivalent condition is P−φ ∈ BMO (and

‖Hφ‖ is then a norm equivalent to ‖P−φ‖BMO).

Related results are known for compactness. The operators Mφ and Tφ are never

compact except in the trivial case φ ≡ 0. Hartman’s Theorem states that Hφ is

compact if and only if there exists ψ ∈ C(T) with Hφ = Hψ; or, equivalently,

P−φ ∈ VMO. If we know that φ is bounded, then Hφ is compact if and only if

φ ∈ C(T) + H∞.

3. CARLESON MEASURES

3.1. Embedding of Hardy spaces. Let us discuss first some objects related to the

Hardy space; we will afterwards see what analogous facts are true for the case of

model spaces.

A positive measure µ on D is called a Carleson measure if H2 ⊂ L2(µ) (such

an inclusion is automatically continuous). It is known that this is equivalent to

Hp ⊂ Lp(µ) for all 1 ≤ p < ∞. Carleson measures can also be characterized by a

geometrical condition, as follows. For an arc I ⊂ T such that |I| < 1 we define

S(I) = {z ∈ D : 1 − |I| < |z| < 1 and z/|z| ∈ I}.

Then µ is a Carleson measure if and only if

(3.1) sup
I

µ(S(I))

|I|
< ∞.

Condition (3.1) is called the Carleson condition.

The result can actually be extended (see [10]) to measures defined on D. Again

the characterization does not depend on p, and it amounts to the fact that µ|T is

absolutely continuous with respect to Lebesgue measure with essentially bounded

density, while µ|D satisfies (3.1).

There is a link between Hankel operators and Carleson measures that has first

appeared in [29, 39]; a comprehensive presentation can be find in [28, 1.7]. Let µ be
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a finite complex measure on D. Define the operator Γ[µ] on analytic polynomials

by the formula

〈Γ[µ] f , g〉 =
∫

D

z f (z)g(z̄) dµ(z).

Note that if µ is supported on T, then the matrix of Γ[µ] in the standard basis of

H2 is (µ̂(i + j))i,j≥0, where µ̂(i) are the Fourier coefficients of µ.

Then the operator Γ[µ] is bounded whenever µ is a Carleson measure. Con-

versely, if Γ[µ] is bounded, then there exists a Carleson measure ν on D such that

Γ[µ] = Γ[ν].

It is easy to see that if dµ = φdm for some φ ∈ L∞, then Γ[µ] = Γφ, where Γφ

has been defined by (2.6) and is the version of a Hankel operator acting on a single

space.

Analogous results may be proved concerning compactness. In this case the rel-

evant notion is that of vanishing Carleson measure, which is defined by the property

(3.2) lim
|I|→0

µ(S(I))

|I|
= 0.

Note that vanishing Carleson measures cannot have mass on the unit circle (inter-

vals containing a Lebesgue point of the corresponding density would contradict

the vanishing condition). Then the embedding Hp ⊂ Lp(µ) is compact if and only

if µ is a vanishing Carleson measure.

A similar connection exists to compactness of Hankel operators. If µ is a vanish-

ing Carleson measure on D, then Γ[µ] is compact. Conversely, if Γ[µ] is compact,

then there exists a vanishing Carleson measure ν on D such that Γ[µ] = Γ[ν].

3.2. Embedding of model spaces. Similar questions for model spaces have been

developed starting with the papers [15, 16] and [38]; however, the results in this

case are less complete. Let us introduce first some notations. For 1 ≤ p < ∞,

define

Cp(Θ) = {µ finite measure on T : K
p
Θ

→֒ Lp(|µ|) is bounded},

C+
p (Θ) = {µ positive measure on T : K

p
Θ

→֒ Lp(µ) is bounded},

Vp(Θ) = {µ finite measure on T : K
p
Θ

→֒ Lp(|µ|) is compact},

V+
p (Θ) = {µ positive measure on T : K

p
Θ

→֒ Lp(µ) is compact}.

It is clear that Cp(Θ) and Vp(Θ) are complex vectorial subspaces of the complex

measures on the unit circle. Using the relations KΘ2 = KΘ ⊕ ΘKΘ and KΘ · KΘ ⊂

K1
Θ2 , it is easy to see that C2(Θ

2) = C2(Θ), C1(Θ
2) ⊂ C2(Θ), and V1(Θ

2) ⊂ V2(Θ).

It is natural to look for geometric conditions to characterize these classes. Things

are, however, more complicated, and the results are only partial. We start by fixing

a number 0 < ǫ < 1; then the (Θ, ǫ)-Carleson condition asserts that

(3.3) sup
I

µ(S(I))

|I|
< ∞,
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where the supremum is taken only over the intervals |I| such that S(I)∩Ω(Θ, ǫ) 6=

∅. (Remember that Ω(Θ, ǫ) is given by (2.4).)

It is then proved in [38] that if µ satisfies the (Θ, ǫ)-Carleson condition, then the

embedding K
p
Θ
⊂ Lp(µ) is continuous. The converse is true if Θ is one-component;

in which case the embedding condition does not depend on p, while fulfilling of

the (Θ, ǫ)-Carleson condition does not depend on 0 < ǫ < 1 (see Theorem 3.1

below).

As concerns the general case, it is shown by Aleksandrov [3] that if the converse

is true for some 1 ≤ p < ∞, then Θ is one-component. Also, Θ is one-component

if and only if the embedding condition does not depend on p. More precisely,

the next theorem is proved in [3] (note that a version of this result for p ∈ (1, ∞)

already appears in [38]).

Theorem 3.1. The following are equivalent for an inner function Θ:

(1) Θ is one-component.

(2) For some 0 < p < ∞ and 0 < ǫ < 1, Cp(Θ) concides with the class of measures

that satisfy the (Θ, ǫ)-Carleson condition.

(3) For all 0 < p < ∞ and 0 < ǫ < 1, Cp(Θ) concides with the class of measures

that satisfy the (Θ, ǫ)-Carleson condition.

(4) The class Cp(Θ) does not depend on p ∈ (0, ∞).

In particular, if Θ is one component, then so is Θ2, whence C1(Θ
2) = C2(Θ

2) =

C2(Θ).

Note that a general characterization of C2(Θ) has recently been obtained in [22];

however, the geometric content of this result is not easy to see.

The question of compactness of the embedding K
p
Θ
⊂ Lp(µ) in this case should

be related to a vanishing Carleson condition. In fact, there are two vanishing con-

ditions, introduced in [14]. What is called therein the second vanishing condition is

easier to state. We say that µ satisfies the second (Θ, ǫ)-vanishing condition [7, 14] if

for each η > 0 there exists δ > 0 such that µ(S(I))/|I| < η whenever |I| < δ and

S(I) ∩ Ω(Θ, ǫ) 6= ∅. The following result is then proved in [7].

Theorem 3.2. If the positive measure µ satisfies the second (Θ, ǫ)-vanishing condition,

then the embedding K
p
Θ
⊂ Lp(µ) is compact for 1 < p < ∞.

The converse is true in case Θ is one-component.

In other words, the theorem thus states that positive measures that satisfy the

second vanishing condition are in V+
p (Θ) for all 1 < p < ∞, and the converse is

true for Θ one-component.

To discuss the case p = 1, we have to introduce what is called in [14] the first

vanishing condition. Let us call the supremum in (3.3) the (Θ, ǫ)-Carleson constant

of µ. Define

(3.4) Hδ = {z ∈ D : dist(z, ρ(Θ)) < δ},
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and µδ(A) = µ(A ∩ Hδ). Then µδ are also Θ-Carleson measures, with (Θ, ǫ)-

Carleson constants decreasing when δ decreases. We say that µ satisfies the first

(Θ, ǫ)-vanishing condition if these Carleson constants tend to 0 when δ → 0.

It is shown in [7] that the first vanishing condition implies the second, and that

the converse is not true: there exist measures which satisfy the second vanishing

condition but not the first.

The next theorem is proved in [14].

Theorem 3.3. If a positive measure µ satisfies the first (Θ, ǫ)-vanishing condition, then

µ ∈ V+
p (Θ) for 1 ≤ p < ∞.

In case µ ∈ Cp(Θ), we will denote by ιµ,p : K
p
Θ

→ Lp(|µ|) the embedding

(which is then known to be a bounded operator). Then µ ∈ Vp(Θ) means that ιµ,p

is compact. We will also write ιµ instead of ιµ,2.

4. TRUNCATED TOEPLITZ OPERATORS

Let Θ be an inner function and φ ∈ L2. The truncated Toeplitz operator Aφ =

AΘ
φ , introduced by Sarason in [34], will be a densely defined, possibly unbounded

operator on KΘ. Its domain is KΘ ∩ H∞, on which it acts by the formula

Aφ f = PΘ(φ f ), f ∈ KΘ ∩ H∞.

If Aφ thus defined extends to a bounded operator, that operator is called a TTO.

The class of all TTOs on KΘ is denoted by T (Θ), and the class of all nonnegative

TTO’s on KΘ is denoted by T (Θ)+.

Although these operators are called truncated Toeplitz, they have more in com-

mon with Hankel operators Hφ, or rather with their cognates Γφ, which act on a

single space. As a first example of this behavior, we note that the symbol of a

truncated Toeplitz operators is not unique. It is proved in [34] that

(4.1) Aφ1 = Aφ2 ⇐⇒ φ1 − φ2 ∈ ΘH2 + ΘH2.

Let us denote SΘ = L2 ⊖ (ΘH2 + ΘH2); it is called the space of standard symbols.

It follows from (4.1) that every TTO has a unique standard symbol. One proves

in [34, Section 3] that S is contained in KΘ + KΘ as a subspace of codimension at

most one; this last space is sometimes easier to work with.

It is often the case that the assumption Θ(0) = 0 simplifies certain calculations.

For instance, in that case we have precisely S = KΘ + KΘ; we will see another

example in Section 7. Fortunately, there is a procedure to pass from a general

inner Θ to one that has this property: it is called the Crofoot transform. For a ∈ D

let Θa be given by the formula

Θa(z) =
Θ(z)− a

1 − āΘ(z)
.



RECENT RESULTS ON TRUNCATED TOEPLITZ OPERATORS 9

If we define the Crofoot transform by

J( f ) :=

√
1 − |a|2

1 − āΘ
f ,

then J is a unitary operator from KΘ to KΘa , and

(4.2) JT (Θ)J∗ = T (Θa).

In particular, if a = Θ(0), then Θa(0) = 0, and (4.2) allows the transfer of proper-

ties from TTOs on KΘa to TTOs on KΘ.

Especially nice properties are exhibited by TTOs which have an analytic sym-

bol φ ∈ H2 (of course, this is never a standard symbol). It is a consequence of

interpolation theory [33] that

{AΘ
φ ∈ T (Θ) : φ ∈ H2} = {AΘ

z }
′

(AΘ
z is called a compressed shift, or a model operator).

One should also mentioned that other two classes of TTOs have already been

studied in different contexts. First, the classical finite Toeplitz matrices are TTOs

with Θ(z) = zn written in the basis of monomials. Secondly, TTOs with Θ(z) =

e
z+1
z−1 correspond, after some standard transformations, to a class of operators alter-

nately called Toeplitz operators on Paley–Wiener spaces [31], or truncated Wiener–

Hopf operators [11].

There is an alternate manner to introduce TTOs, related to the Carleson mea-

sures in the previous section. For every µ ∈ C2(Θ) the sesquilinear form

( f , g) 7→
∫

f ḡ dµ

is bounded, and therefore there exists a bounded operator AΘ
µ on KΘ such that

(4.3) 〈AΘ
µ f , g〉 =

∫
f ḡ dµ.

It is shown in [34, Theorem 9.1] that AΘ
µ thus defined is actually a TTO. In fact,

the converse is also true, as stated in Theorem 4.2 below. An interesting open

question is the characterization of the measures µ for which Aµ = 0.

The definition of TTOs does not make precise the class of symbols φ ∈ L2 that

produce bounded TTOs. A first remark is that the standard symbol of a bounded

truncated Toeplitz operator is not necessarily bounded. To give an example, con-

sider an inner function Θ with Θ(0) = 0, for which there exists a singular point

ζ ∈ T where Θ has an angular derivative in the sense of Caratheodory. It is shown

then in [34, Section 5] that kΘ
ζ ⊗ kΘ

ζ is a bounded rank one TTO with standard

symbol kΘ
ζ + kΘ

ζ − 1, and that this last function is unbounded.
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A natural question is therefore whether every bounded TTO has a bounded

symbol (such as is the case with Hankel operators). In the case of Tφ with φ ana-

lytic, the answer is readily seen to be positive, being proved again in [33]; more-

over,

inf{‖ψ‖∞ : ψ ∈ H∞, AΘ
ψ = AΘ

φ } = ‖AΘ
φ ‖.

The first negative answer for the general situation has been provided in [6], and

the counterexample is again given by the rank one TTO kΘ
ζ ⊗ kΘ

ζ . The following

result is proved in [6].

Theorem 4.1. Suppose Θ has an angular derivative in the sense of Caratheodory in ζ ∈ T

(equivalently, kΘ
ζ ∈ L2), but kΘ

ζ 6∈ Lp for some p ∈ (2, ∞). Then kΘ
ζ ⊗ kΘ

ζ has no bounded

symbol.

A more general result has been obtain in [5], where one also makes clear the re-

lation between measures and TTO. In particular, one characterizes the inner func-

tions Θ which have the property that every bounded TTO on KΘ has a bounded

symbol.

Theorem 4.2. Suppose Θ is an inner function.

(1) For every bounded TTO A ≥ 0 there exists a positive measure µ ∈ C+
2 (Θ) such

that A = AΘ
µ .

(2) For every bounded A ∈ T (Θ) there exists a complex measure µ ∈ C2(Θ) such

that A = AΘ
µ .

(3) A bounded TTO A ∈ T (Θ) admits a bounded symbol if and only if A = AΘ
µ for

some µ ∈ C1(Θ
2).

(4) Every bounded TTO on KΘ admits a bounded symbol if and only if C1(Θ
2) =

C2(Θ
2).

In particular, as shown by Theorem 3.1, the second condition is satisfied if Θ is

one-component (since then all classes Cp(Θ) coincide). It is still an open question

whether Θ one-component is actually equivalent to C1(Θ
2) = C2(Θ

2). (As men-

tioned previously, Θ is one-component if and only if Θ2 is one-component.) Such

a result would be a significant strengthening of Theorem 3.1.

As a general observation, one may say that, if Θ is one-component, then TTOs

on KΘ have many properties analogous to those of Hankel operators. This is the

class of inner functions for which the current theory is more developed.

5. COMPACT OPERATORS

Surprisingly enough, the first result about compactness of TTOs dates from

1970. In [1, Section 5] one introduces what are, in our terminology, TTOs with

continuous symbol, and one proves the following theorem.

Theorem 5.1. If Θ is inner and φ is continuous on T, then AΘ
φ is compact if and only if

φ|ρ(Θ) = 0.
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This result has been rediscovered more recently in [21]; see also [20].

Thinking of Hartmann’s theorem, it seems plausible to believe that continuous

symbols play for compact TTOs the role played by bounded symbols for general

TTOs. However, as shown by Theorem 4.1, there exist inner functions Θ for which

even rank-one operators might not have bounded symbols (not to speak about

continuous). So we have to consider only certain classes of inner functions, sug-

gested by the boundedness results in the previous section. In this sense one has

the following result proved by Bessonov [8].

Theorem 5.2. Suppose that C1(Θ
2) = C2(Θ) and A is a truncated truncated Toeplitz

operator. Then the following are equivalent:

(1) A is compact.

(2) A = AφΘ for some φ ∈ C(T).

In particular, this is true if Θ is one component.

One can see that instead of C(T) the main role is played by ΘC(T). We give

below some ideas about the connection between these two classes.

Theorem 5.3. Suppose C2(Θ) = C1(Θ
2) and m(ρ(Θ)) = 0. Then the following are

equivalent for a truncated Toeplitz operator A.

(i) A is compact.

(ii) A = AΘ
φ for some φ ∈ C(T) with φ|ρ(Θ) = 0.

Proof. (ii) =⇒ (i) is proved in Theorem 5.1.

Suppose now (i) is true. By Theorem 5.2 A = AΘψ for some ψ ∈ C(T). By the

Rudin–Carleson interpolation theorem (see, for instance, [18, Theorem II.12.6]),

there exists a function ψ1 ∈ C(T) ∩ H∞ (that is, in the disk algebra) such that

ψ|ρ(Θ) = ψ1|ρ(Θ). Then one checks easily that φ = Θ(ψ − ψ1) is continuous on

T, and Aφ = AΘψ (since AΘψ1
= 0). �

In particular, Theorem 5.3 applies to the case Θ one-component, since for such

functions we have C2(Θ) = C1(Θ
2) and m(ρ(Θ)) = 0 [2, Theorem 6.4].

We also have the following result which is contained in [8, Proposition 2.1]; here

is a simpler proof.

Proposition 5.4. (i) If φ ∈ ΘC(T) + ΘH∞, then Aφ is compact.

(ii) If φ ∈ C(T) + H∞, then the converse is also true.

Proof. First note that

Aφ = (ΘHΘ̄φ − Hφ)|KΘ.(5.1)

By Hartmann’s Theorem we know that a Hankel operator with bounded symbol is

compact if and only if its symbol is in C(T) + H∞. Since C(T) + H∞ is an algebra,

φ ∈ ΘC(T) + ΘH∞, that is, Θ̄φ ∈ C(T) + H∞, implies φ ∈ C(T) + H∞. Then

applying (5.1) proves (i).

On the other hand, if φ ∈ C(T) + H∞, again (5.1) proves (ii). �
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It is interesting to compare Theorem 5.2 to Proposition 5.4. Suppose that a TTO

Aφ is compact. Proposition 5.4 says that, if we know that φ ∈ C(T) + H∞, then it

has actually to be in ΘC(T) + ΘH∞. So there exists ψ ∈ C(T) + H∞ such that φ =

Θψ. This is true with no special assumption on Θ, but the symbol φ is assumed to

be in a particular class.

On the other hand, suppose that Θ satisfies the assumption C2(Θ) = C1(Θ
2),

and again Aφ is compact. Without any a priori assumption on the symbol, ap-

plying Theorem 5.2 yields the existence of ψ ∈ C(T) + H∞ such that Aφ = AΘψ.

However, in this case we will not necessarily have φ = Θψ, but, according to (4.1),

φ − Θψ ∈ ΘH2 + ΘH2.

It would be interesting to give an example of a compact operator, with a symbol

ψ ∈ ΘC(T) + ΘH∞, that has no continuous symbol.

Since Aφ is compact if and only if A∗
φ = Aφ̄ is, any condition on the symbol

produces another one by conjugation. So one expects a definitive result to be in-

variant by conjugation. This is not the case, for instance, with Proposition 5.4: by

conjugation we obtain that if φ ∈ Θ̄C(T) + ΘH∞, then AΘ
φ is compact. Also, in

Theorem 5.1 one could add a third equivalent condition, namely that A = AφΘ

for some φ ∈ C(T). From this point of view, Theorem 5.3 is more satisfactory.

Naturally, if Θ is one-component would actually be equivalent to C1(Θ
2) = C2(Θ)

(the open question stated above), then Theorems 5.1 and 5.3 would turn out to be

equivalent to a simple and symmetric statement for this class of functions.

6. COMPACT TTOS AND EMBEDDING MEASURES

In the present section we discuss some relations between compactness of TTOs

and embedding measures. Let us first remember that a (finite) complex measure

on the unit circle can be decomposed by means of nonnegative finite measures, as

stated more precisely in the following lemma [32, chap. 6].

Lemma 6.1. If µ is a complex measure, one can write µ = µ1 − µ2 + iµ3 − iµ4 with

0 ≤ µj ≤ |µ| for 1 ≤ j ≤ 4.

We will also use the following simple result.

Lemma 6.2. If 0 ≤ ν1 ≤ ν2, then ν2 ∈ C+
p (Θ) implies ν1 ∈ C+

p (Θ), and ν2 ∈ V+
p (Θ)

implies ν1 ∈ V+
p (Θ).

Proof. If 0 ≤ ν1 ≤ ν2, then we have a contractive embedding J : Lp(ν2) → Lp(ν1),

and the lemma follows from the equality ιν1,p = Jιν2,p. �

The ultimate goal would be to obtain for compact TTOs statements similar to

those for boundedness appearing in Theorem 4.2. But one can only obtain par-

tial results: measures in V2(Θ) produce compact TTOs, but the converse can be

obtained only for positive operators.

Theorem 6.3. Suppose A ∈ T (Θ).



RECENT RESULTS ON TRUNCATED TOEPLITZ OPERATORS 13

(1) If there exists µ ∈ V2(Θ) such that A = Aµ, then A is compact.

(2) If A is compact and positive, then there exists µ ∈ ν+2 (Θ) such that A = Aµ.

Proof. (1) Take Aµ with µ ∈ V2(Θ). Writing µ = µ1 −µ2 + iµ3 − iµ4 as in Lemma 6.1,

one has Aµ = Aµ1 − Aµ2 + iAµ3 − iAµ4 . Since 0 ≤ µj ≤ |µ|, it follows that µj ∈

V+
2 (Θ) by Lemma 6.2. So we may suppose from the beginning that µ ∈ V+

2 (Θ).

To show that Aµ is compact, take a sequence ( fn) tending weakly to 0 in KΘ,

and g ∈ KΘ with ‖g‖2 = 1. Formula (4.3) can be written

〈Aµ fn, g〉2 =
∫

ιµ( fn)ιµ(g)dµ,

and thus

|〈Aµ fn, g〉| ≤ ‖ιµ( fn)‖L2(µ)‖ιµ(g)‖L2(µ) ≤ ‖ιµ( fn)‖L2(µ)‖ιµ‖.

Taking the supremum with respect to g, we obtain

‖Aµ fn‖2 ≤ ‖ιµ( fn)‖L2(µ)‖ιµ‖.

But fn → 0 weakly and ιµ compact imply that ‖ιµ( fn)‖L2(µ) → 0. So ‖Aµ fn‖ → 0

and therefore Aµ is compact.

(2) If A ≥ 0, by Theorem 4.2, there exists µ ∈ C+
2 (Θ) such that A = Aµ. We

must then show that µ ∈ V+
2 (Θ); that is, ιµ is compact.

Take then a sequence fn tending weakly to 0 in KΘ; in particular, ( fn) is bounded,

so we may assume ‖ fn‖ ≤ M for all n. Applying again formula (4.3), we have

〈Aµ fn, fn〉 =
∫

ιµ( fn)ιµ( fn)dµ = ‖ιµ( fn)‖
2
L2(µ).

Therefore

‖ιµ( fn)‖
2
L2(µ) ≤ ‖Aµ fn‖‖ fn‖ ≤ M‖Aµ fn‖.

Since Aµ is compact, ‖Aµ fn‖ → 0. The same is then true about ‖ιµ( fn)‖2
L2(µ)

; thus

ιµ is compact, that is, µ ∈ V+
2 (Θ). �

This approach leads to an alternate proof of Theorem 5.1.

Proposition 6.4. If φ ∈ C(T) and φ|ρ(Θ) = 0, then the measure µ = φdm is in Vp(Θ)

for every 1 ≤ p < ∞. In particular, Aφ is compact.

Proof. Since φ ∈ L∞, the measure |µ| is an obvious Θ-Carleson measure. Now fix

ǫ > 0. Since φ is uniformly continous on T, there exists η > 0 such that, if ζ ∈ T,

dist(ζ, ρ(Θ)) < η, then |φ(ζ)| < ǫ. In other words, if ζ ∈ Hη , then |φ(ζ)| < ǫ

(where Hη is defined by (3.4)).

Let δ < η and I be any arc of T. Then we have

|µ|δ(T(I)) = |µ|(T(I) ∩ Hδ)

= sup

{
∑
i≥1

|µ(Ei)| :
⋃

i≥1

Ei = T(I) ∩ Hδ, Ei ∩ Ej = ∅ for i 6= j

}
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Since Ei ⊂ Hδ ⊂ Hη, note that

|µ(Ei)| =

∣∣∣∣
∫

Ei

φ dm

∣∣∣∣

≤
∫

Ei

|φ| dm ≤ ǫ m(Ei).

Hence

|µ|δ(T(I)) ≤ ǫ|I|,

which shows that the Θ-Carleson constant of |µ|δ is smaller than ǫ. We conclude

the proof applying Theorem 3.3 and Theorem 6.3. �

The next theorem is a partial analogue of Theorem 4.2 (3).

Theorem 6.5. Suppose µ ∈ V1(Θ
2). Then Aµ = AΘφ for some φ ∈ C(T).

Proof. By [8, Lemma 3.1] we know that K1
zΘ2 ∩ zH1 is w*-closed when we consider

it embedded in H1 = C(T)/H1
0 . We define on K1

zΘ2 ∩ zH1 the linear functional ℓ

by

ℓ( f ) =
∫

Θ̄ f dµ.

It is clear that ℓ is continuous, but we assert that it is also w*-continuous. Indeed,

the w* topology is metrizable (since C(T) is separable), and therefore we can check

w*-continuity on sequences.

If fn → 0 w*, then, in particular, the sequence ( fn) is bounded. Then, since ιµ is

compact, the sequence (ιµ( fn)) is compact in L1(µ), and a standard argument says

that, in fact, ιµ fn → 0 in L1(µ). Then

ℓ( fn) =
∫

Θ̄(ιµ fn) dµ → 0.

It follows that there exists φ ∈ C(T), such that

ℓ( f ) =
∫

Θ̄ f dµ =
∫

φ f dm

for every f ∈ K1
zΘ2 ∩ zH1, or, equivalently,

∫
f dµ =

∫
Θφ f dm

for every f ∈ Θ̄(K1
zΘ2 ∩ zH1). If g, h ∈ K2

Θ, then gh̄ ∈ Θ̄(K1
zΘ2 ∩ zH1) , so

〈Aµg, h〉 =
∫

gh̄ dµ =
∫

Θφgh̄ dm = 〈AΘφ f , g〉,

which proves the theorem. �

In particular, it follows from Proposition 5.4 that if µ ∈ V1(Θ
2) then AΘ

µ is

compact.
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7. TTOS IN OTHER IDEALS

The problem of deciding when certain TTOs are in Schatten–von Neumann

classes Sp has no clear solution yet, even in the usually simple case of the Hilbert–

Schmidt ideal. In [23] one gives criteria for particular cases; to convey their flavour,

below is an example (Theorem 3 of [23]). Remember that Θ is called an interpo-

lating Blaschke product if its zeros (zi) form an interpolation sequence, or, equiv-

alently, if they satisfy the Carleson condition

inf
i∈N

∏
j 6=i

∣∣∣∣∣
zi − zj

1 − z̄izj

∣∣∣∣∣ > 0.

Theorem 7.1. Suppose Θ is an interpolating Blaschke product and φ is an analytic func-

tion. Then:

(1) Aφ is compact if and only if φ(zi) → 0.

(2) For 1 ≤ p < ∞, Aφ ∈ Sp if and only if (φ(zi)) ∈ ℓp.

More satisfactory results are obtained in [23] in the case of Hilbert–Schmidt

operators, but even in this case an explicit equivalent condition on the symbol is

hard to formulate. Let us start by assuming that Θ(0) = 0 (see the discussion of

the Crofoot transform in Section 4); in this case the space of standard symbols S

is precisely KΘ + KΘ. We define then Φ = Θ2/z; Φ is also an inner function with

Φ(0) = 0, and CΘ(KΘ + KΘ) = KΦ (remember that CΘ is given by formula (2.3)).

Let then K0
Φ be the linear span (nonclosed) of the reproducing kernels kΦ

λ , λ ∈

D. It can be checked that for every λ ∈ D we have (kΘ
λ )

2 ∈ KΦ, and therefore the

formula

D0kΦ
λ = (kΘ

λ )
2

defines an (unbounded) linear operator D0 : K0
Φ → KΦ.

The result that is proved in [23] is the following.

Theorem 7.2. With the above notations, the following assertions are true:

(1) D0 is a positive symmetric operator. Its Friedrichs selfadjoint extension (see [30,

Theorem X.23]) will be denoted by D; it has a positive root D1/2.

(2) A TTO AΘ
φ , with φ ∈ KΘ +KΘ, is a Hilbert–Schmidt operator if and only if CΘφ

is in the domain of D1/2, and the Hilbert–Schmidt norm is ‖D1/2(CΘφ)‖.

Since the square of a reproducing kernel is also a reproducing kernel, let us de-

note by H2
Θ the reproducing kernel Hilbert space that has as kernels (kΘ

λ )
2 (λ ∈ D).

It is a space of analytic functions defined on D, and it provides another character-

ization of Hilbert–Schmidt TTOs obtained in [23].

Theorem 7.3. Define, for φ ∈ KΘ + KΘ,

(∆φ)(λ) = 〈CΘφ, (kΘ
λ )

2〉.

Then:



16 CHALENDAR, FRICAIN, AND TIMOTIN

(1) ∆φ is a function analytic in D, which coincides on K0
Φ with D(CΘφ).

(2) An alternate formula for ∆φ is

(∆φ)(λ) = (zα)′(λ)− 2Θ(λ)(zα2)
′(λ),

where CΘφ = α = α1 + Θα2, with α1, α2 ∈ KΘ.

(3) AΘ
φ is a Hilbert–Schmidt operator if and only if ∆φ ∈ H2

Θ, and the Hilbert–

Schmidt norm is ‖∆φ‖H2
Θ

.

The proof of these two theorems uses the theory of Hankel forms as developed

in [27]. Admittedly, none of the characterizations is very explicit.

For the case of one-component functions, a conjecture is proposed in [8, 4.3] for

the characterization of Schatten–von Neumann TTOs. It states essentially that a

truncated Toeplitz operator is in Sp if and only if it has at least one symbol φ in

the Besov space B
1/p
pp (note that this would not necessarily be the standard sym-

bol). This last space admits several equivalent characterizations; for instance, if

we define, for τ ∈ T, ∆τ f (z) = f (τz)− f (z), then

B
1/p
pp =

{
f ∈ Lp :

∫

T

‖∆τ f‖
p
p

|1 − τ|2
dm(τ) < ∞

}
.

The conjecture is suggested by the similar result in the case of Hankel opera-

tors [28, Chapter 6]. It is true if Θ(z) = e
z+1
z−1 , as shown in [31].

Bessonov also proposes some alternate characterizations in terms of Clark mea-

sures; we will not pursue this approach here.

8. INVERTIBILITY AND FREDHOLMNESS

Invertibility and, more generally, spectrum of a TTO has been known since sev-

eral decades in the case of analytic symbols. The main result here is stated in

the next theorem (see, for instance, [25, 2.5.7]). It essentially says that σ(AΘ
φ ) =

φ(s(Θ)), but we have to give a precise meaning to the quantity on the right, since

s(Θ) (as defined by (2.2)) intersects the set T, where φ ∈ H∞ is defined only almost

everywhere.

Theorem 8.1. If φ ∈ H∞, then

σ(AΘ
φ ) = {ζ ∈ C : inf

z∈D

(|Θ(z)|+ |φ(z)− ζ|) = 0},

{λ ∈ C : λ = φ(z), where z ∈ D, Θ(z) = 0} ⊂ σp(AΘ
φ ),

σe(AΘ
φ ) = {ζ ∈ C : lim inf

z∈D,|z|→1
(|Θ(z)|+ |φ(z)− ζ| = 0}.

As noted above, the class of TTOs is invariant by conjugation, and therefore

we may obtain corresponding characterizations for coanalytic symbols. But what

happens for more general TTOs? Again a result in [1] seems to be historically the
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first one. It deals with the essential spectrum of a TTO with continous symbol.

More precisely, it states that

σe(AΘ
φ ) = φ(ρ(Θ)).

There is a more extensive development of these ideas in [21], which, in particular,

studies the C∗-algebra generated by TTOs with continuous symbols.

The above characterization of the essential spectrum is extended in [8] to sym-

bols in C(T) + H∞. Since functions φ ∈ C(T) + H∞ are defined only almost

everywhere on T, one should explain the meaning of the right hand side. The fol-

lowing is the precise statement of Bessonov’s result; its form is similar to that of

Theorem 8.1.

Theorem 8.2. Suppose φ ∈ C(T) + H∞. Then

σe(AΘ
φ ) = {ζ ∈ C : lim inf

z∈D,|z|→1
(|Θ(z)|+ |φ̂(z)− ζ| = 0}

(for the definition of φ̂, see (2.1)).

It is harder to find criteria for invertibility of TTOs with nonanalytic symbols.

The next part of the section uses embedding measures to obtain some partial re-

sults. We start with a statement which is essentially about bounded below TTOs.

Theorem 8.3. Let A be a (bounded) TTO, and let µ a complex measure such that A = Aµ.

(1) If A is bounded below, then ιµ is also bounded below, i.e. there exists C > 0

(depending only on µ and Θ) such that
∫

T

| f |2dm ≤ C
∫

T

|ιµ( f )|2d|µ|

for all f ∈ KΘ.

(2) Suppose A ∈ T (Θ)+ and let µ ∈ C2(Θ)+ such that A = Aµ. The following

assertions are equivalent:

(a) the operator A is invertible;

(b) there exists C > 0 (depending only on µ and Θ) such that
∫

T

| f |2dm ≤ C
∫

T

|ιµ( f )|2dµ

for all f ∈ KΘ.

Proof. (1) By definition of Aµ, for all f , g ∈ KΘ, we have

∣∣〈Aµ f , g〉
∣∣ =

∣∣∣∣
∫

T

ιµ( f )ιµ(g)dµ

∣∣∣∣ ≤
∫

T

|ιµ( f )||ιµ(g)|d|µ|.

The Cauchy–Schwarz inequality implies that
∣∣〈Aµ f , g〉

∣∣ ≤ ‖ιµ( f )‖L2(|µ|)‖ιµ(g)‖L2(|µ|) ≤ ‖ιµ( f )‖L2(|µ|)‖ιµ‖‖g‖2.

Then, taking the supremum over all g ∈ KΘ of unit norm, we get:

‖Aµ f‖2 ≤ ‖ιµ‖‖ιµ( f )‖L2(|µ|).
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Now, if Aµ is bounded below, there exists C > 0 such that

‖ιµ( f )‖L2(|µ|) ≥
C

‖ιµ‖
‖ f‖2,

and thus ιµ is bounded below.

(2) First, recall that since Aµ = A∗
µ, Aµ is invertible if and only if Aµ is bounded

below. Thus (a) =⇒ (b) follows from part (1).

Conversely, assume that ιµ is bounded below and let C be the constant defined

in (b). It remains to check that Aµ is bounded below.

For a nonzero f ∈ KΘ, we have:

‖Aµ f‖2 ≥
∣∣〈Aµ f , f /‖ f‖2〉

∣∣ = 1

‖ f‖2
‖ιµ( f )‖2

L2(µ) ≥
1

‖ f‖2

1

C
‖ f‖2

2 =
‖ f‖2

C
,

as expected. �

Volberg [37] proved that given ϕ ∈ L∞(T), and an inner function Θ, the follow-

ing are equivalent:

• there exist C1, C2 > 0 such that

C1‖ f‖2 ≤ ‖ f‖L2(|ϕ|dm) ≤ C2‖ f‖2,

for all f ∈ KΘ;

• there exists δ > 0 such that

|̂ϕ|(λ) + |Θ(λ)| ≥ δ,

for all λ ∈ D.

Volberg’s result allows the translation of the embedding conditions in Theo-

rem 8.3 into concrete functional inequalities, leading to the following statement.

Theorem 8.4. Let ϕ ∈ L∞(T) and let Θ be an inner function.

(1) If AΘ
ϕ is bounded below, then there exists δ > 0 such that

|̂ϕ|(λ) + |Θ(λ)| ≥ δ,

for all λ ∈ D.

(2) If ϕ ≥ 0, the following assertions are equivalent:

(a) The operator AΘ
ϕ is invertible;

(b) there exists δ > 0 such that

|̂ϕ|(λ) + |Θ(λ)| ≥ δ,

for all λ ∈ D.

Denote by σap(T) the approximate point spectrum of a bounded operator T.

Corollary 8.5. Let ϕ ∈ L∞(T) and let Θ be an inner function. Then

{µ ∈ C : inf
λ∈D

( ̂|ϕ − µ|(λ) + |Θ(λ)|) = 0} ⊂ σap(AΘ
ϕ ).
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