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Abstract

In a wide class of the so called Obstacle Problems of parabolic type it is shown how to
improve the optimal regularity of the solution and as a consequence how to obtain space-time

regularity of the corresponding free boundary.
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1 Introduction

Obstacle problems are characterized by the fact that the solution must satisfy unilateral constraint
i.e. must remain, on its domain of definition or part of it, above a given function the so called
obstacle. Parabolic obstacle problems, i.e. when the involved operators are of parabolic type, can
be formulated in various ways such as a system of inequalities, variational inequalities, Hamilton-
Jacobi equation, etc. More precisely, as a system of inequalities, one seeks a solution u(z,t) which

satisfies

Ut + AU 2 07 U 2 ¢
in Qx (0,7
(ug + Au)(u — 1) =0 (1.1)
u=q¢ on 0,(2 x (0,77)

or a solution u(x,t) to

ut + Bu =0 in Qx(0,7T]

uzwy aut-i-UuZU
on T'x (0,T] (1.2)

(aup +wy)(u—1) =0
u=¢ on 9(Qx(0,77)\ (I x (0,T7)
where A and B are (non-negative) definite elliptic operators. Usually, (L)) is referred as a thick
obstacle problem and (2] with I' C 9Q (when a = 0) as a Signorini boundary obstacle problem
(or thin obstacle problem if one takes I' to be a (n — 1)— manifold in ). We shall refer to (L2]) as

the dynamic thin obstacle problem if & > 0 and to nondynamic thin obstacle or Signorini problem if



«a = 0. Recently, there is an intense interest, perhaps due to the connectivity to jump or anomalous
diffusion, to study (L)) in all of R™ when A is a non-local operator and especially the fractional
Laplacian. Observe that when A is the %—Laplacian there is an obvious equivalence between
(CI) and (C2Z) which is identified by the Neumann-Dirichlet map, provided that B is minus the
Laplacian, I' € R" !, and o = 1. This equivalence remains true for any fractional Laplacian if B
is replaced by an appropriate degenerate elliptic operator as it was introduced in [15].

Every problem of the above mentioned ones and their obvious generalizations is actually a
minimum of linear monotone operators therefore second order incremental quotients are ”superso-
lutions” and satisfy a minimum principle. That is "for z = (z,t) with z € Q in (1.1) or z = (2/,t)
with 2’ € R"~! in (1.2)

u(z 4+ w) +u(z — w) — 2u(z)

has no interior minima”. In particular, in the limit D,,,u cannot attain a minimum in the interior
of the domain of definition and on the hyperplane in case (1.2). This means minima must occur
at the initial or lateral data (minus the hyperplane in case (1.2)). Therefore for an appropriate
data we have an L bound from below. This is certainly true if the data is smooth enough or just
when the data stays strictly above the obstacle (§2)). In fact, we believe that an appropriate barrier
would give interior quasi-convexity of solutions under general data.

The purpose of this work is to show that the quasi-convexity property, absent in the literature
so far, has strong implications in the study of the above problems. One such implication is the
improvement of the optimal time regularity i.e. we prove that the positive time derivative is
continuous (§3]) for a wide class of problems. Let us mention that in the literature there are
only three cases in which the time derivative is continuous and all three rely on the fact that the
time derivative is a priori non negative. These are the one-phase Stefan problem ([12]), the (non-
dynamic) thin obstacle problem ([3] only in n = 2) and, very recently, the parabolic fractional
obstacle problem ([I1]).

For further implications of the quasi-convexity we concentrate on the (nondynamic) thin obstacle
problem or (time dependent) Signorini problem. The other cases i.e. the dynamic parabolic obstacle
problem, the nondynamic and dynamic fractional counterparts, as well as the one with parabolic

nonlocal operators is a long term project and they will be treated in forthcoming papers (see [0]).



Also, elsewhere we show how one can get with this approach free boundary regularity for the
already known result ([13]) of the ”thick” obstacle. Actually, in this case, i.e. the (time dependent)
Signorini problem, we prove the optimal regularity of the space derivative (§4.1), as a consequence
of the parabolic monotonicity formula stated in the appendix of [4]. Secondly, we prove that the
regularity of the time derivative (§4.2]) near free boundary points of positive parabolic density with
respect to the coincidence set is as "good” as that of the space derivative; let us point out that
the results in §4.2] are, in fact, independent of the quasi-convexity. And finally, in §4.3] since §4.21
yields control of the speed of the free boundary, we prove (space and time) regularity of the free
boundary near ”non-degenerate” free boundary points.

The results of the present paper were presented by the first author in IMPA, Rio de Janeiro,
August, 17- 21, 2015 during the ”International Conference on Current Trends in Analysis and

Partial Differential Equations”. A video of the talk is available online at http://video.impa.br.

2 Quasi-convexity

In this section we prove the quasi-convexity of the solution for a wide class of Parabolic Obstacle
Problems. In order to avoid technicalities we shall concentrate on five prototypes of this class::

1st prototype (Thick Obstacle Problem): Given a bounded domain 2 in R", a function
Y(x,t) (the obstacle) where 1) < 0 on 99 x (0,7, max(x,0) > 0 and a function ¢ with ¢ =0 on
00 x (0,T], ¢ > ¢ on Q x {0}, find a function u such that

)
up—Au >0, u>1v in Qx(0,7T]

(ug — Au)(u —1) =0 in Qx (0,7] (2.1)

u=q¢ on 0,(2 x (0,77).

\

2nd prototype (Nondynamic Thin Obstacle Problem): Given a bounded domain {2 in
R™ with part of its boundary I' C 9Q that lies on R"~!, a function v(x,t) (the obstacle) where
1 < 0on (0Q\T') x (0,T], max(x,0) > 0 and a function ¢ with ¢ =0 on (9Q\T') x (0,7], ¢ > ¥

on I' x {0}, find a function u such that


http://video.impa.br/index.php?page=analysis-partial-differential-equations

ur — Au =0, in Qx (0,7

Oyu>0, u>1vy on I'x(0,T] 22)
2.2

(Opu)(u—1) =0 on I'x (0,7

u=¢ on Jp(Q\ T x (0,77)

where v is the outward normal on 0.

3nd prototype (Dynamic Thin Obstacle Problem): Given a bounded domain 2 in R"”
with part of its boundary T' C 9 that lies on R"™!, a function t(x,t) (the obstacle), 1 < 0 on
02\ T') x (0,7], maxt(z,0) > 0 and a function ¢ with ¢ = 0 on (O \T') x (0,7], ¢ > ¢ on
I' x {0}, find a function u such that

uy — Au =0, in Qx (0,7
adu+ 0yu >0, u>1Y on I'x(0,T]

(@Opu + Oyu)(u—1) =0 on I' x (0,T]

u=q¢ on 0,(Q\ T x (0,77)

where where a € (0,1] and v is the outward normal on 0f.
4th prototype (Fractional Obstacle Problem): Given a ¢ : R"™! x [0,00) — R such that
Jgn—1 W%dz’ < 400 forall t >0 and ¢ : R"™! — R such that | (HS)',;% < +oo for some

0 < s < 1, find a function u such that

Ou+ (—A)P*u>0, u— >0 on R" ! x(0,T]

(B + (—A)u)(u— ) =0 on R™! x (0,7] (2.4)

u(z,0) = ¢(x) on R"L.

5th prototype (General Nonlocal Operators): Assume that ¢ : R" 71 x [0,00) — R is given

and let

Lu = up — / g (u(y,t) —u(z,t)K(y — z)dy
R?’L*l

where g : R — [0,00) is a C?(R) function such that g(0) =0 and A=Y/ < ¢"(2) < AY2, 2 € R for



a given constant A > 1. The kernel K : R*~1\ {0} — (0, 00) satisfies

K(—x) = K(z) for any x € R* 1\ {0} 25)
2.5
X{|x|§3}‘;“gflfis < K(z) < mj}llf/fﬂ for any = € R*1\ {0}.
Then find a function u such that
Lu>0, u—1 >0 on R" 1! x(0,7]
(u—yY)Lu=0 on R x (0,T] (2.6)
u(z,0) = ¢(x) on R"1I,

In the following theorem we prove quasi-convexity for the first, the second, the third and the fourth
prototype problems. The proof for the fifth prototype problem, although similar, can be found in
[6]. The following theorem can be stated and proved using incremental quotients as it is mentioned
in the introduction, for simplicity though, we prove it for the second t—derivative. Notice that the

corresponding space quasi-convexity is well known from the outset of the problems.

Theorem 2.1. Suppose that in the above problems ¢ and ¢ are smooth. If (¢ — ¢)|t:0 > 0 then

[1(ue) "Moo < max(]](tee)l oo, [| A% ]0)-

If (¢—¢)‘t:0 > 0 the same estimate holds provided that (Op) — (—A)S¢)‘t:0 > M >0 fors e (0,1]

and M sufficiently large.

Proof. In all four cases we use the penalization method i.e. one obtains the solution u as a limit of

u® as € — 0, where u° is a solution, in case ([2.I)) of the problem

Auf — Ot = Bo(uf — %) in Qx(0,T]
(2.7)

ut=¢+e on 0y(Q2 x (0,77).



or, in case (2.2)) of the problem

)
ot — Au® =0, in Qx (0,7
—0yuf = fe(u® —1) on T x (0,T] (2.8)
ut=¢+e on 0,(Q\ T x (0,77)

{

or, in case (2.3]) of the problem

ot — Au® =0, in Qx (0,7
—adu® — dyut = B-(u® — 1) on I' x (0,7] (2.9)
ut=¢+e on Jp(Q\T x (0,77)

or, in case (2.4) of the problem

—(=A)*uf — gt = B.(uf — 1) on R x (0,7]
(2.10)
uf(z,0) = ¢(z) + ¢ on Rn~!

where ¢°, 1)° are smooth functions (with compact support in the case of the whole R"~1), 3.(s)
—esTsfxsge(s) with ¢ — 1, ¢* — ¢ (locally) uniformly as ¢ — 0. If, now, (¢ — w)|t:0 > 0 then

differentiating twice with respect to ¢ we obtain

7

Aug, — Opugy < BL(u® — ) (ug —¢f) in Qx (0,7

U%t = ¢tt on 0f) x (O,T] (211)
45 (,0) = A%6(z) in 0 x {0}
or,
)
Opug, — Aug, = 0, in Qx (0,7
—Oyuf, > BL(u — ) (uf — ) on T x (0,7] (212)
ug(z,0) = A2¢(x) in Q x {0}




or,

Owuf, — Aug =0, in Qx(0,7]
—adu§, — Byusy > BL(us — ) (uf — Py) on T x (0,T] (2.13)
s, (,0) = A%p(x) in Qx {0}

or

—(=A)*ug — Opug = BL(u® — P)(ufy — u) on R x (0,77
(2.14)

ug(z,0) = A2%¢p on R" L
To finish the proof, apply the minimum principle to ug,.
If, on the other hand, (¢ — ¢)‘t:0 > 0, following the steps above, we notice that since ||| <
+o00 and ' > 0 it is enough to have (93 — (—A)sl/})‘tzo > M >0 for s € (0,1] and M sufficiently

large. O

3 A general implication on the optimality of the time derivative

In this section we show that the quasi-convexity property obtained in the last section improves
the time regularity for a wide class of problems. More precisely, we prove that the positive time
derivative of the solution is always continuous for this class. Our approach will be as follows: we
penalize the problems, we subtract the obstacle from the solution, then we differentiate with respect
to time and we work with the derived equations. We shall obtain then a global uniform modulus
of continuity independent of e, which will yield in the limit the desired result.

In order to avoid having a lengthy paper, in the present section we concentrate on the first three

prototype problems stated in (§2)). The fourth and the fifth prototype problems are treated in [6].

3.1 The ”thick” obstacle problem

In this situation the derived problem takes the form:

7

Av® — O = BL(u® — ) + fy in Q :=Q x (0,7

v = (¢ — ) on 8,(Q x (0,77) (3.1)

v¢ = A(¢° —9°) on © x {0}.

\



where v° = (u® — %), and f = —(Ay® — 9p)°).

Our method, which uses the approach of [10], is essentially that of DeGiorgi’s, first appeared in
his celebrated work [I8]. To simplify matters we start with a normalized situation i.e. we assume
that our solution is between zero and one in the unit parabolic cylinder. We will prove (Proposition
[B.0) that if at the top center v is zero then in a concentric subcylinder into the future v® decreases.
Then we rescale and repeat. But before that we need several lemmata. Our first lemma asserts
that if v® is "most of the time” very near to its positive maximum in some cylinder, then in a

smaller cylinder into the future v® is strictly positive.

Lemma 3.1. Let Q1(xo,to) C Q where Q1(xo,t0) := Bi(zo,0) x (to — 1,t0] with By := {z € R":
|z — xo| < 1}. Suppose that 0 < v < 1 in Q1(xo,to) where v° is a solution to (31l), then there

exists a constant o > 0, independent of €, such that

/ (1—v°)%dz <o (3.2)
Q1(zo,to)

implies that v > 1/2 in Q1 /2(x0,t0)-

Proof. For simplicity we drop the e, we shift (zg,t) to (0,0), and write @1 for @1(0,0). First,
we derive an energy inequality suited to our needs. Therefore we set w = 1 — v and the equation

becomes

Aw — yw = f'(u—Y)(w —1) — fp.

Choose a smooth cutoff function ¢ vanishing near the parabolic boundary of @)1 and k > 0. Multiply

the above equation by (?(w — k)T and integrate by parts to obtain

L alicw — k)2 dwdt + /

IV(C(w — k)T Pdedt = | Bi(u— ) (w — k)T dxdt
2 Q1 Q1

1

- / [(w—E)TP(VCP 4 C00)dadt + | fi¢*(w — k)T dadt. (3.3)
Q1 Q1

Integrating by parts in ¢ the last term on the right we obtain

5 | o= m P 0ds [ (9w =Bt =— [ 5 )0~ ) deds
By Q1 Q1



+ [ Blu—)(w—k)"(z,0)dz+ / [(w—k)T(|VCP+¢oQ)dadt+ | fil*(w—k) T dadt. (3.4)
B Q1 Q1

Note, since § is nonpositive and that the upper limit of t—integration, ¢ = 0, could have been
replaced by any —1 <t < 0, our energy inequality takes the form

max / (Cw — k)T)2dx + / IV(¢(w — k)T)|Pdedt <
B 1

~1<t<0

‘|, ([(w—k>+12<|vc|2+|at<|)+<w—k)+(|at<|+1>+x{w>k}>daxdt

with C' = 2max{1, |50 (2 + || (utt) " ||oo), || ft|loo }, Where we have used the time quasiconvexity of
the solution w.

Now, we want to obtain an iterative sequence of inequalities; thus we define for m =0,1,2, ...

1 1 1 1
mi==(1—=—), Rpi==(1+—
k 2< 2m> R 2( +2m>

Qm = {(x,t) S|z < R, —R%, <t< 0}

and the smooth cutoff functions

XQmi1 < Cm < XOm

with

Substituting ¢ = ¢, and setting w,, = (w — k,,)™ we obtain, by the Sobolev inequality, that

(/ (mem)znT+2 d:z:dt) " < C’<4mC’ w2, ddt + C’4m/ W dzrdt + |Qm N {wy, # 0}|>
m Qm

m

< C<4mc w2, dxdt + (% + 1> 'Qm N {wm # 0}').

Qm

Since

(ko — Fm1)?| Q@ ) {tm # 0} < / WP drdt

m

10



we obtain

2
n+2

/ (Cnwp)2dzdt < ( / (gmwmﬁ”T“dxdt) e ‘Qm N {wy # 0}

n+4

016m< / (Cm_lwm_1)2dxdt> " (3.5)

IN

Setting
I, = /(mem)dedt

then they satisfy the recursive inequality

2
I, <Cl6™I m7.

m—1

It is well known from DeGiorgi’s work (see for instance Lemma I1.5.6, page 95 of [20]) that I,,, — 0

as m — 0 provided that

n+2

2(n+2)2 (1,

O

Our second Lemma asserts that if v° is very tiny "most of the time” in some cylinder, then in
a smaller concentric cylinder, v* goes down to 1/2. The fact that 5’ > 0 renders v, more so any

nonnegative solution to (Z.IJ), a subsolution (subcaloric).

Lemma 3.2. Let Q1 be as in Lemma [31. Suppose that v¢ is a subsolution to (31l) and that

0 <v® <1in Q. Then there exists a constant & > 0, independent of €, such that

/ (v)%dzdt < &
Q1

implies that v < 1/2 in Qy/,.

Proof. Tt is identical to the proof of Lemma [3.] except for the energy inequality which is in fact

much simpler. As before we drop the . We see that

Av—0w> f; in Q. (3.6)

11



Therefore we multiply the equation by ¢2(v — k)™ where ¢ and k are as in the proof of Lemma [B1]

and integrate by parts to obtain the energy inequality

max / (C(v — k)H)2da +/ V(o — k))Pddt < 2/ (v — k) R(VC2 + |0,¢|) dadt.
B1 1

—1<¢<0 1

Again, we substitute ¢ = ¢, and we set v, = (v — k)T where (,,, and k,,, are as in Lemma [3.1]

By Sobolev inequality

/ (Cmom)2 " dadt < CA™ / 2, dudt

and since
(i~ 1?1 @n 01 (o 2 0)| < [ 02, doc
we obtain
e e
n n—+ n—+
/ (Cnvm)?dadt < ( / (gmvm)2i2dxdt> QN {vm 0}'
%
n+
< 016m< / (Cm_lvm_1)2dxdt> . (3.7)
Hence, if
I, = /(mem)2dxdt
we have

1+-2
I, <C16™I "2

i.e. I, — 0 as m — 0 provided that

n+2

< ——
2(n+1)2 (3
O

The next lemma is the parabolic version of DeGiorgi’s isoperimetric lemma. One version of this
lemma is proved in [I6] and with proper adjustments applies to our situation. We state it as our

next lemma.

12



Lemma 3.3. Given €; > 0, there exists a 61 > 0 such that for every subsolution v¢ to (31)
satisfying 0 < v < 1 in Q1,
{(z,t) € Qu: 0" = 0} = 09|

H{(z,t) € Q1:0 <v® <1/2} < 6|Q1]

then
/ [(v° — 1)+]2d:cdt < Cly.
o 9

R/

where R = coy for og >0 and some 0 < ¢ < 1.

In order to achieve our decay estimate to zero we shall take a point v°(0,0) = 0 at the top
center of ()1 and show that in @ (0,0), for some R’ < 1, v is pointwise strictly less than one .

This is the content of our next lemma.

Lemma 3.4. Let Q1 and o be as in Lemma[Zdl. Suppose that v¢ is a solution to ([31) such that

v%(0,0) =0 and 0 <v° < 1 in Qq, then v* <1 —Co in Qg (0,0) where C is independent of € and

/

R =

ol

Proof. Again, we drop . Since v(0,0) = 0, by Lemma B.1]

/ (1 —v)*dzdt > o.

1

It follows then that

o 1
Hv <1— Z}“Qﬂ > ZO’|Q1|-

Therefore, we set
4 PN
=—|lv—(1—-—
w |:U ( 1 )}

g

and we see that w is a subsolution to ([B.1]). Following DeGiorgi’s method we will consider a dyadic

sequence of normalized truncations
+
wy, = 2" [w —(1- Q—k)]

13



still subsolutions to ([B1). We will show that, in finite number of steps ky = ko(d1) (where d; is

defined in Lemma B3 and Ce; < 7, ¢ that of Lemma [3.2),
{wg, > 0} = 0.

Note that for every k, 0 < wy, < 1 and [{wy, = 0} N Q1| > F|Q1|. Assume, now, that for every k

HO < wp < 1/2} N Q1| > 01|Q1|. Then for every k
{wr = 0} = {wi—1 = 0} + {0 < wi < 1/2} = {wp—1 = 0} + 01]Qu |-

Therefore after a finite number of steps say kg > 1/ we get [{wg, = 0} > |Q1]. Thus wg, < 0 ie.

2k0 [y — (1 —27%0)]* = 0 or w < 1 —27%0, Suppose, now, that there exists &', 0 < k&’ < kg such that
1
{0 <wp < S} < 01|@l-

By Lemma [3.3] applied to wy with 09 = § and consequently by Lemma applied to wg41 we
obtain wy41 < 1/21in Q g, where R = g ie w < 1—2-*+2) Hence in both cases w < 1—2~(ko+2)

in Qp orv<1—2 kg, O

The estimates obtained above are all independent of e. We would like to iterate the lemmata
above to force the maximum of v* to decrease to zero in a dyadic sequence of decreasing parabolic

cylinders in order to obtain the continuity of v°.

Proposition 3.5. Let v° be a solution to (31) in Q then
|(0%)* (2, 1) — (v) (20, t0)| < Cw(lz — of* + [t —to])

for any (x,t) and (xg,ty) in Q, where C is independent of € and w denotes the modulus of continuity.

Proof. Tt is enough to consider only the case when (v°)"(zq,ty) = 0, since, otherwise, v¢ satisfies

a nice equation with smooth data and with regular boundary. Therefore, for simplicity, we take

14



(zo,t0) = (0,0) and Q; as before. Again, we drop the ¢ and we set

Qr = Qr,, M :=supv

Qk

where Ry := g M) and
V= Ok
Mj,

where vg(x,t) := v(Ryx, (Rg)*t). Then v satisfies
AD—00>f; in Q.

Therefore by Lemma [3.4],

supv < 1—-Co
QR/

or in our original setting

sup v < g supv
Qk+1 Qk

where i, = 1 — C(supg, U+)1+%. So, even, if up — 1 as k — oo, My — 0.

To finish the proof, we use a standard barrier argument to get the continuity from the future. [
Theorem 3.6. Let u be a solution to (Z1) then (u— 1) is continuous.

Proof. 1t is well known that a subsequence of v¢ will converge uniformly to the unique solution of

@) O

15



3.2 The (nondynamic) thin obstacle problem or Signorini Problem

Let us extend ¢¢ to all Q i.e. we take any function ¢¢(2/, z,,t) such that ¢¢(z/,0,t) = ¢ (', 1),

(2, p,t) < ¢ on 9 ((Q\T) x (0,T]) and 88—16(33’,0,@ = 0. Then our problem takes the form

Av® — Op® = fi in Qx (0,7
—9,0° = BL(uf —)° on T x (0,T]
(3.8)
V5 = (¢F — P, on 9,(Q\T x (0,7])
V¢ = A(¢° — F) on Q x {0}.

\

where v¢ = (uf — ¢°); and f = —(AYT — d°).

We shall repeat the approach of Section [BIlbut, instead of parabolic cylinders, we take parabolic
rectangular cylinders with one of its sides lying on I'. We normalize again i.e. our solution is between
zero and one and we prove that, if v° is zero on the top center and on I' in such a cylinder, then in
a concentric subcylinder into the future v° is smaller than one. Then we rescale and repeat.

Our first lemma asserts that if v® is "most of the time” very near to its positive maximum in
some cylinder sitting in (R"*!) against the hyperplane z,, = 0 and going backwards in time then

in a smaller cylinder into the future, v® is strictly positive.

Lemma 3.7. Let Q1(z(,0,t0) C Qx (0,T] where Q1(x(,0,t0) = Bi(xp,0) x (to — 1, o], Bi(z(,0) =
B! (z() x (0,1), Bi(xo) = {2’ : |2/ — xp| < 1} and Q) (x(,to) = Bi(zf) x (to — 1,t0]. Suppose that
0 < v® < 1 in Q1(xo,tg) where v°¢ is a solution to (F8). Then there exists a constant o > 0,

independent of e, such that

][ X{l_vs>0}dx/dt + ][ (1- v€)2da:dt <0
Q' (x(,to) Q1(zo,to)

implies that

N —

in Q1/2(o, o).

Proof. For simplicity we drop the superscript e, shift (g, 0,%g) to (0,0, 0) and write @1 for Q1(0,0,0).

16



We first derive an energy inequality associated to our problem. Set w = 1 — v then the problem

becomes
Aw— 0w =—f; in Qx(=T,T]
dyw =B (u—v) on T x(=T,T]
(3.9)
w=1-(¢p—1); on 9Q\T x (~T,T])

w=1—-A(¢—1¢) on Qx{-T}.

Choose a smooth cutoff function ¢ vanishing near the parabolic boundary of Q)1 except on Q] and

k > 0. Multiply the above by ¢?(w — k)™ and integrate by parts to obtain

/ V(P (w— k)" Vw + (w — k)T ow]dzdt = Clw — k) o,wde’dt + [ £, (w — k)T dxdt
Q1 Q' Q1

and

/ E@t[@(w R V(G — k)*)P] dndt = [ 216w~ K" Bu = v)las'ds
1 Q

— | Cow k)T Bu—y)da'dt +2 | COl(w — k)T Bu—p)dadt
Q1 Q1

+ / (V¢ 4 CO:O)[(w — k) TPdadt + | £l (w — k)T dxdt. (3.10)
Q1 Q1

Now, using the fact that 8 is bounded and negative, (u—1))y is bounded below and since the upper

limit of the ¢t—integration ¢ = 0 can be replaced by any —12 < t < 0, we obtain

lmax w — +2£E w — + 2(17
/Blu By (J2d +/1|v<< B)*C) Pt

2 —1<t<0

C2da'dt + |18 / (w — k)" B¢ daldt

/
1

< Hﬂumu<u—w>;um/

QiN{w>k}

+/ [(w— k) 2(| V¢ + 0:)dzdt + fi¢H(w — k)T dzdt
1 Q1

and, a fortiori, we have the "energy inequality”

max / [(w—k)T¢Pda +/ IV((w — k)T¢)|*dadt
By 1

—1<¢<0

17



§0</Q

where C' = Cmax{1,||8]]o0 (2 + ||(uet) " ||oo)s ||.ft]|oo }-

(0:C%(w — k)T + Xusry)da'dt + /Q [(w—E)T2(|VCP + o O)dadt + | CP(w— k)+dxdt>

(3.11)

Q1

/
1

Now that we have our energy inequality we shall obtain an iterative sequence of inequalities.

1 1 1
b =—(1—2"" m=—(1+—
(1) ()

Qum = B x (R2,,0], By, := B, x[0,Ry], B, =By ={2/| <Rn},

We, therefore, define

Q. ={(x1,....xn,t) : =Ry <2y < Ry, — Ry, <t <0}

and we choose smooth cutoff functions (., such that xq,.., < Gn < XQm: VG| < C2™ and

0 < G < C4™. We set wy, = (w — k)™ and we denote by

I, := max /((mwm)2d:17—|—/|V(mem)|2d:17dt.

—R2<t<0

We want to prove that for every m > 0, I,,, < agM ™™ with ag > 0 and M > 1 to be chosen. The

proof is by induction, for 1 < m < 2 we choose o such that 4Co < M~2 and for m > 3 we have

I,

IN

016m< / (Wi 1Cm—1)?dxdt + / (wm_lgm_1)2dx’dt>

— 016m< / (W 1Cm1 ) *dacdt — 2 / (wm_lgm_l)(wm_lg“m_l)xnda:dt>

1/2 12
Clﬁm[/(wm_ﬁm_l)mxdw (/(wm_lcm_l)wxdt) </|V(Cm—1wm_1)|2d$dt> }

(3.12)

IN

where we used the divergence theorem and Holder’s inequality. Now, by Sobolev’s inequality, we

obtain
n 2
n+2 n+2 n+2
/ (wm—1Cm—1)2dxdt < </ (wm—1Cm—1)2 " dwdt) </ X{wml;éO}dxdt)
m mel mel
ml+2
< 24 [m—2

18



Therefore, by substituting in the above we obtain

2 1,1
L < C2™(1,75 + L2 1275).

m—

Hence, if we choose M = 28" and ay = C~22787("+2) the claim is proved.

O

From this point on we observe that, since 3’ > 0, the boundary integral is nonnegative and can
be omitted; then by reflecting about the hyperplane we are in the same situation as that of Section

B with square cylinders. Therefore we have arrived at out main result:

Proposition 3.8. Let v° be a solution to (38) in Q then
(V) * (2, 8) = (%) * (20, to)| < Cllz — wol* + [t —to])*

for any (z,t) and (z9,to) in Q and some 0 < a < 1, where C and « are independent of .

Proof. Tt is enough to consider only the case when (v¥)*(zg,t9) = 0. For simplicity, we take

(zo,to) = (0,0) and Q1 as before. Again, we drop the £ and we set

Qr = Qr,, My =supv
Qk

where Ry := g M} and

_ (%5
Vi=—
My,

where vy (,t) := v(Ryx, (Ri)?t). Then v satisfies
AV— 9> f, in @

and

supv < 1—-Co
Qps

or in our original setting

M1 < pp My,
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where pp =1 — C(%—:)H%. So, even, if p, — 1 as k — 0o, M}, — 0. As a matter of fact M, ~ 27F

and Ry, ~ 27F.

To finish the proof, we use a standard barrier argument to get the Holder continuity. O
Theorem 3.9. Let u be a solution to (Z3), then (u — 1)), is Hélder continuous.

Proof. 1t is well known that a subsequence of v will converge uniformly to the unique solution of

22). O

3.3 The dynamic thin obstacle problem

Given a bounded domain  in R™ with part of its boundary I' C 9Q lying on R"~!, a function 1
(the obstacle) defined on I' such that maxp, gy 1 (2',0) > 0, (', t) < 0 for every 2’ € OT' x (0, 7]
and a function ¢, with ¢ =0 on (9Q\T') x (0,7], ¢ > 1 on I" x {0}, find a u such that

Au—0u =0 in Qx(0,7]
u >, adu—+ dyu >0
on T'x (0,T] (3.13)
(@Opu+ 0y)(u—1) =0
u=¢ on 9,((Q\T) x (0,77)
where v is the outward unit normal on 9f2 and « any constant, 0 < o < 1.

The approximate (penalized) problem is then

Opu® — Auf =0, in Qx(0,7]
—adu® — dyu® = Pe(uf — %) on T x (0,T] (3.14)
ut = ¢ +¢ on 9,(Q\T x (0,7])

where 3 is as in Section 2l Let’s extend ¢ to all  i.e. we take any function ° (2!, xp, t) such that

P (a,0,t) = Y (2, t), ° (2!, p,t) < ¢ on B,((Q\T) x (0,7]) and 88—1%(:17’, 0,t) = 0. Subtracting 1

20



from the solution we have

A(uE — ) — 8y (uf — YF) = —(AYF — §)°) in Qx(0,7]
—ady(uf — P°) — B, (uf — ) = Bo(uf — U°) + adpb® on T x (0,7 (3.15)
kuf—z/?f:qﬁf—z/?%s on 9,(Q\T x (0,77)).

Differentiate with respect to time and set v° = (u® — )°); to obtain

AVE — 90 = —(AYF — 9y)F), in Qx(0,7T]
—advf — = BL(uE — ) + adyyi on T x (0,T]
(3.16)
v = (7 — 9% on Gp(Q\ T x (0,77)
V¢ = A(¢F — F) on € x {0}.

\

In order to avoid technicalities, in this more complex situation, and bring forth the main idea,

we shall assume throughout this section that (ATZJE — Op)* )t = 0 and we work with

7

Av® — 0w =0 in Qx (0,7
—adp® — Ov° = BL(uf — zﬁe)ve + a@tzﬁf on I'x (0,7T]
(3.17)
v = (6F — 9% on Jp(2\T x (0,77)
v° = A(¢F — F) on € x {0}.

We shall repeat the approach of Section Bl but, as it was done in [5], instead of parabolic
cylinders we take ”"hyperbolic” hypercubes with one of its sides lying on I"'. We normalize again
i.e. our solution is between zero and one and we prove (Lemma B.I3]) that, if v° is zero on the
top center and on I' in such a hypercube, then in a concentric subhypercube into the future v¢ is
smaller than one. Then we rescale and repeat. The rescaling, of course, is hyperbolic appropriate
for the boundary term on I' but diminishes the time derivative in the heat equation; this though
does not prevent us to obtain the continuity, as it was done in [5].

Our first lemma asserts that if v® is "most of the time” very near to its positive maximum in
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some hypercube sitting in (R"*!) against the hyperplane x,, = 0 and going backwards in time then

in a smaller hypercube into the future, v¢ is strictly positive.

Lemma 3.10. Let Qgr(z(,0,tg) C Q x (0,T] where Qr(z(,0,t0) = Br(x},0) x (to — R, o],
Br(z(,0) = Bp(zo) % (0,1), Bi(zo) = {2’ = (@1,...,xn—1) : |2, —z(;| < R,i =1,...,n —1}

and Qr(x(,0) = BR(xp) % (to — R, to]. Suppose that 0 < v° < 1 in Qr(xo,to) where v° is a solution

to (317). Then there ezists a constant o > 0, independent of €, such that

][ (1 —v%)?da’dt + ][ (1 —v°)2dzdt < o
QR(zp:to)

QRr(zo,to)

implies that

ol

m Qr/g(xo,to) = B}z(azlo) X (O, %) X (t() — %,to].

Proof. For simplicity we drop the superscript e, shift (z¢,0,t9) to (0,0,0) and write Qg for
Qr(0,0,0). We first derive an energy inequality associated to our problem. Set w = 1 — v then the

problem becomes

Aw — 0w =0 in Qx (=7,T)
adyw + dyw = By(u — 1[)) +adh, on I x (=T,7T]

(3.18)
w=1-(¢—1) on 9,(Q\T x (=T,T])
w=1—-A(¢—1) on Qx {-T}.

Choose a smooth cut-off function ¢ vanishing near the parabolic boundary of Qr except on Q'

and k > 0. Multiply the above by ¢?(w — k)* and integrate by parts to obtain

/ V(P (w — k)" Vw + C(w — k)T o,w]dzdt — C(w — k)T o,wde’dt = 0

QR QR

and

/ IV (¢ (w— k) ")+ %@(Cz(w — k)*)?|dwdt — Cw— k) (Bi(u— 1) + apyy — adyw)da’ dt =
Qr Qr

22



- /Q ((w — K" )2(VCP + CCo)dadt

and

/ 1
5 2 Or[(¢(w — k)+)2]dﬂj dt + /QR [gat[(f(w _ k‘)+)2] +V(¢(w — k‘)+)|2} dxdt

= o[ (w — k)T B(u — ))da' dt — C20y(w — k)T B(u — )da' dt
Qr Qkr
+ 2 COl(w—k)TBu—)da'dt+a | (O(((w—k)T)da!dt
Qi Q
+ a | Cw— k)T pydd'dt + / (V¢ + Co:0)[(w — k)T dadt.
Q% Qr
(3.19)

Now, using the fact that g is bounded and negative, (u—1)y is bounded below and since the upper

limit of the t{—integration ¢ = 0 can be replaced by any —R <t < 0, we obtain

o1
3 e, [, (o0 g s [l [ 9 k0P

< ||5||oo||<u—¢>;t||w/

Czdx’dt+2||6||oo/ (w — k)*|OrC|dar'dt
Qrniwsk) o
+oz/l [(w — k)T]%0,¢|da’ dt + aHl/JttHoo/, (w— k)"da'dt + / [(w — k)T 2(| V¢ + 0:¢|)dzdt

QR QR Qr

or

a max w— k)T¢%da’ + max w— k)T ¢Pde w— k)T Pdx
[, o= et e [0 kR |90~ k) P

—R<t<0 }? —R<t<0 On

§C</Q

[(w — k) T12|0:¢) + (w — k)T (1 + |0:¢|)da’ dt + / C2da:'dt>

. LA {w>k}
+C [ [(w—E)TPP(IVC? + |0 ddt
Qr

where C' = 2max{||||oc, || (¥ — 1)1 |]0os 1, @||11t||oc } and, a fortiori, we have the ”energy inequality”

(w — k)*Hc2da’ + / IV ((w — k)*HO) Rdadt

«a max [
—R<t<0 | On

/
R
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Now that we have our energy inequality we shall obtain an iterative sequence of inequalities.

[(w0— k) P10+ (w—k) T (110 )+ gy da di+ /

[<w—k>ﬂ2<|v<|2+|at<|>dwdt).
Qr

(3.20)

/
R

More precisely, the method consists in taking a sequence of decreasing cutoffs in space and time (,,
that converges to the indicator function of Qg4 and simultaneously a series of cutoffs of the graph
of u, uy,, that converge to (w — 7/8)% and prove by iteration that in the limit (w — 7/8)" = 0 on

Q4. We follow closely the corresponding argument in [5]. We, therefore, define

9 1 R 1
m=—t—(1-2"" m=—(1+
=15+ (1) A= (14 35)

Q;n = {(ml,...,xn,t) : _Rm S X S Rma _Rm S t S 0}

and we choose the cutoff functions (,, to depend only on 2’ and ¢ such that XQ, ., < (m < XQ,»

V| < C2™ and |0;¢n| < C2™. We set u,y, = (u — ky,)T and we denote by

lm /
) —m—1

. (n .
where 0 < § < 1 is chosen such that 272~ e < 27m=4 J10lds. We also choose M as in 5] to

5™ /2
(G )2 da’ dt + /0 / |V (Cothn) | dcdt

/
R

satisfy 271 M (67) "1 < 276 N > 0g™ U am) ppm 30T gy > 14(n — 1),
We want to prove simultaneously that for every m > 0, I, < M~ and that u, = 0 on
Q. % {%n} The proof is by induction and is identical with Step 2a and Step 2b of Lemma 2.2 in

[5] except that

Iy, # I < IO e [ e < (P22 )12 < g

for o small enough. So we concentrate on Step 2c, where we will show that

141
I < C4™0+50) L TET > 14n — 13,

m
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By the energy inequality,
1
In < / (Wi Cn—1)?d’ dt + 0[02’” / (Wi 1 )?da’dt + (1 + c2m); / (wmgm_lﬁd:c’dt}

+<7k14—cem>§u9m_1n{umz#(n|+|Q;,1n{umz#(n|+<cem>2/1wm<m_1ﬁdxd4

+0E/@M%APMﬁ+§ww4nmm¢m@

where we have used Young’s inequality. Since wy, < wp,_1 and {w, # 0} = {w,_1 > 2774}, we

have

I, < C2™ / (Wy—1Cm1)2da’ dt + C4™ / (Wy—1Cm1)*dzdt.

Also, the integral of the second term i.e

/ (w1 Con 1) 2t < / (Wn2Gm_2) * H () Pddt < ||H| 21 0, / (W 2Como)2dad.

Therefore

I, < C4™ / (Wn—2Cm—2)?da’dt
n—1

cqm ( / (W 2Cm_2) 72T dm’dt) T s £ OV N QL

C4m 1t am) / (Win—3Cm—3 )7 T da’dt. (3.21)

IN

IN

By Sobolev’s inequality

n
n—1

mgOM“%*(/@%4%4WMﬁ+/mmw%ﬁgﬁwww)

where A(wp,—3¢m—3) = —%(wm_ggm_g). Since

/ A2 (wpn—5Gm )| *da’dt < / IV (wm—3Gm—s)[*dudt
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we have
141

I, < C’4m(1+ﬁ)lm_? for every m > 14(n—1) +1
i.e. I, — 0 as m — oo provided that
Iy < o~ (=ly=nln=1) _. 5

Hence to complete the proof, consider the function w defined by

Aw—atho in QR/4

w=1 on 9y(Qprya \ {zn = 0} (3.22)
W= % on Q;%/4'
Then w < 7/8 in Qg /g and by the maximum principle w < w. O

Our second lemma asserts that if v® is very tiny "most of the time” in some hypercube (as

above) then, in a smaller concentric hypercube, v° goes down from 1 to 7/8.

Lemma 3.11. Let Qr(x(,0,t0) be as in Lemma[ZI0 Suppose that v° is a subsolution to (3.17)

and that 0 < v < 1 in Qr(z(,0,t9). Then there exists a constant & > 0, independent of €, such

that
][ (v°)?da’ dt + ][ (v°)2dxdt < &
IR(Z‘()vtO) QR(Z‘()vO?tO)
implies that
7
g < _
Y>3

n Qr/s(xo, 0, tO)'

Proof. The proof is identical to the proof of Lemma B.I0 except from the energy inequality. For
simplicity again we drop the ¢ and take (z{,0,%y) = (0,0,0) with Qr = Qr(0,0,0). Since g’ > 0,
v satisfies

Av—0w =0 in Qr
(3.23)

—adw — 0w > adphy on Q'
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Choose again, a smooth cutoff function ¢ vanishing near the parabolic boundary of QQr except on

Qs and k > 0. Multiply the above by ¢ 2(v — k)t and integrate by parts to obtain

/ V(P (v —k))Vo + (v — k)T o]dedt — v —k)ro,uda’dt <0
Qr QR
/ [|V(§(v — k)P + 1at((C(U - k«’)+)2)] dxdt + Clo—k)7T |:Oé¢tt + a@tv] dx’ dt
QR 2 QIR
v — +3\2 2 \ X
S/QR« 0| IV6P + o e

and

o[ ot -mParar+ [ {atmv — )+ V(o k)ﬂﬂ drdt

R Qr

(0 — k) 20, |da dt + o jue | = / (v — Kyt da'dt + / (0 — KMV + 10 )t

<a /
Qr QR Qr

And again taking as upper limit any —R < ¢ < 0 we obtain

Oz_%lgaféo 5, [C(’U — k)+]2dx/ + /QR ’V(C(U _ k‘)+)]2dxdt

gc{é

where C' = 2max{1, o[ty || }-

[Kv PO + (o k>+] d'di + /Q (v — k) PV + |at<|>d:cdt}

/
R

Now, since we have our energy inequality, the rest is as that of Lemma [3.10] and we define

. C‘«—(n—l)4—n(n—1).

O

We proceed, now, by using the parabolic version of DeGiorgi’s isoperimetric lemma. This lemma
is proved in [I6] and with proper adjustments applies to our situation. We state it as our next

lemma.

Lemma 3.12. Given ¢, > 0, there exists a 61 > 0 such that for every subsolution v° to (3.17)
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satisfying 0 < v° < 1 in QRg,

{(z,t) € Qr :v° =0} > 00|Qr|

{(z,t) € Qr: 0 <v® < 1/2} < 5|QR|

then
1.1 1.1
][ [(vE - —)+] da' dt —I—][ [(vE - —)ﬂ dxdt < C\/er
- 2 Qu 2
where R' = QR for og > 0.

We are now ready to obtain our basic decay estimate to zero.

Lemma 3.13. Let Qr(z(,0,t9) and o be as in Lemmal310 Suppose that v° is a solution to (3-17)
such that v¥(z(,0,t9) = 0 and 0 < v° < 1 in Qr(xy,0,t0). Then v° < 1 — Co in Qr/(xf,0,to)

where C' is independent of ¢ and R' = {R.

Proof. We drop the e, take (z(,0,t) to be (0,0,0) (by translation), and set Qr = Qr(0,0,0).
Since v(0,0,0) = 0 by Lemma B.10]

f

It follows then that there exists a constant ¢y < 1 such that

(1 —v)da’dt +][ (1 —v)*dzdt > o.
Qr

’
R

g
‘{’U <1-— Z}QQR’ > COO”QR‘.

Therefore set
4 o\
=—|v—(1—-—
w . (U ( 1 )>

and observe that w is a (nonnegative) subsolution to (BI7). By DeGiorgi again, the normalized

wy, = 2" <w —(1- 2—’f)>+

are still subsolutions to (BI7). We will show, now that in a finite number of steps kg = ko(d1) (01

truncations i.e.
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as in Lemma [B12)) that |[{wy, > 0}| = 0. Note that for every k, 0 < wy <1 and [{wr =0} NQr| >
01|Qr|. Set C\/er < & where €; is defined in Lemma B2 and ¢ in Lemma BITl Hence we assume

that for every k, [{0 < wy < £} N Qg| > 01|Qg|. Then for every k
{wr = 0} = {wr—1 = 0} + {0 < wp—y <1/2} = [{wi—1 = 0} + 01[Qr|

Hence after a finite number of steps say ko > 1/6; we get [{wy, = 0}| > |Qg|. Thus wy, < 0 ie.

2k0 [y — (1 —27%0)][* = 0 or w < 1 —27%0. Suppose, now, that there exists &', 0 < k&’ < kg such that
1
HO < wyr < 5}\ < dy.

By Lemma 312 applied to wy and consequently by Lemma 31Tl applied to w1 we conclude that
wpy1 < 7/8 in Qp/, where R’ = FRie w < 1-— %2_(k,+1). A fortiori, in both cases we have

w<1—2"®t) in Qp that is v < 1 — 27k0~04, 0

The estimates we obtained above are all independent of € and remain invariant under hyperbolic
scaling much the same way as in [5]. Although the time derivative term diminishes in the rescaling,

we still obtain the continuity of the time derivative.
Proposition 3.14. Let v° be a solution to (3.17) in Qr. Suppose that 0 < v < M where M is
independent of . If v°(0,0,0) =0 then

v (@', 2, t) < w(l2], |wnl, [2])

where w is a modulus of continuity (i.e. monotone and w(0) = 0) independent of .

Proof. We drop as usual the €. Set

Q= Q= (i )" x (0,72) x (B, 0] and My = supe
k

where Ry 1= 1R, 1y, := {5 M. Define

. %7 where vy (z,t) := v(rya’, ryan, rit).
k

<
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Then v verifies

AU — 1,00 =0 in Qg
(3.24)

—adv — 0,0 = B(u— )+ on Qf

where 1)y = adypy/Mj,. We apply Lemma B.I3] to ¥ to obtain

supv <1-Co.
Qrr

Hence in our original setting

sup v < g supv
Qk+1 Qk

where pip = 1 — C(supg, v)"~!. Therefore pj, — 1 as k — oo only if supg, v — 0 which yields a
modulus of continuity. Finally, a standard barrier argument yields the continuity from the future,

too. O

Theorem 3.15. Let u be a solution to (Z13) then (u— 1)) is continuous with a uniform modulus

of continuity.

4 Further implications on the (nondynamic) thin obstacle prob-

lem or (time dependent) Signorini Problem

In the present section we shall concentrate on the nondynamic parabolic ”thin” obstacle or parabolic
Signorini problem and we will show how the quasi-convexity yields the optimal regularity of the
solution as well as free boundary regularity. The other cases, as it was mentioned in Il will be
treated in forthcoming papers. Since it is easier to work with the zero obstacle, we extend the
obstacle as it was done in §3.21in all of €2 and subtract it from the solution which we still denote
by u. More precisely:

Given  C R™ be an open bounded set with smooth boundary 99 and I' C 99 lying in R"~!.
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We consider the following problem:

Au—0w=f, in Qx(-T,T]
Ou>0, u>0 on I'x (=T,T]

(4.1)
udyu = on I'x (=T,T]

u=¢—1 on Op(Q\T x (=T,T])

where v is the unit outward normal, the functions ¢ (2’,t) and ¢(z,t) are smooth functions, satis-
fying the compatibility conditions of §2 and f := —(ATZJ — (‘Mﬁ). Notice that the extended 1 can
be chosen, with no loss of generality, in such a way so that f is independent of z,,.

The methods to follow can be easily extended to cover a more general nonhomogeneous term

f. But, in order to avoid minor technicalities and set forth the ideas involved behind it, we work

with (@I]).

4.1 Optimal regularity of the space derivative

The solution to the problem (4I]) is globally Lipschitz continuous in space and furthermore the
space normal to the hyperplane derivative enjoys a C* for 0 < o < % parabolic regularity up to
the hyperplane (see [2] and [I]). We will prove in this subsection that, actually, o = % Recently,
in [I7], the optimal space derivative regularity was also obtained using the parabolic Almqren’s
frequency formula approach.

First, we want to complete what had started in [4] i.e. to prove a parabolic monotonicity
formula analogous to the elliptic one for the global zero obstacle case. We thus take in (1)) f =0
and the domain 2 to be the half space R’}. In this situation, it is clear, perhaps by appropriately
blowing up the local solution, that the solution u is convex in the tangential and time directions.
For simplicity we take the origin to be a free boundary point. The proof of the monotonicity result

relies on the following eigenvalue problem (see the appendix of [4]):

Lemma 4.1. Set .
_—lyl
. Sy [Vw(y, —1)Pe” "4 dy
Ao = e}ﬁfR ) SR
w 3 L w2(y,—1)e” "1 d
w=0 on R*7! fRJr v (y’ )6 vy
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where

RY = {z = («/,2,) € R" : z,, > 0}

and

R™ = {(2/,0): 2’ e R"™!, 2,1 <O}
Then Ao = 1/4.

Let w be any function in R x [—1,0] that is caloric in R” x [—1,0], where R = {z = (2/,,) €

R™: x, > 0}. We assume that w has moderate growth at infinity,

2
||

/ w?(z, —1)dz < Cei+e
Br

for some positive constant C', R large and some € > 0. We also set

1 .
@myn2€ o

Gz, t) = (4.2)

0 t<0.

Lemma 4.2. Set w(x,t) = ug, (x,t) where u is a solution, with the above restrictions, to problem

(1) and assume that w(0,0) = 0. If

0
o(t) = L \Vw|*G(z, —s)dzds,
t1/2 _ 1

then (t) is increasing in t.

Proof. Note that Aw? = 2wAw + 2|Vw[?. We compute ¢’ (), with a usual mollification argument,

to obtain

! _ 1 0 2 1 2
S = _W/_t , [VulPGla—s)dads + 505 [ [Vl ~0PG(a)ds

1 0 1 9 1 )
= —oun /_t/i(EAw —wwt)G(x,—s)afwds+tl?/R1 [Vw(z, —t)]°G(z, t)dx.

By integrating by parts and noticing that AG + Gy = 6(g,0y, w(0,0) = 0 and G(z,0) = 0, we obtain,
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/ _ 1 2 1 2
()= 373 /Ri Wz, )G, e + /Ri Ve, ~0)2G x, t)de

0
- —47;/2 /t/Rn1 2uw, G(z',0, —s)dz'ds. (4.3)

Hence, by the eigenvalue problem of Lemma [£.1] and the complimentary conditions of the solution

on R"™1 /() > 0. O

1/2,1/4
¢

Theorem 4.3. If u is a solution to the global convex case of (4.1)) then Vu € C,! up to the

coincidence set.

Proof. It is enough to prove that v tends to zero in a parabolic C'! fashion as (z,t), a point in
the noncoincidence set, approaches a point (z,%y) in the coincidence set which we take to be the
origin. Set w = u,, , then w satisfies the hypothesis of Lemma[£2l In particular, w vanishes at the

origin therefore

0
tl%\/t\/n |Vw(z, s)*G(z, —s)dzds < C. (4.4)
n +

Since w vanishes on at least half of the space for all ¢ < 0, the Poincare inequality implies that

J

is a subsolution across x, = 0 we have, for every (z,t) € Qr_/2 and s < 1/2

w2(y, —7‘2)G(:17 —y,t+ Tz)dy < 4r? / Vw(y, —7‘2)|2G(x —y,t+ 7‘2)dy. (4.5)
¥ RY

Since w?

w?(z,t) < /n w?(y, s)G(x — y,t — s)dy. (4.6)

Now integrate (A6) with respect to s from —r? to —r?/2 to obtain

—r2/2
r2w?(z,t) < / w?(y, s)G(x — y,t — s)dyds (4.7)

—r2

and combining with Poincare inequality we have

—r2/2
w?(x,t) < 4 / \Vw|?G(x — y,t — s)dyds (4.8)

—r2
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for every (x,t) € Qr_/2’ Hence by ([@.4), the proof is complete. O

Now, we remove the restrictions previously imposed and we show how to improve the 0 < a < 1
in the C“ regularity to get C''/2. First we prove a lemma, which uses the normal semi-concavity,

the tangential semi-convexity, and the time semi-convexity.

Lemma 4.4. Let u be a solution of (1) in Qf with Vu,u € C’j”f Then there exists a 6 =

d(a) > 0 such that
(0,0,4) & T({u, < —r***} N Q)

for every t € [-r2,0] and 0 < r < 1, where T'(A) denotes the convex hull of the set A.

Proof. If
(',0, —1r2) € {u,, < —rot’}
then
M
u(@', h, —r?) < —r®toh + 7h2
since Uy, 5, < M. Take h = TQXJWS for some m > 1; in this case
p20+(m+1)5

/h_2 < —
u(':U??T)— 2M

Moreover, if we restrict the considerations to |2| < 5% then

, ) o y20+(m+1)0
h, — M < — 4.9
u(a, by =)+ M < - (19)
provided that § < 22;?). On the other hand, since uy > —M; and uzr is Holder continuous whose

exponent, with no loss of generality, can be taken to be the same « as above, we have

M
w(0,h,—1%) > u(0,h,0) — maz{0,cih®r?} — 71744
M
> —coh't — maz{0,c1hr?} — =Lpt
> _E,r,(a+m5)(1+a) (410)
a(l—a)

Finally, if we choose § > and m > 1+ % we get a contradiction to (£9) above. Note

am—1
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that the same argument applies for any t € [—r2,0]. O
We provide now our monotonicity formula for solutions to the local situation.

Lemma 4.5. Let 6 > 0 and u be a solution to the Signorini problem (4.1)). Set w = u,, and

1 0
p(r) = ;/ / IV (nw)(z, 5)|*G(x, —s)dzds
) i
for v < 1 where n € C§°(B;) with n = 1 and ny,,|p,Arn—1 = 0. There exists a universal constant
C > 0 such that
(i) if 2a 4+ 6 > 1 then ¢(r) < C,
(ii) if 204 6 < 1 then o(r) < Cr2eto=1,

Proof. We compute

V()| = %(A(nw)2 = 0(1w)?) — 2wVnVw — uw?An (4.11)
and
or)y = —%/_02 /n (A(nw)? — 8 (nw)?)G(z, —s)dxds +2/R” \V (nw)(x, —r?)2G(z,?)dx
T + +
+ %2/02 /n (2nwVnVw + nw? An)dzdt. (4.12)
—r2 Jrn

We integrate by parts to obtain

0 0
40 = o [ (V0uPYG +atgepGreds — o [ [ (el 0,960, ~s)da'ds
2r —r2 1 2r —r2 JRn-1

1 0
w [ ] eyt an Gl —s)dzds 42 [ 9~ RG e
—r2 1

RY

(4.13)
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Integrating again by parts, we obtain

! = _ _ /
o(r) = ~5,3 /T2 /n nw)*(AG + 9,G)dxds 2,2 /T2 /Rn 1 (nw)2G(z, —s)dx'ds
1
T 52 (nw)?*(z, —r*)G(z,r?)dx + —/ / (nAnw? + 2nwVnVw)G(x, —s)dzds
R% —r2 JR"
+ 2/ IV (qw)(z, —r?)2G(z,r%)dx. (4.14)
n

Since w(0,0) = 0, we have

1

P0) = gz [, G e 2 / IV () (&, —1) PGz, 1)

— 27‘2/ 2/R 1277w77w,, x,—s)dx’ ds+— 2/ nAnw*G(z, —s)dzds
r n— —r n

+ ﬁ/ / nwVnVwG(x, —s)dxds
—r2 JR

(4.15)
or
or) = 271“2 (nw) (z,—1%)G(z ,r2)d:17—|—2/R IV (nw)(z, —r*)*G(z, %) dx
¥
+ 2r2/ . /n VnAVw?G(x, —s)dxds + ol /n nAnw?G(x, —s)dxds
—r —r2 JRY
+ 7"_2/_7»2 /Rn1 nwf Gz, —s)dx'ds (4.16)
and finally
o(r) > —# . (nw)*(z, =G (x, r*)dx + 2/n \V (nw)(x, —r?)|>G(z,r?)dz — Cre.
+ +
Now, consider the truncated function @ = —(w + r®t9)~ and note that

| )~ < [ 9w, ) PG, da.

n
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)= =gy [t o)+ e, o) Ge o +2 [ 90w ~r?) PG — €t

RY
and
1
o'(r) > ~5,3 / n[(w —w)? + 2w(w — )]G (x,r?)dz — Cr®
r2 Jgn
+
or
/ _§ 2004+26—2 a _§ 2a+6—2
@ (r)=—5r Cr* > ——r :
2 2
Therefore

3 1 3 1 pois 1
1) — > — S |pratord
o) —elr) 2 2<2a+5—1>+2<2a+5—1>r

Since ¢(1) is universally bounded the proof is complete.

Next, we state our main result of this subsection:

11
Theorem 4.6. Let u the solution of (-1)), then Vu is C2,* up to the hyperplane R"~1,

x,t

Proof. Let w = uy, and W be as in the proof of Lemma Al Fix s > 0, choose R > 0 large enough
and ¢ < s. We define a cut-off function n = n(z) so that suppn € Bry1(0), n = 1 on Bg(0) and
V| < C.

Then

(A = 8¢)(n*®W) = 20*|VW@|? + 4anVwVn + 2(nAn + |Vn|*)@? + 20*T(AT — 0:W). (4.17)

Recall that (A+09¢)G(x, —§) = d(9,0), therefore using ([@IT), an integration by parts along with the

fact that n is compactly supported we obtain

2/__ / . |V G (x, —€)dude = — /R

T w w - — - 2\2 B
4/—5 /iananG(x, §)dxdg 2/_8 /1(77A77+ |Vn|*) oG (z, —§)dxd

772@2G(x,5)dx+/ w2 G(x, s)dx

n n
+ R%
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—S

) / - / 1 PT(AT — )G, —€)dade. (4.18)

Observe that

—e e—R?/4I¢|
| [ milveice -gais<c [ ] vl dede
—s d Bfi 1 \Bf (316

R2/4+€0/ / [l Valdede.

R+1\ R

Using Cauchy-Schwartz, we conclude that the last three terms on the right hand side of (AIS])

behave the same, in particular they decay to zero as R — oo. Therefore we conclude that

() (0.0) < [ ()G, s)da

+

or, after rescaling,

(mw)?(z,t) < / (mw)*(y, )G (x — y,t — s)dy. (4.19)

n

for every (z,t) € Q:f/2 and —1? < 5 < —g. By Poincaré inequality for Gaussian measures (see [8])

we have that

[ PG =yt =y <20sl [ V0 PG — it sy (420)
¥ ¥
for (z,t) € Q:r/2 and —r? < s < —%-. Combine ([@I9) and {@20) to obtain

(17w)*(z,t) < O] - V(@) (y, s) Gz — y.t — s)dy (4.21)

for every (z,t) € Q:r/2 and —r? < s < —%. An integration with respect to s in (£.2]]) shows that

—r2/2
()2 (2, 1) / G (@ — gyt — s)dyds

—r2

for every (z,t) € Q:r/z. Now the dichotomy for ¢(r) in Lemma provides a C'/2 modulus of

continuity for w, as in the proof of Theorem 5 in [4]. O
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4.2 Holder continuity of the time derivative near a free boundary point of

positive parabolic density

Although the positive time derivative is always Holder continuous (see §3.2]), one does not expect
to obtain continuity of the full time derivative without further restrictions. The purpose of this
section is to show that, indeed, Holder continuity of the full time derivative can be achieved near
free boundary points of positive parabolic density with respect to the coincidence set. In order to
achieve this desired result we employ the well known ”hole filling” method of Widman (see [22])
adapted for parabolics by Struwe (see [2I]). As it was mentioned in the introduction, the results

of the present section are independent of the quasi-convexity.

Definition 4.7. A free boundary point (z(,,0,to) is of positive parabolic density with respect to the
coincidence set if there exist positive constants ¢ > 0 and ro > 0 such that |QL(z(,0,tp) N {u =

0} > ¢|@Q1(z(,0,t0)| Vr < rg.
So the main result of this subsection is stated as follows::

Theorem 4.8. Let (x,t0) be a free boundary point of positive parabolic density with respect to the

coincidence set to problem ({{-1]). Then u; is Holder continuous in a neighborhood of (z,to).

Proof. Since, by §3.2 u;" is Hélder continuous, it suffices to prove the theorem for u; . Actually,
we will show that u, decays to zero in parabolic cylinders shrinking to the free boundary point
(zo,tp). We consider the penalized solution u¢ of [@I]) in Q; (zg,to) with r < 7o, where rq is as in
Definition 47l For simplicity we take (xq,t9) = (0,0) and r = 1. Differentiate with respect to t to

have as in (3.8)

Ave —Opf = ff, in QF
(4.22)

—0,v° = BL(uf)v® on Q)

where v° := (u);. For any (£,7) € Qf we want to multiply the equation by an appropriate test
5
function and integrate by parts over the set Q3 (&,7) == Qs (&, 7) N {z, > 0} C QF. This will lead
5 5
us to an estimate which will iterated to yield the desired result.

The aforesaid appropriate test function will be the product of following three functions:

The first one is the square of a smooth function ¢(z,t) supported in Q3 (¢,7) such that ¢ =1

5]
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for every (x,t) € Q1 (€, 7), [V¢| < e with supp(V¢) C (B3 (€, 7)\ B3 (§,7)) x (1= 55,7, 0< G < ¢
with supp({) C Bg(f,T) X (1 — %,7— — %)
The second one is a smoothing of the fundamental solution G(x,t) of the heat equation (see

@), ie.
G (@,t) = (Gla — &7 — Ox(a, pe(en) + plx — &t — T)x(@, ) gy (e.m))X (@, D rn)

where Es(¢,7) = {(z,t) € R"™! 1t <7, Gz —&,t — 1) > 5=}, the "heat” ball of "radius” §
about (&, 7), and p(x,t) := 5%(% + log W)X(%t){mo}' Notice that G((f’T) is a C'! function
everywhere in R"*! except at (£,7). In order to deal with this problem we just translate the
singularity outside of our domain by a small amount & > 0 and then we let £’ to tend to zero, for
simplicity we omit this technicality.

Finally the third function is (v®)~ which can be smoothed out by the standard way; again we
omit it for the sake of simplicity.

Therefore we multiply the equation in (£22) by Cszf’T) (v¥)” and integrate by parts over

Q3 (&, 7) to obtain

/ (VPG (@) )V + (PG (0°) )" )dadt = / (PG5 (%) )8 (w o dadt
Qé(éﬁ) Q5 (&7)

E
- 2GS ()~ fydadt (4.23)
ot e )C 5 (v°)” fedx .
3 (&7

By calculating appropriately and by noticing that due to the non negativity of 8. the boundary

integral term has the right sign, so it can be omitted, we obtain

/QJr(g )(G§5,7)|V(C(U€)—)|2 + %[VG((S&T)V(C(UE)_V + Ggﬁ,r)at(g(va)_)g])dxdt

T — 1 T —
< / G (VI + 6 () Pdad + 5 / VGV ((v%) ) dwdt
Qé(é,f) Q3 (€7

e+
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+ / G (%) fudadt.,
Q3 (&7)

Using the fact that supp(p) = Es(¢,7) where p := —(A + 8t)G((5§’T) with dp = 3=dEs(¢,7) and
|Es(&,7)| = 40™ (see [19]) and that, for ¢ small enough, the inequalities 0 < Ggﬁﬁ) < C(n) in (BF\
5

Bg) x (—£,0), and c(n) < G((f’T) < C(n) in Bg x (—2%,—5), we have

/ G|V (0°) " Pdadt + ][ (v)"dEs(§,7) < C(n / / )?dudt
Q}(em) B3 (&) = R
)2dzdt + C 4.24
/ /B+\B+ M | )
where M = ||v%||oo|| ft!]co-

Now, we first let ¢ tend to 0 in order to obtain (£24]) for v, then we let § to go to 0, and,

finally, we take the supremum over (£,7) € Qi’ to obtain, a fortiori,
4

/ G(z,—t)|Vo~ |dxdt—|—sup 2<C(n / 20/ Vidxdt + C sup (v7)? +CM. (4.25)
5 /By QN\Qf

Next we want to control the first integral of the right hand side of (@25l by one similar to the
first integral of the left hand side of ([£.25]). To do that we first multiply the equation in (£22]) by
¢%(v®)~ where ( is a smooth cutoff function supported in By x (—1,t) , for any ¢t < —%, (=1on
Bi x (—%,t), and vanishing near its parabolic boundary with |V(| < ¢ and 0 < {; < ¢, then we

integrate by parts over this set intersected by R"! to have

/ /B+ V(o) )V + (C(v°) )0 )dadt = / / (o) )8 (u)of da'dt

—/t C2(v°)™ frdadt.
-1JB;

Again, exploiting the positivity of 3’ and letting € go to zero, we arrive, as above but in a much
g g Yy geg
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simpler way, at the following inequality

t
/ (v™)*(z, t)dx —1—/ / |Vo~|2dzdt < c/ (v™)2dxdt + C(n)Mr" 2
By -3/B} Qf
Vite (—%, —%). Observe that a sufficient portion of the coincidence set is present in ()1 so that
the parabolic Poincaré inequality can be applied to dominate the integral on the right hand side

of the above inequality. Therefore, since the second term on the left hand side is non negative, we

4

have, for every —% <t< -5,

/ (v )2z, t)dz < C(n) / Vo [2dadt + C(n)M.
B QF

15}

We then integrate the above inequality with respect to ¢ from —% to —% to get

_a
/ ” / (v™)2dzdt < C(n)/ IV (v7)|2dzdt + C(n) M.
_2 Jpt ot
5 1 1
5
Insert this in ([25) above and, using the fact that G(z, —t) > ¢(n) for —2 <t < —-L, to have

/ Glar, —t)| Vo [Rdadt + sup(v=)? <

+
Q% Q%
CoN([ . Gla,~0|Vv Pdudt + sup (7)) +C'(m)M. (4.26)
QI\Q] Qe

Set w(p) := fQ? G|V~ |*dzdt + Sup g+ (v™)2, then add C(n)w(2) to both sides of [@26) and divide

the new inequality by 1+ C(n) to have

w(=) < w(l)+c¢ (4.27)

o —

where A = H%"()n) Iteration of ([A27)) implies that there exists an o = a(\) € (0,1) and a constant

C = C(n,||ut||oo, || ft||oo) such that
w(p) < Cp*
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for every 0 < p < 2. This concludes the Holder continuity from the past. The continuity from the

future follows, now, by standard methods. O

4.3 Free boundary regularity

In the study of free boundary regularity it turns out that in order to achieve smoothness of the free
boundary one has to focus his attention in a neighborhood of certain free boundary points, which we
shall call them non-degenerate, (see Definition below). A good candidate for a non-degenerate
free boundary point must include one of positive parabolic density of the coincidence set. The
fact, that u; is Holder continuous at such a point (see §42)), yields a control of the speed of the
interphase, a crucial step for our further analysis of the regularity of the free boundary. Since it is
more convenient to work with the zero obstacle and with the right hand side of the equation to vanish
at the point, which, for simplicity, we take it to be the origin, we set a(z’, z,,t) = u(z’, zp,t) —
V(' t) + $Hy(0,0)22 (H := A — ;). Observe that {(z',x,,t) = 0} = {u(z/,zp,t) = ¢(2/,t)}

and upon reflection @ in Bf := {(z,t) € R** : |z|? + ¢ < 1} satisfies:

a(x’,0,t) >0 in B} Nn{z, =0}

w2, xn, t) = u(z', —xp, t) in Bf
(4.28)

Au(z!, xn, t) — Opu(x, xpn, t) = Hp(0,0) — Hep(a',t) in B \{a =0}

Au(x', zp, t) — Opu(a!, xp, t) < H(0,0) — H(2!,t) in B

7~ for the rest of this section.

For simplicity of notation we ”drop” the
Now we pass the u; term to the right hand side of the equation and if we assume that H is at
least C'“ we can apply the elliptic theory developed in [7], [14] and extended in [9] at the t-level of

the point. Consequently, if the origin is regular then at ¢ = 0 the blow up limit vy of the solution

u (up to sub-sequences) exists, and, in appropriate coordinates,

where p = /2% + 22 and = arctan(Z2) (unique up to rotations).

x1

Now, we are ready to state the "hyperbolic” definition of our non-degenerate free boundary
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point.

Definition 4.9. Let (zq,t) be a free boundary point and B (xq,to) := {(z,t) € R : (x —20)? +

(t —t0)? < 12}, set
[[ull oo (B2 (z0,t0))
3/2

[ := limsup
r—0t

A point (xg,tg) is called a non-degenerate free boundary point if it is of positive parabolic density

of the coincidence set and 0 <l < oo, otherwise degenerate.
With this definition at our hands we state the main result of this section:

Theorem 4.10. Let u be a solution to [{{.28). Assume the origin to be a non-degenerate free

boundary point. Then the free boundary is a C n-dimensional surface about the origin.

The following ”hyperbolic” blow up sequence will be very useful for our analysis since, at a
point, it preserves the geometry of the free boundary:

u(rz, rt)

up(x,t) == 52

Lemma 4.11. Let u be a solution to ([.28). If (0,0) is a non-degenerate free boundary point then
there exists a sequence u,; of blow ups which converges uniformly on compact subsets to a function

ug such that, (in appropriate coordinates),

2
wola, ) = (1)} cos(50(1)
where p(t) == /(x1 +wt)? + 22 and §(t) := arctan(225) for some w € R.

Proof. Since 0 <[ < o0, it is clear that we can extract a subsequence u,; converging uniformly on
compact subsets to a non trivial limit ug. This ug is a harmonic function for every fixed t outside
of the coincidence set; and the coincidence set, due to the density assumption, is a convex cone in
R™, or more precisely in (z’,t) variables. Also, by the discussion above, at t = 0 ug = % p*/2 cos %9
where p = \/m and 0 = arctan(i—?). Moreover the convex cone is composed by the following
two supporting hyperplanes Az + at = 0 for t > 0 and Bxy + bt = 0 for ¢t < 0 with the constants

A>0,B>0and bA < aB. We want to prove that this convex cone is actually a non-horizontal

44



half space i.e. A >0, B > 0, and bA = aB, and ug admits the stated representation; we do this in
several steps:

Step I: A >0 and B >0

For, if A = 0 then for every t > 0 ug(z,t) is harmonic in all of R™ i.e. of polynomial growth.
But for t = 0 ug has 3/2 degree of growth, therefore, by continuity of ug, a contradiction. Similarly
B> 0.

Step I1: For each fized t, u ~ ]a:\% as |z| — oo with x - e; > € for some € >0

It is enough to show the bound by below. Therefore take a sequence z) such that |z0)] — oo
with 2U) . ¢; > ¢ for every j then by convexity ug(z9),t) > ug(29),0) + (ug)¢(2\9),0)t, hence by
the behavior of ug at t = 0 the result follows.

Step III: For each fixed t,

uo(z.t) = £p(0)F cos(30(0)),

where fort >0, p(t) = \/(x1 + §1)> + 22, 0(t) = arctan —22%~ and fort < 0, p(t) = \/(xl + 24)2 4 22,

{El—l—%t

— Tn
0(t) = arctan p

Indeed, for each fixed ¢ > 0, ug is a harmonic function which vanishes for {z; < —%t}N{z, = 0}
and grows at infinity with % exponent, therefore by Phragmen-Lindelof theorem we obtain the
representation. Analogously, for ¢t < 0.

Step 1V: bA = aB

For, if not then

b
B

)0 cos(36) £ 0,

Ayun(0,01) — Byup(0,07) = (

| e

whence, by approximation, a contradiction to the continuity of J,u at the origin.

Set w := 4 and the proof is complete. O

Finally we prove our theorem:

Proof. Obviously the existence of w in Lemma [ TT]implies the differentiability of the free boundary
at the origin. Also, due to the upper semi-continuity of the elliptic Almgren’s frequency function,

we have the differentiability of the free boundary for any nearby point p = (z,,t,) at least when
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tp, <0, since u; is continuous there. Now, if ¢, > 0 and p = (z,,t,) still near the origin, we observe
that the frequency function will converge to % Consequently, the point p = (z,,t,) will be a free
boundary point of positive parabolic density with respect to zero set, which renders u; continuous
there. Hence we have the differentiability of the free boundary there, too. To prove the continuous
differentiability of it consider two distinct free boundary points nearby, say p and 0. Assume, on

the contrary, that it is not true, that is w(p) does not converge to w(0) as p — 0. Consider the blow

up sequences ugf?) and ufn?) around p and 0, respectively, where uff;)(x,t) = Mx/g)%p)) These
J

sequences converge uniformly to

U(()p) (.’L” t) = gp% (pjt) coS ge(p7 t)
and
2
u(()o)(x,t) = gp%(O,t) cos gH(O,t)

respectively, where p(p,t) := /(z1(p) +w(p)t(p))? + 22) and O(p,t) := arctan m. So, if

(0)

((]p ) does not converge to v, therefore a contradiction to the

w(p) does not converge to w(0) then v

continuity of the solution u. Hence a C“ estimate of the free boundary normals follows easily. [
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