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Parabolic Obstacle Problems.

Quasi-convexity and Regularity

Ioannis Athanasopoulos, Luis Caffarelli, Emmanouil Milakis

Abstract

In a wide class of the so called Obstacle Problems of parabolic type it is shown how to

improve the optimal regularity of the solution and as a consequence how to obtain space-time

regularity of the corresponding free boundary.
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1 Introduction

Obstacle problems are characterized by the fact that the solution must satisfy unilateral constraint

i.e. must remain, on its domain of definition or part of it, above a given function the so called

obstacle. Parabolic obstacle problems, i.e. when the involved operators are of parabolic type, can

be formulated in various ways such as a system of inequalities, variational inequalities, Hamilton-

Jacobi equation, etc. More precisely, as a system of inequalities, one seeks a solution u(x, t) which

satisfies

ut +Au ≥ 0, u ≥ ψ

(ut +Au)(u− ψ) = 0











in Ω× (0, T ]

u = φ on ∂p(Ω× (0, T ])

(1.1)

or a solution u(x, t) to

ut +Bu = 0 in Ω× (0, T ]

u ≥ ψ, αut + uν ≥ 0

(αut + uν)(u− ψ) = 0











on Γ× (0, T ]

u = φ on ∂p(Ω × (0, T ]) \ (Γ× (0, T ])

(1.2)

where A and B are (non-negative) definite elliptic operators. Usually, (1.1) is referred as a thick

obstacle problem and (1.2) with Γ ⊂ ∂Ω (when α = 0) as a Signorini boundary obstacle problem

(or thin obstacle problem if one takes Γ to be a (n− 1)− manifold in Ω). We shall refer to (1.2) as

the dynamic thin obstacle problem if α > 0 and to nondynamic thin obstacle or Signorini problem if
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α = 0. Recently, there is an intense interest, perhaps due to the connectivity to jump or anomalous

diffusion, to study (1.1) in all of Rn when A is a non-local operator and especially the fractional

Laplacian. Observe that when A is the 1
2−Laplacian there is an obvious equivalence between

(1.1) and (1.2) which is identified by the Neumann-Dirichlet map, provided that B is minus the

Laplacian, Γ ⊂ R
n−1, and α = 1. This equivalence remains true for any fractional Laplacian if B

is replaced by an appropriate degenerate elliptic operator as it was introduced in [15].

Every problem of the above mentioned ones and their obvious generalizations is actually a

minimum of linear monotone operators therefore second order incremental quotients are ”superso-

lutions” and satisfy a minimum principle. That is ”for z = (x, t) with x ∈ Ω in (1.1) or z = (x′, t)

with x′ ∈ R
n−1 in (1.2)

u(z + w) + u(z − w)− 2u(z)

has no interior minima”. In particular, in the limit Dwwu cannot attain a minimum in the interior

of the domain of definition and on the hyperplane in case (1.2). This means minima must occur

at the initial or lateral data (minus the hyperplane in case (1.2)). Therefore for an appropriate

data we have an L∞ bound from below. This is certainly true if the data is smooth enough or just

when the data stays strictly above the obstacle (§2). In fact, we believe that an appropriate barrier

would give interior quasi-convexity of solutions under general data.

The purpose of this work is to show that the quasi-convexity property, absent in the literature

so far, has strong implications in the study of the above problems. One such implication is the

improvement of the optimal time regularity i.e. we prove that the positive time derivative is

continuous (§3) for a wide class of problems. Let us mention that in the literature there are

only three cases in which the time derivative is continuous and all three rely on the fact that the

time derivative is a priori non negative. These are the one-phase Stefan problem ([12]), the (non-

dynamic) thin obstacle problem ([3] only in n = 2) and, very recently, the parabolic fractional

obstacle problem ([11]).

For further implications of the quasi-convexity we concentrate on the (nondynamic) thin obstacle

problem or (time dependent) Signorini problem. The other cases i.e. the dynamic parabolic obstacle

problem, the nondynamic and dynamic fractional counterparts, as well as the one with parabolic

nonlocal operators is a long term project and they will be treated in forthcoming papers (see [6]).
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Also, elsewhere we show how one can get with this approach free boundary regularity for the

already known result ([13]) of the ”thick” obstacle. Actually, in this case, i.e. the (time dependent)

Signorini problem, we prove the optimal regularity of the space derivative (§4.1), as a consequence

of the parabolic monotonicity formula stated in the appendix of [4]. Secondly, we prove that the

regularity of the time derivative (§4.2) near free boundary points of positive parabolic density with

respect to the coincidence set is as ”good” as that of the space derivative; let us point out that

the results in §4.2 are, in fact, independent of the quasi-convexity. And finally, in §4.3, since §4.2

yields control of the speed of the free boundary, we prove (space and time) regularity of the free

boundary near ”non-degenerate” free boundary points.

The results of the present paper were presented by the first author in IMPA, Rio de Janeiro,

August, 17- 21, 2015 during the ”International Conference on Current Trends in Analysis and

Partial Differential Equations”. A video of the talk is available online at http://video.impa.br.

2 Quasi-convexity

In this section we prove the quasi-convexity of the solution for a wide class of Parabolic Obstacle

Problems. In order to avoid technicalities we shall concentrate on five prototypes of this class::

1st prototype (Thick Obstacle Problem): Given a bounded domain Ω in R
n, a function

ψ(x, t) (the obstacle) where ψ < 0 on ∂Ω× (0, T ], maxψ(x, 0) > 0 and a function φ with φ = 0 on

∂Ω× (0, T ], φ ≥ ψ on Ω× {0}, find a function u such that































ut −∆u ≥ 0, u ≥ ψ in Ω× (0, T ]

(ut −∆u)(u− ψ) = 0 in Ω× (0, T ]

u = φ on ∂p(Ω × (0, T ]).

(2.1)

2nd prototype (Nondynamic Thin Obstacle Problem): Given a bounded domain Ω in

R
n with part of its boundary Γ ⊂ ∂Ω that lies on R

n−1, a function ψ(x, t) (the obstacle) where

ψ < 0 on (∂Ω \Γ)× (0, T ], maxψ(x, 0) > 0 and a function φ with φ = 0 on (∂Ω \Γ)× (0, T ], φ ≥ ψ

on Γ× {0}, find a function u such that
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













































ut −∆u = 0, in Ω× (0, T ]

∂νu ≥ 0, u ≥ ψ on Γ× (0, T ]

(∂νu)(u− ψ) = 0 on Γ× (0, T ]

u = φ on ∂p(Ω \ Γ× (0, T ])

(2.2)

where ν is the outward normal on ∂Ω.

3nd prototype (Dynamic Thin Obstacle Problem): Given a bounded domain Ω in R
n

with part of its boundary Γ ⊂ ∂Ω that lies on R
n−1, a function ψ(x, t) (the obstacle), ψ < 0 on

(∂Ω \ Γ) × (0, T ], maxψ(x, 0) > 0 and a function φ with φ = 0 on (∂Ω \ Γ) × (0, T ], φ ≥ ψ on

Γ× {0}, find a function u such that















































ut −∆u = 0, in Ω× (0, T ]

α∂tu+ ∂νu ≥ 0, u ≥ ψ on Γ× (0, T ]

(α∂tu+ ∂νu)(u− ψ) = 0 on Γ× (0, T ]

u = φ on ∂p(Ω \ Γ× (0, T ])

(2.3)

where where α ∈ (0, 1] and ν is the outward normal on ∂Ω.

4th prototype (Fractional Obstacle Problem): Given a ψ : Rn−1 × [0,∞) → R such that
´

Rn−1
|ψ|

(1+|x|)n−1+2s dx
′ < +∞ for all t > 0 and φ : Rn−1 → R such that

´ |φ|
(1+s)n−1+2s < +∞ for some

0 < s < 1, find a function u such that































∂tu+ (−∆)su ≥ 0, u− ψ ≥ 0 on R
n−1 × (0, T ]

(∂tu+ (−∆)su)(u− ψ) = 0 on R
n−1 × (0, T ]

u(x, 0) = φ(x) on R
n−1.

(2.4)

5th prototype (General Nonlocal Operators): Assume that ψ : Rn−1× [0,∞) → R is given

and let

Lu := ut −
ˆ

Rn−1

g′(u(y, t) − u(x, t))K(y − x)dy

where g : R → [0,∞) is a C2(R) function such that g(0) = 0 and Λ−1/2 ≤ g′′(z) ≤ Λ1/2, z ∈ R for
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a given constant Λ > 1. The kernel K : Rn−1 \ {0} → (0,∞) satisfies















K(−x) = K(x) for any x ∈ R
n−1 \ {0}

χ{|x|≤3}
Λ−1/2

|x|n−1+s ≤ K(x) ≤ Λ1/2

|x|n−1+s for any x ∈ R
n−1 \ {0}.

(2.5)

Then find a function u such that































Lu ≥ 0, u− ψ ≥ 0 on R
n−1 × (0, T ]

(u− ψ)Lu = 0 on R
n−1 × (0, T ]

u(x, 0) = φ(x) on R
n−1.

(2.6)

In the following theorem we prove quasi-convexity for the first, the second, the third and the fourth

prototype problems. The proof for the fifth prototype problem, although similar, can be found in

[6]. The following theorem can be stated and proved using incremental quotients as it is mentioned

in the introduction, for simplicity though, we prove it for the second t−derivative. Notice that the

corresponding space quasi-convexity is well known from the outset of the problems.

Theorem 2.1. Suppose that in the above problems ψ and φ are smooth. If (φ− ψ)
∣

∣

t=0
> 0 then

||(utt)−||∞ ≤ max(||(ψtt)||∞, ||∆2φ||∞).

If (φ−ψ)
∣

∣

t=0
≥ 0 the same estimate holds provided that (∂tψ− (−∆)sψ)

∣

∣

t=0
≥M > 0 for s ∈ (0, 1]

and M sufficiently large.

Proof. In all four cases we use the penalization method i.e. one obtains the solution u as a limit of

uε as ε→ 0, where uε is a solution, in case (2.1) of the problem















∆uε − ∂tu
ε = βε(u

ε − ψε) in Ω× (0, T ]

uε = φ+ ε on ∂p(Ω× (0, T ]).

(2.7)
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or, in case (2.2) of the problem































∂tu
ε −∆uε = 0, in Ω× (0, T ]

−∂νuε = βε(u
ε − ψ) on Γ× (0, T ]

uε = φ+ ε on ∂p(Ω \ Γ× (0, T ])

(2.8)

or, in case (2.3) of the problem































∂tu
ε −∆uε = 0, in Ω× (0, T ]

−α∂tuε − ∂νu
ε = βε(u

ε − ψ) on Γ× (0, T ]

uε = φ+ ε on ∂p(Ω \ Γ× (0, T ])

(2.9)

or, in case (2.4) of the problem















−(−∆)suε − ∂tu
ε = βε(u

ε − ψ) on R
n−1 × (0, T ]

uε(x, 0) = φ(x) + ε on R
n−1

(2.10)

where φε, ψε are smooth functions (with compact support in the case of the whole R
n−1), βε(s) =

−e
ε

s−εχs≤ε(s) with ψε → ψ, φε → φ (locally) uniformly as ε → 0. If, now, (φ − ψ)
∣

∣

t=0
> 0 then

differentiating twice with respect to t we obtain































∆uεtt − ∂tu
ε
tt ≤ β′ε(u

ε − ψε)(uεtt − ψεtt) in Ω× (0, T ]

uεtt = φtt on ∂Ω × (0, T ]

uεtt(x, 0) = ∆2φ(x) in Ω× {0}

(2.11)

or,






























∂tu
ε
tt −∆uεtt = 0, in Ω× (0, T ]

−∂νuεtt ≥ β′ε(u
ε − ψ)(uεtt − ψtt) on Γ× (0, T ]

uεtt(x, 0) = ∆2φ(x) in Ω× {0}

(2.12)
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or,






























∂tu
ε
tt −∆uεtt = 0, in Ω× (0, T ]

−α∂tuεtt − ∂νu
ε
tt ≥ β′ε(u

ε − ψ)(uεtt − ψtt) on Γ× (0, T ]

uεtt(x, 0) = ∆2φ(x) in Ω× {0}

(2.13)

or














−(−∆)suεtt − ∂tu
ε
tt = β′ε(u

ε − ψ)(uεtt − ψtt) on R
n−1 × (0, T ]

uεtt(x, 0) = ∆2φ on R
n−1.

(2.14)

To finish the proof, apply the minimum principle to uεtt.

If, on the other hand, (φ− ψ)
∣

∣

t=0
≥ 0, following the steps above, we notice that since ||β||∞ <

+∞ and β′ ≥ 0 it is enough to have (∂tψ − (−∆)sψ)
∣

∣

t=0
≥M > 0 for s ∈ (0, 1] and M sufficiently

large.

3 A general implication on the optimality of the time derivative

In this section we show that the quasi-convexity property obtained in the last section improves

the time regularity for a wide class of problems. More precisely, we prove that the positive time

derivative of the solution is always continuous for this class. Our approach will be as follows: we

penalize the problems, we subtract the obstacle from the solution, then we differentiate with respect

to time and we work with the derived equations. We shall obtain then a global uniform modulus

of continuity independent of ε, which will yield in the limit the desired result.

In order to avoid having a lengthy paper, in the present section we concentrate on the first three

prototype problems stated in (§2). The fourth and the fifth prototype problems are treated in [6].

3.1 The ”thick” obstacle problem

In this situation the derived problem takes the form:































∆vε − ∂tv
ε = β′ε(u

ε − ψε)vε + ft in Q := Ω× (0, T ]

vε = (φε − ψε)t on ∂p(Ω× (0, T ])

vε = ∆(φε − ψε) on Ω× {0}.

(3.1)

8



where vε = (uε − ψε)t and f = −(∆ψε − ∂tψ
ε).

Our method, which uses the approach of [10], is essentially that of DeGiorgi’s, first appeared in

his celebrated work [18]. To simplify matters we start with a normalized situation i.e. we assume

that our solution is between zero and one in the unit parabolic cylinder. We will prove (Proposition

3.5) that if at the top center vε is zero then in a concentric subcylinder into the future vε decreases.

Then we rescale and repeat. But before that we need several lemmata. Our first lemma asserts

that if vε is ”most of the time” very near to its positive maximum in some cylinder, then in a

smaller cylinder into the future vε is strictly positive.

Lemma 3.1. Let Q1(x0, t0) ⊂ Q where Q1(x0, t0) := B1(x0, 0) × (t0 − 1, t0] with B1 := {x ∈ R
n :

|x − x0| ≤ 1}. Suppose that 0 < vε < 1 in Q1(x0, t0) where vε is a solution to (3.1), then there

exists a constant σ > 0, independent of ε, such that

ˆ

Q1(x0,t0)
(1− vε)2dx < σ (3.2)

implies that vε ≥ 1/2 in Q1/2(x0, t0).

Proof. For simplicity we drop the ε, we shift (x0, t0) to (0, 0), and write Q1 for Q1(0, 0). First,

we derive an energy inequality suited to our needs. Therefore we set w = 1 − v and the equation

becomes

∆w − ∂tw = β′(u− ψ)(w − 1)− ft.

Choose a smooth cutoff function ζ vanishing near the parabolic boundary of Q1 and k ≥ 0. Multiply

the above equation by ζ2(w − k)+ and integrate by parts to obtain

1

2

ˆ

Q1

∂t[(ζ(w − k)+)2]dxdt+

ˆ

Q1

|∇(ζ(w − k)+)|2dxdt =
ˆ

Q1

βt(u− ψ)ζ2(w − k)+dxdt

+

ˆ

Q1

[(w − k)+]2(|∇ζ|2 + ζ∂tζ)dxdt+

ˆ

Q1

ftζ
2(w − k)+dxdt. (3.3)

Integrating by parts in t the last term on the right we obtain

1

2

ˆ

B1

(ζ(w − k)+)2(x, 0)dx +

ˆ

Q1

|∇(ζ(w − k)+)|2dxdt = −
ˆ

Q1

β(u− ψ)∂t(ζ
2(w − k)+)dxdt

9



+

ˆ

B1

β(u−ψ)ζ2(w−k)+(x, 0)dx+
ˆ

Q1

[(w−k)+]2(|∇ζ|2+ζ∂tζ)dxdt+
ˆ

Q1

ftζ
2(w−k)+dxdt. (3.4)

Note, since β is nonpositive and that the upper limit of t−integration, t = 0, could have been

replaced by any −1 ≤ t ≤ 0, our energy inequality takes the form

max
−1≤t≤0

ˆ

B1

(ζ(w − k)+)2dx+

ˆ

Q1

|∇(ζ(w − k)+)|2dxdt ≤

C

ˆ

Q1

(

[(w − k)+]2(|∇ζ|2 + |∂tζ|) + (w − k)+(|∂tζ|+ 1) + χ{w>k}

)

dxdt

with C = 2max{1, ||β||∞(2 + ||(utt)−||∞), ||ft||∞}, where we have used the time quasiconvexity of

the solution u.

Now, we want to obtain an iterative sequence of inequalities; thus we define for m = 0, 1, 2, ...

km :=
1

2

(

1− 1

2m

)

, Rm :=
1

2

(

1 +
1

2m

)

Qm :=

{

(x, t) : |x| ≤ Rm, −R2
m ≤ t ≤ 0

}

and the smooth cutoff functions

χQm+1 ≤ ζm ≤ χQm

with

|∇ζm| ≤ C2m, |∂tζm| ≤ C4m.

Substituting ζ = ζm and setting wm = (w − km)
+ we obtain, by the Sobolev inequality, that

(
ˆ

Qm

(ζmwm)
2n+2

n dxdt

)
n

n+2

≤ C

(

4mC

ˆ

Qm

w2
mdxdt+ C4m

ˆ

Qm

wmdxdt+ |Qm ∩ {wm 6= 0}|
)

≤ C

(

4mC

ˆ

Qm

w2
mdxdt+

(

4m

2
+ 1

)
∣

∣

∣

∣

Qm ∩ {wm 6= 0}
∣

∣

∣

∣

)

.

Since

(km − km−1)
2|Qm ∩ {wm 6= 0}| ≤

ˆ

Qm

w2
m−1dxdt

10



we obtain

ˆ

(ζmwm)
2dxdt ≤

(
ˆ

(ζmwm)
2n+2

n dxdt

)
n

n+2
∣

∣

∣

∣

Qm ∩ {wm 6= 0}
∣

∣

∣

∣

2
n+2

≤ C16m
(
ˆ

(ζm−1wm−1)
2dxdt

)
n+4
n+2

. (3.5)

Setting

Im :=

ˆ

(ζmwm)
2dxdt

then they satisfy the recursive inequality

Im ≤ C16mI
1+ 2

n+2

m−1 .

It is well known from DeGiorgi’s work (see for instance Lemma II.5.6, page 95 of [20]) that Im → 0

as m→ 0 provided that

I0 ≤
1

2(n+2)2C
n+2
n

=: σ.

Our second Lemma asserts that if vε is very tiny ”most of the time” in some cylinder, then in

a smaller concentric cylinder, vε goes down to 1/2. The fact that β′ > 0 renders vε, more so any

nonnegative solution to (2.1), a subsolution (subcaloric).

Lemma 3.2. Let Q1 be as in Lemma 3.1. Suppose that vε is a subsolution to (3.1) and that

0 < vε < 1 in Q1. Then there exists a constant σ̄ > 0, independent of ε, such that

ˆ

Q1

(vε)2dxdt < σ̄

implies that vε ≤ 1/2 in Q1/2.

Proof. It is identical to the proof of Lemma 3.1 except for the energy inequality which is in fact

much simpler. As before we drop the ε. We see that

∆v − ∂tv ≥ ft in Q1. (3.6)

11



Therefore we multiply the equation by ζ2(v − k)+ where ζ and k are as in the proof of Lemma 3.1

and integrate by parts to obtain the energy inequality

max
−1≤t≤0

ˆ

B1

(ζ(v − k)+)2dx+

ˆ

Q1

|∇(ζ(v − k)+)|2dxdt ≤ 2

ˆ

Q1

[(v − k)+]2(|∇ζ|2 + |∂tζ|)dxdt.

Again, we substitute ζ = ζm and we set vm = (v − km)
+ where ζm and km are as in Lemma 3.1.

By Sobolev inequality

ˆ

(ζmvm)
2n+2

n dxdt ≤ C4m
ˆ

v2mdxdt

and since

(km − km−1)
2|Qm ∩ {vm 6= 0}| ≤

ˆ

v2m−1dxdt

we obtain

ˆ

(ζmvm)
2dxdt ≤

(
ˆ

(ζmvm)
2n+2

n dxdt

)
n

n+2
∣

∣

∣

∣

Qm ∩ {vm 6= 0}
∣

∣

∣

∣

2
n+2

≤ C16m
(
ˆ

(ζm−1vm−1)
2dxdt

)
2

n+2

. (3.7)

Hence, if

Im :=

ˆ

(ζmwm)
2dxdt

we have

Im ≤ C16mI
1+ 2

n+2

m−1

i.e. Im → 0 as m→ 0 provided that

I0 ≤
1

2(n+1)2C
n+2
2

=: σ̄.

The next lemma is the parabolic version of DeGiorgi’s isoperimetric lemma. One version of this

lemma is proved in [16] and with proper adjustments applies to our situation. We state it as our

next lemma.

12



Lemma 3.3. Given ǫ1 > 0, there exists a δ1 > 0 such that for every subsolution vε to (3.1)

satisfying 0 < vε < 1 in Q1,

|{(x, t) ∈ Q1 : v
ε = 0}| ≥ σ0|Q1|

if

|{(x, t) ∈ Q1 : 0 < vε < 1/2} < δ1|Q1|

then
ˆ

Q
R
′

[(vε − 1

2
)+]2dxdt ≤ Cǫ1.

where R
′
= cσ0 for σ0 > 0 and some 0 < c < 1.

In order to achieve our decay estimate to zero we shall take a point vε(0, 0) = 0 at the top

center of Q1 and show that in QR′ (0, 0), for some R
′
< 1, vε is pointwise strictly less than one .

This is the content of our next lemma.

Lemma 3.4. Let Q1 and σ be as in Lemma 3.1. Suppose that vε is a solution to (3.1) such that

vε(0, 0) = 0 and 0 ≤ vε ≤ 1 in Q1, then v
ε ≤ 1−Cσ in QR′ (0, 0) where C is independent of ε and

R
′
= σ

8 .

Proof. Again, we drop ε. Since v(0, 0) = 0, by Lemma 3.1

ˆ

Q1

(1− v)2dxdt ≥ σ.

It follows then that

|{v < 1− σ

4
} ∩Q1| ≥

1

4
σ|Q1|.

Therefore, we set

w :=
4

σ

[

v − (1− σ

4
)

]+

and we see that w is a subsolution to (3.1). Following DeGiorgi’s method we will consider a dyadic

sequence of normalized truncations

wk := 2k
[

w − (1− 2−k)

]+

13



still subsolutions to (3.1). We will show that, in finite number of steps k0 = k0(δ1) (where δ1 is

defined in Lemma 3.3 and Cǫ1 ≤ σ̄, σ̄ that of Lemma 3.2),

|{wk0 > 0}| = 0.

Note that for every k, 0 ≤ wk ≤ 1 and |{wk = 0} ∩ Q1| ≥ σ
4 |Q1|. Assume, now, that for every k

|{0 < wk < 1/2} ∩Q1| ≥ δ1|Q1|. Then for every k

|{wk = 0}| = |{wk−1 = 0}| + |{0 < wk < 1/2}| ≥ |{wk−1 = 0}| + δ1|Q1|.

Therefore after a finite number of steps say k0 > 1/δ1 we get |{wk0 = 0}| ≥ |Q1|. Thus wk0 < 0 i.e.

2k0 [w− (1− 2−k0)]+ = 0 or w < 1− 2−k0 . Suppose, now, that there exists k′, 0 ≤ k′ ≤ k0 such that

|{0 < wk′ <
1

2
}| < δ1|Q1|.

By Lemma 3.3 applied to wk′ with σ0 = σ
4 and consequently by Lemma 3.2 applied to wk′+1 we

obtain wk′+1 ≤ 1/2 inQR′ , whereR
′
= σ

8 , i.e. w < 1−2−(k′+2). Hence in both cases w < 1−2−(k0+2)

in QR′ or v < 1− 2−(k0+4)σ.

The estimates obtained above are all independent of ε. We would like to iterate the lemmata

above to force the maximum of vε to decrease to zero in a dyadic sequence of decreasing parabolic

cylinders in order to obtain the continuity of vε.

Proposition 3.5. Let vε be a solution to (3.1) in Q then

|(vε)+(x, t)− (vε)+(x0, t0)| ≤ Cω(|x− x0|2 + |t− t0|)

for any (x, t) and (x0, t0) in Q, where C is independent of ε and ω denotes the modulus of continuity.

Proof. It is enough to consider only the case when (vε)+(x0, t0) = 0, since, otherwise, vε satisfies

a nice equation with smooth data and with regular boundary. Therefore, for simplicity, we take

14



(x0, t0) = (0, 0) and Q1 as before. Again, we drop the ε and we set

Qk := QRk
, Mk := sup

Qk

v

where Rk :=
σ
8Mk and

v̄ :=
vk
Mk

where vk(x, t) := v(Rkx, (Rk)
2t). Then v̄ satisfies

∆v̄ − ∂tv̄ ≥ f̄t in Q1.

Therefore by Lemma 3.4,

sup
QR′

v̄ ≤ 1− Cσ

or in our original setting

sup
Qk+1

v ≤ µk sup
Qk

v

where µk = 1− C(supQk
v+)1+

n
2 . So, even, if µk → 1 as k → ∞, Mk → 0.

To finish the proof, we use a standard barrier argument to get the continuity from the future.

Theorem 3.6. Let u be a solution to (2.1) then (u− ψ)+t is continuous.

Proof. It is well known that a subsequence of vε will converge uniformly to the unique solution of

(2.1).
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3.2 The (nondynamic) thin obstacle problem or Signorini Problem

Let us extend ψε to all Ω i.e. we take any function ψ̃ε(x′, xn, t) such that ψ̃ε(x′, 0, t) = ψε(x′, t),

ψ̃ε(x′, xn, t) < φ on ∂p((Ω \ Γ)× (0, T ]) and ∂ψ̃ε

∂ν (x′, 0, t) = 0. Then our problem takes the form















































∆vε − ∂tv
ε = ft in Ω× (0, T ]

−∂νvε = β′ε(u
ε − ψ̃ε)vε on Γ× (0, T ]

vε = (φε − ψ̃ε)t on ∂p(Ω \ Γ× (0, T ])

vε = ∆(φε − ψ̃ε) on Ω× {0}.

(3.8)

where vε = (uε − ψ̃ε)t and f = −(∆ψ̃ε − ∂tψ̃
ε).

We shall repeat the approach of Section 3.1 but, instead of parabolic cylinders, we take parabolic

rectangular cylinders with one of its sides lying on Γ. We normalize again i.e. our solution is between

zero and one and we prove that, if vε is zero on the top center and on Γ in such a cylinder, then in

a concentric subcylinder into the future vε is smaller than one. Then we rescale and repeat.

Our first lemma asserts that if vε is ”most of the time” very near to its positive maximum in

some cylinder sitting in (Rn+1) against the hyperplane xn = 0 and going backwards in time then

in a smaller cylinder into the future, vε is strictly positive.

Lemma 3.7. Let Q1(x
′
0, 0, t0) ⊂ Ω× (0, T ] where Q1(x

′
0, 0, t0) = B1(x

′
0, 0)× (t0−1, t0], B1(x

′
0, 0) =

B′
1(x

′
0) × (0, 1), B′

1(x0) = {x′ : |x′ − x′0| < 1} and Q′
1(x

′
0, t0) = B′

1(x
′
0) × (t0 − 1, t0]. Suppose that

0 < vε < 1 in Q1(x0, t0) where vε is a solution to (3.8). Then there exists a constant σ > 0,

independent of ε, such that

 

Q′
1(x

′
0,t0)

χ{1−vε>0}dx
′dt+

 

Q1(x0,t0)
(1− vε)2dxdt < σ

implies that

vε ≥ 1

2

in Q1/2(x0, t0).

Proof. For simplicity we drop the superscript ε, shift (x0, 0, t0) to (0, 0, 0) and writeQ1 forQ1(0, 0, 0).
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We first derive an energy inequality associated to our problem. Set w = 1 − v then the problem

becomes














































∆w − ∂tw = −ft in Ω× (−T, T ]

∂νw = βt(u− ψ̃) on Γ× (−T, T ]

w = 1− (φ− ψ̃)t on ∂p(Ω \ Γ× (−T, T ])

w = 1−∆(φ− ψ̃) on Ω× {−T}.

(3.9)

Choose a smooth cutoff function ζ vanishing near the parabolic boundary of Q1 except on Q′
1 and

k ≥ 0. Multiply the above by ζ2(w − k)+ and integrate by parts to obtain

ˆ

Q1

[∇(ζ2(w − k)+)∇w + ζ2(w − k)+∂tw]dxdt =

ˆ

Q′
1

ζ2(w − k)+∂νwdx
′dt+

ˆ

Q1

ftζ
2(w − k)+dxdt

and

ˆ

Q1

[

1

2
∂t[(ζ(w − k)+)2] + |∇(ζ(w − k)+)|2

]

dxdt =

ˆ

Q′
1

∂t[ζ
2(w − k)+β(u− ψ)]dx′dt

−
ˆ

Q′
1

ζ2∂t(w − k)+β(u− ψ)dx′dt+ 2

ˆ

Q′
1

ζ∂tζ(w − k)+β(u− ψ)dx′dt

+

ˆ

Q1

(|∇ζ|2 + ζ∂tζ)[(w − k)+]2dxdt+

ˆ

Q1

ftζ
2(w − k)+dxdt. (3.10)

Now, using the fact that β is bounded and negative, (u−ψ)tt is bounded below and since the upper

limit of the t−integration t = 0 can be replaced by any −12 ≤ t ≤ 0, we obtain

1

2
max

−1≤t≤0

ˆ

B1

[(w − k)+ζ]2dx+

ˆ

Q1

|∇((w − k)+ζ)|2dxdt

≤ ||β||∞||(u− ψ)−tt ||∞
ˆ

Q1∩{w>k}
ζ2dx′dt+ ||β||∞

ˆ

Q′
1

(w − k)+∂tζdx
′dt

+

ˆ

Q1

[(w − k)+]2(|∇ζ|2 + ∂tζ)dxdt+

ˆ

Q1

ftζ
2(w − k)+dxdt

and, a fortiori, we have the ”energy inequality”

max
−1≤t≤0

ˆ

B1

[(w − k)+ζ]2dx+

ˆ

Q1

|∇((w − k)+ζ)|2dxdt

17



≤ C

(
ˆ

Q′
1

(∂tζ
2(w− k)+ +χ{w>k})dx

′dt+

ˆ

Q1

[(w− k)+]2(|∇ζ|2 + ∂tζ)dxdt+

ˆ

Q1

ζ2(w− k)+dxdt

)

(3.11)

where C = Cmax{1, ||β||∞(2 + ||(utt)−||∞), ||ft||∞}.

Now that we have our energy inequality we shall obtain an iterative sequence of inequalities.

We, therefore, define

km =
1

2

(

1− 2−m
)

Rm =
1

4

(

1 +
1

2m

)

Qm := Bm × (R2
m, 0], Bm := B′

m × [0, Rm], B′
m := B′

Rm
= {|x′| < Rm},

Q′
m := {(x1, ..., xn, t) : −Rm ≤ xi ≤ Rm,−Rm ≤ t ≤ 0}

and we choose smooth cutoff functions ζm such that χQm+1 ≤ ζm ≤ χQm, |∇ζm| ≤ C2m and

0 ≤ ∂tζm ≤ C4m. We set wm = (w − km)
+ and we denote by

Im := max
−R2≤t≤0

ˆ

(ζmwm)
2dx+

ˆ

|∇(ζmwm)|2dxdt.

We want to prove that for every m ≥ 0, Im ≤ α0M
−m with α0 > 0 and M > 1 to be chosen. The

proof is by induction, for 1 ≤ m ≤ 2 we choose σ such that 4Cσ < M−2 and for m ≥ 3 we have

Im ≤ C16m
(
ˆ

(wm−1ζm−1)
2dxdt+

ˆ

(wm−1ζm−1)
2dx′dt

)

= C16m
(
ˆ

(wm−1ζm−1)
2dxdt− 2

ˆ

(wm−1ζm−1)(wm−1ζm−1)xndxdt

)

≤ C16m
[
ˆ

(wm−1ζm−1)
2dxdt+

(
ˆ

(wm−1ζm−1)
2dxdt

)1/2(ˆ

|∇(ζm−1wm−1)|2dxdt
)1/2]

(3.12)

where we used the divergence theorem and Hölder’s inequality. Now, by Sobolev’s inequality, we

obtain

ˆ

Qm

(wm−1ζm−1)
2dxdt ≤

(
ˆ

Qm−1

(wm−1ζm−1)
2n+2

n dxdt

)
n

n+2
(
ˆ

Qm−1

χ{wm−1 6=0}dxdt

)
2

n+2

≤ 24mI
1+ 2

n
m−2 .
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Therefore, by substituting in the above we obtain

Im ≤ C28m(I
1+ 2

n
m−2 + I

1/2
m−1I

1
2
+ 1

n
m−2 ).

Hence, if we choose M = 28n and α0 = C−n
2 2−8n(n+2), the claim is proved.

From this point on we observe that, since β′ > 0, the boundary integral is nonnegative and can

be omitted; then by reflecting about the hyperplane we are in the same situation as that of Section

3.1 with square cylinders. Therefore we have arrived at out main result:

Proposition 3.8. Let vε be a solution to (3.8) in Q then

|(vε)+(x, t)− (vε)+(x0, t0)| ≤ C(|x− x0|2 + |t− t0|)α

for any (x, t) and (x0, t0) in Q and some 0 < α < 1, where C and α are independent of ε.

Proof. It is enough to consider only the case when (vε)+(x0, t0) = 0. For simplicity, we take

(x0, t0) = (0, 0) and Q1 as before. Again, we drop the ε and we set

Qk := QRk
, Mk := sup

Qk

v

where Rk :=
σ
8Mk and

v̄ :=
vk
Mk

where vk(x, t) := v(Rkx, (Rk)
2t). Then v̄ satisfies

∆v̄ − ∂tv̄ ≥ f̄t in Q1

and

sup
QR′

v̄ ≤ 1− Cσ

or in our original setting

Mk+1 ≤ µkMk

19



where µk = 1−C(Mk
Rk

)1+
n
2 . So, even, if µk → 1 as k → ∞, Mk → 0. As a matter of fact Mk ∼ 2−k

and Rk ∼ 2−k.

To finish the proof, we use a standard barrier argument to get the Hölder continuity.

Theorem 3.9. Let u be a solution to (2.2), then (u− ψ)+t is Hölder continuous.

Proof. It is well known that a subsequence of vε will converge uniformly to the unique solution of

(2.2).

3.3 The dynamic thin obstacle problem

Given a bounded domain Ω in R
n with part of its boundary Γ ⊂ ∂Ω lying on R

n−1, a function ψ

(the obstacle) defined on Γ such that maxΓ×{0} ψ(x
′, 0) > 0, ψ(x′, t) < 0 for every x′ ∈ ∂Γ× (0, T ]

and a function φ, with φ = 0 on (∂Ω \ Γ)× (0, T ], φ ≥ ψ on Γ× {0}, find a u such that

∆u− ∂tu = 0 in Ω× (0, T ]

u ≥ ψ, α∂tu+ ∂νu ≥ 0

(α∂tu+ ∂ν)(u− ψ) = 0











on Γ× (0, T ]

u = φ on ∂p((Ω \ Γ)× (0, T ])

(3.13)

where ν is the outward unit normal on ∂Ω and α any constant, 0 < α ≤ 1.

The approximate (penalized) problem is then































∂tu
ε −∆uε = 0, in Ω× (0, T ]

−α∂tuε − ∂νu
ε = βε(u

ε − ψε) on Γ× (0, T ]

uε = φε + ε on ∂p(Ω \ Γ× (0, T ])

(3.14)

where βε is as in Section 2. Let’s extend ψε to all Ω i.e. we take any function ψ̃ε(x′, xn, t) such that

ψ̃ε(x′, 0, t) = ψε(x′, t), ψ̃ε(x′, xn, t) < φ on ∂p((Ω \Γ)× (0, T ]) and ∂ψ̃ε

∂ν (x′, 0, t) = 0. Subtracting ψ̃ε
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from the solution we have































∆(uε − ψ̃ε)− ∂t(u
ε − ψ̃ε) = −(∆ψ̃ε − ∂tψ̃

ε) in Ω× (0, T ]

−α∂t(uε − ψ̃ε)− ∂ν(u
ε − ψ̃ε) = βε(u

ε − ψ̃ε) + α∂tψ̃
ε on Γ× (0, T ]

uε − ψ̃ε = φε − ψ̃ε + ε on ∂p(Ω \ Γ× (0, T ]).

(3.15)

Differentiate with respect to time and set vε = (uε − ψ̃ε)t to obtain















































∆vε − ∂tv
ε = −(∆ψ̃ε − ∂tψ̃

ε)t in Ω× (0, T ]

−α∂tvε − ∂νv
ε = β′ε(u

ε − ψ̃ε)vε + α∂tψ̃
ε
t on Γ× (0, T ]

vε = (φε − ψ̃ε)t on ∂p(Ω \ Γ× (0, T ])

vε = ∆(φε − ψ̃ε) on Ω× {0}.

(3.16)

In order to avoid technicalities, in this more complex situation, and bring forth the main idea,

we shall assume throughout this section that (∆ψ̃ε − ∂tψ̃
ε)t = 0 and we work with















































∆vε − ∂tv
ε = 0 in Ω× (0, T ]

−α∂tvε − ∂νv
ε = β′ε(u

ε − ψ̃ε)vε + α∂tψ̃
ε
t on Γ× (0, T ]

vε = (φε − ψ̃ε)t on ∂p(Ω \ Γ× (0, T ])

vε = ∆(φε − ψ̃ε) on Ω× {0}.

(3.17)

We shall repeat the approach of Section 3.1 but, as it was done in [5], instead of parabolic

cylinders we take ”hyperbolic” hypercubes with one of its sides lying on Γ. We normalize again

i.e. our solution is between zero and one and we prove (Lemma 3.13) that, if vε is zero on the

top center and on Γ in such a hypercube, then in a concentric subhypercube into the future vε is

smaller than one. Then we rescale and repeat. The rescaling, of course, is hyperbolic appropriate

for the boundary term on Γ but diminishes the time derivative in the heat equation; this though

does not prevent us to obtain the continuity, as it was done in [5].

Our first lemma asserts that if vε is ”most of the time” very near to its positive maximum in
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some hypercube sitting in (Rn+1) against the hyperplane xn = 0 and going backwards in time then

in a smaller hypercube into the future, vε is strictly positive.

Lemma 3.10. Let QR(x
′
0, 0, t0) ⊂ Ω × (0, T ] where QR(x

′
0, 0, t0) = BR(x

′
0, 0) × (t0 − R, t0],

BR(x
′
0, 0) = B′

R(x0) × (0, 1), B′
R(x0) = {x′ = (x1, ..., xn−1) : |x′i − x′0i| < R, i = 1, ..., n − 1}

and QR(x
′
0, 0) = B′

R(x
′
0)× (t0−R, t0]. Suppose that 0 < vε < 1 in QR(x0, t0) where v

ε is a solution

to (3.17). Then there exists a constant σ > 0, independent of ε, such that

 

Q′
R(x′0,t0)

(1− vε)2dx′dt+

 

QR(x0,t0)
(1− vε)2dxdt < σ

implies that

vε ≥ 1

8

in Qr/8(x0, t0) = B′
R(x

′
0)× (0, 18)× (t0 − R

8 , t0].

Proof. For simplicity we drop the superscript ε, shift (x0, 0, t0) to (0, 0, 0) and write QR for

QR(0, 0, 0). We first derive an energy inequality associated to our problem. Set w = 1− v then the

problem becomes















































∆w − ∂tw = 0 in Ω× (−T, T ]

α∂tw + ∂νw = βt(u− ψ̃) + α∂tψ̃t on Γ× (−T, T ]

w = 1− (φ− ψ̃)t on ∂p(Ω \ Γ× (−T, T ])

w = 1−∆(φ− ψ̃) on Ω× {−T}.

(3.18)

Choose a smooth cut-off function ζ vanishing near the parabolic boundary of QR except on Q′
R

and k ≥ 0. Multiply the above by ζ2(w − k)+ and integrate by parts to obtain

ˆ

QR

[∇(ζ2(w − k)+)∇w + ζ2(w − k)+∂tw]dxdt−
ˆ

Q′
R

ζ2(w − k)+∂νwdx
′dt = 0

and

ˆ

QR

[|∇(ζ2(w− k)+)|2 + 1

2
∂t(ζ

2(w− k)+)2]dxdt−
ˆ

Q′
R

ζ2(w− k)+(βt(u−ψ) +αψtt −α∂tw)dx
′dt =
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=

ˆ

QR

((w − k)+)2(|∇ζ|2 + ζζt)dxdt

and

α

2

ˆ

Q′
R

∂t[(ζ(w − k)+)2]dx′dt +

ˆ

QR

[

1

2
∂t[(ζ(w − k)+)2] + |∇(ζ(w − k)+)|2

]

dxdt

=

ˆ

Q′
R

∂t[ζ
2(w − k)+β(u− ψ)]dx′dt−

ˆ

Q′
R

ζ2∂t(w − k)+β(u− ψ)dx′dt

+ 2

ˆ

Q′
R

ζ∂tζ(w − k)+β(u− ψ)dx′dt+ α

ˆ

Q′
R

ζ∂tζ((w − k)+)2dx′dt

+ α

ˆ

Q′
R

ζ2(w − k)+ψttdx
′dt+

ˆ

QR

(|∇ζ|2 + ζ∂tζ)[(w − k)+]2dxdt.

(3.19)

Now, using the fact that β is bounded and negative, (u−ψ)tt is bounded below and since the upper

limit of the t−integration t = 0 can be replaced by any −R ≤ t ≤ 0, we obtain

α

2
max

−R≤t≤0

ˆ

B′
R

[(w − k)+ζ]2dx′ +
1

2
max

−R≤t≤0

ˆ

BR

[(w − k)+ζ]2dx+

ˆ

QR

|∇((w − k)+ζ)|2dxdt

≤ ||β||∞||(u− ψ)−tt ||∞
ˆ

QR∩{w>k}
ζ2dx′dt+ 2||β||∞

ˆ

Q′
R

(w − k)+|∂tζ|dx′dt

+α

ˆ

Q′
R

[(w − k)+]2|∂tζ|dx′dt+ α||ψtt||∞
ˆ

Q′
R

(w − k)+dx′dt+

ˆ

QR

[(w − k)+]2(|∇ζ|2 + |∂tζ|)dxdt

or

α max
−R≤t≤0

ˆ

B′
R

[(w − k)+ζ]2dx′ + max
−R≤t≤0

ˆ

BR

[(w − k)+ζ]2dx+

ˆ

QR

|∇((w − k)+ζ)|2dxdt

≤ C

(
ˆ

Q′
R

[(w − k)+]2|∂tζ|+ (w − k)+(1 + |∂tζ|)dx′dt+
ˆ

Q′
R∩{w>k}

ζ2dx′dt

)

+C

ˆ

QR

[(w − k)+]2(|∇ζ|2 + |∂tζ|)dxdt

where C = 2max{||β||∞, ||(u−ψ)−tt ||∞, 1, α||ψtt||∞} and, a fortiori, we have the ”energy inequality”

α max
−R≤t≤0

ˆ

B′
R

[(w − k)+ζ]2dx′ +

ˆ

QR

|∇((w − k)+ζ)|2dxdt
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≤ C

(
ˆ

Q′
R

[(w−k)+]2|∂tζ|+(w−k)+(1+|∂tζ|)+ζ2χ{w>k}dx
′dt+

ˆ

QR

[(w−k)+]2(|∇ζ|2+|∂tζ|)dxdt
)

.

(3.20)

Now that we have our energy inequality we shall obtain an iterative sequence of inequalities.

More precisely, the method consists in taking a sequence of decreasing cutoffs in space and time ζm

that converges to the indicator function of QR/4 and simultaneously a series of cutoffs of the graph

of u, um that converge to (w − 7/8)+ and prove by iteration that in the limit (w − 7/8)+ = 0 on

Qr/4. We follow closely the corresponding argument in [5]. We, therefore, define

km =
9

16
+

1

16

(

1− 2−m
)

Rm =
R

4

(

1 +
1

2m

)

Q′
m = {(x1, ..., xn, t) : −Rm ≤ xi ≤ Rm,−Rm ≤ t ≤ 0}

and we choose the cutoff functions ζm to depend only on x′ and t such that χQ′
m+1

≤ ζm ≤ χQ′
m
,

|∇ζm| ≤ C2m and |∂tζm| ≤ C2m. We set um = (u− km)
+ and we denote by

Im =

ˆ

Q′
R

(ζmum)
2dx′dt+

ˆ δm/2

0

ˆ

|∇(ζmum)|2dxdt

where 0 < δ < 1 is chosen such that 2n2−
(n+6)2−m−1

δm ≤ 2−m−4 holds. We also choose M as in [5] to

satisfy 2n+1M−m
2 (δn)−m−1 ≤ 2−m−6, M−m ≥ C4m(1+ 1

n−1
)M−(m−3)(1+ 1

n−1
), m ≥ 14(n − 1).

We want to prove simultaneously that for every m ≥ 0, Im ≤ M−m and that um = 0 on

Q′
m × { δm2 }. The proof is by induction and is identical with Step 2a and Step 2b of Lemma 2.2 in

[5] except that

||uχQ′
R
∗H(xn)|| ≤ ||H(y)||∞({xn≥1})

ˆ

Q′
R

udx′dt ≤ 2n+2

π
n
2

(

n+ 2

2e

)n+2

|Q′
R|1/2σ1/2 ≤ 1

64

for σ small enough. So we concentrate on Step 2c, where we will show that

Im ≤ C4m(1+ 1
n−1

)I
1+ 1

n−1

m−3 , m ≥ 14n − 13.
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By the energy inequality,

Im ≤
ˆ

(wmζm−1)
2dx′dt+ C

[

C2m
ˆ

(wmζm−1)
2dx′dt+ (1 + C2m)

1

2

ˆ

(wmζm−1)
2dx′dt

]

+C

[

(1 + C2m)
1

2
|Qm−1 ∩ {wm 6= 0}| + |Q′

m−1 ∩ {wm 6= 0}|+ (C2m)2
ˆ

(wmζm−1)
2dxdt

]

+C

[

1

2

ˆ

(wmζm−1)
2dxdt+

1

2
|Qm−1 ∩ {wm 6= 0}|

]

where we have used Young’s inequality. Since wm < wm−1 and {wm 6= 0} = {wm−1 > 2−m−4}, we

have

Im ≤ C2m
ˆ

(wm−1ζm−1)
2dx′dt+C4m

ˆ

(wm−1ζm−1)
2dxdt.

Also, the integral of the second term i.e

ˆ

(wm−1ζm−1)
2dxdt ≤

ˆ

|(wm−2ζm−2) ∗H(xn)|2dxdt ≤ ||H||2L1(QR)

ˆ

(wm−2ζm−2)
2dx′dt.

Therefore

Im ≤ C4m
ˆ

(wm−2ζm−2)
2dx′dt

≤ C4m
(
ˆ

(wm−2ζm−2)
2 n
n−1 dx′dt

)
n−1
n

|{wm−2 6= 0} ∩Q′
m−2|

1
n

≤ C4m(1+ 1
n−1

)
ˆ

(wm−3ζm−3)
2 n
n−1 dx′dt. (3.21)

By Sobolev’s inequality

Im ≤ C4m(1+ 1
n−1

)

(
ˆ

(wm−3ζm−3)
2dx′dt+

ˆ

|Λ1/2(wm−3ζm−3)|2dx′dt
)

n
n−1

where Λ(wm−3ζm−3) = − ∂
∂xn

(wm−3ζm−3). Since

ˆ

|Λ1/2(wm−3ζm−3)|2dx′dt ≤
ˆ

|∇(wm−3ζm−3)|2dxdt
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we have

Im ≤ C4m(1+ 1
n−1

)I
1+ 1

n−1

m−3 for every m ≥ 14(n − 1) + 1

i.e. Im → 0 as m→ ∞ provided that

I0 ≤ C−(n−1)4−n(n−1) =: σ.

Hence to complete the proof, consider the function w̄ defined by































∆w̄ − ∂tw̄ = 0 in QR/4

w̄ = 1 on ∂p(QR/4 \ {xn = 0}

w̄ = 5
8 on Q′

R/4.

(3.22)

Then w̄ < 7/8 in QR/8 and by the maximum principle w ≤ w̄.

Our second lemma asserts that if vε is very tiny ”most of the time” in some hypercube (as

above) then, in a smaller concentric hypercube, vε goes down from 1 to 7/8.

Lemma 3.11. Let QR(x
′
0, 0, t0) be as in Lemma 3.10. Suppose that vε is a subsolution to (3.17)

and that 0 < vε < 1 in QR(x
′
0, 0, t0). Then there exists a constant σ̄ > 0, independent of ε, such

that
 

Q′
R(x′0,t0)

(vε)2dx′dt+

 

QR(x′0,0,t0)
(vε)2dxdt < σ̄

implies that

vε ≤ 7

8

in Qr/8(x0, 0, t0).

Proof. The proof is identical to the proof of Lemma 3.10 except from the energy inequality. For

simplicity again we drop the ε and take (x′0, 0, t0) = (0, 0, 0) with QR = QR(0, 0, 0). Since β′ ≥ 0,

v satisfies














∆v − ∂tv = 0 in QR

−α∂tv − ∂νv ≥ α∂tψt on Q′
R

(3.23)
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Choose again, a smooth cutoff function ζ vanishing near the parabolic boundary of QR except on

Q′
R and k ≥ 0. Multiply the above by ζ2(v − k)+ and integrate by parts to obtain

ˆ

QR

[∇(ζ2(v − k)+)∇v + ζ2(v − k)+∂tv]dxdt−
ˆ

Q′
R

ζ2(v − k)+∂νvdx
′dt ≤ 0

or
ˆ

QR

[

|∇(ζ(v − k)+)|2 + 1

2
∂t((ζ(v − k)+)2)

]

dxdt+

ˆ

Q′
R

ζ2(v − k)+
[

αψtt + α∂tv

]

dx′dt

≤
ˆ

QR

((v − k)+)2
[

|∇ζ|2 + ζ∂tζ

]

dxdt

and

α

2

ˆ

Q′
R

∂t[(ζ(v − k)+)2]dx′dt+

ˆ

QR

[

∂t[(ζ(v − k)+]2) + |∇(ζ(v − k)+)|2
]

dxdt

≤ α

ˆ

Q′
R

[(v − k)+]2|∂tζ|dx′dt+ α||ψtt||L∞

ˆ

Q′
R

(v − k)+dx′dt+

ˆ

QR

[(v − k)+]2(|∇ζ|2 + |∂tζ|)dxdt.

And again taking as upper limit any −R ≤ t ≤ 0 we obtain

α max
−R≤t≤0

ˆ

B′
R

[ζ(v − k)+]2dx′ +

ˆ

QR

|∇(ζ(v − k)+)|2dxdt

≤ C̄

{
ˆ

Q′
R

[

[(v − k)+]2|∂tζ|+ (v − k)+
]

dx′dt+

ˆ

QR

[(v − k)+]2(|∇ζ|2 + |∂tζ|)dxdt
}

where C̄ = 2max{1, α||ψtt ||L∞}.

Now, since we have our energy inequality, the rest is as that of Lemma 3.10 and we define

σ̄ := C̄−(n−1)4−n(n−1).

We proceed, now, by using the parabolic version of DeGiorgi’s isoperimetric lemma. This lemma

is proved in [16] and with proper adjustments applies to our situation. We state it as our next

lemma.

Lemma 3.12. Given ǫ1 > 0, there exists a δ1 > 0 such that for every subsolution vε to (3.17)
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satisfying 0 < vε < 1 in QR,

|{(x, t) ∈ QR : vε = 0}| ≥ σ0|QR|

if

|{(x, t) ∈ QR : 0 < vε < 1/2} < δ1|QR|

then
 

Q′
R′

[

(vε − 1

2
)+

]2

dx′dt+

 

QR′

[

(vε − 1

2
)+

]2

dxdt < C
√
ǫ1

where R′ = σ0
2 R for σ0 > 0.

We are now ready to obtain our basic decay estimate to zero.

Lemma 3.13. Let QR(x
′
0, 0, t0) and σ be as in Lemma 3.10. Suppose that vε is a solution to (3.17)

such that vε(x′0, 0, t0) = 0 and 0 ≤ vε ≤ 1 in QR(x
′
0, 0, t0). Then vε ≤ 1 − Cσ in QR′(x′0, 0, t0)

where C is independent of ε and R′ = σ
16R.

Proof. We drop the ε, take (x′0, 0, t0) to be (0, 0, 0) (by translation), and set QR = QR(0, 0, 0).

Since v(0, 0, 0) = 0 by Lemma 3.10

 

Q′
R

(1− v)2dx′dt+

 

QR

(1− v)2dxdt ≥ σ.

It follows then that there exists a constant c0 < 1 such that

|{v < 1− σ

4
} ∩QR| ≥ c0σ|QR|.

Therefore set

w :=
4

σ

(

v − (1− σ

4
)

)+

and observe that w is a (nonnegative) subsolution to (3.17). By DeGiorgi again, the normalized

truncations i.e.

wk := 2k
(

w − (1− 2−k)

)+

are still subsolutions to (3.17). We will show, now that in a finite number of steps k0 = k0(δ1) (δ1
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as in Lemma 3.12) that |{wk0 > 0}| = 0. Note that for every k, 0 ≤ wk ≤ 1 and |{wk = 0}∩QR| ≥

σ1|QR|. Set C
√
ǫ1 ≤ σ̄ where ǫ1 is defined in Lemma 3.12 and σ̄ in Lemma 3.11. Hence we assume

that for every k, |{0 < wk <
1
2} ∩QR| ≥ δ1|QR|. Then for every k

|{wk = 0}| = |{wk−1 = 0}|+ |{0 < wk−1 < 1/2}| ≥ |{wk−1 = 0}|+ δ1|QR|

Hence after a finite number of steps say k0 > 1/δ1 we get |{wk0 = 0}| ≥ |QR|. Thus wk0 < 0 i.e.

2k0 [w− (1− 2−k0)]+ = 0 or w < 1− 2−k0 . Suppose, now, that there exists k′, 0 ≤ k′ ≤ k0 such that

|{0 < wk′ <
1

2
}| < δ1.

By Lemma 3.12 applied to wk′ and consequently by Lemma 3.11 applied to wk′+1 we conclude that

wk′+1 ≤ 7/8 in QR′ , where R′ = σ
16R i.e. w < 1 − 1

82
−(k′+1). A fortiori, in both cases we have

w < 1− 2−(k0+4) in QR′ that is v < 1− 2−k0−6σ.

The estimates we obtained above are all independent of ε and remain invariant under hyperbolic

scaling much the same way as in [5]. Although the time derivative term diminishes in the rescaling,

we still obtain the continuity of the time derivative.

Proposition 3.14. Let vε be a solution to (3.17) in QR. Suppose that 0 ≤ vε ≤ M where M is

independent of ε. If vε(0, 0, 0) = 0 then

vε(x′, xn, t) ≤ ω(|x′|, |xn|, |t|)

where ω is a modulus of continuity (i.e. monotone and ω(0) = 0) independent of ε.

Proof. We drop as usual the ε. Set

Qk := QRk
= (−Rk, Rk)n−1 × (0, rk)× (−Rk, 0] and Mk := sup

Qk

v

where Rk := rkR, rk :=
σ
16Mk. Define

v̄ :=
vk
Mk

, where vk(x, t) := v(rkx
′, rkxn, rkt).
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Then v̄ verifies














∆v̄ − rk∂tv̄ = 0 in QR

−α∂tv̄ − ∂ν v̄ = β′(u− ψ)v̄ + ψ̄t on Q′
R

(3.24)

where ψ̄t = α∂tψt/Mk. We apply Lemma 3.13 to v̄ to obtain

sup
QR′

v̄ ≤ 1− Cσ.

Hence in our original setting

sup
Qk+1

v ≤ µk sup
Qk

v

where µk = 1 − C(supQk
v)n−1. Therefore µk → 1 as k → ∞ only if supQk

u → 0 which yields a

modulus of continuity. Finally, a standard barrier argument yields the continuity from the future,

too.

Theorem 3.15. Let u be a solution to (3.13) then (u−ψ)+t is continuous with a uniform modulus

of continuity.

4 Further implications on the (nondynamic) thin obstacle prob-

lem or (time dependent) Signorini Problem

In the present section we shall concentrate on the nondynamic parabolic ”thin” obstacle or parabolic

Signorini problem and we will show how the quasi-convexity yields the optimal regularity of the

solution as well as free boundary regularity. The other cases, as it was mentioned in §1, will be

treated in forthcoming papers. Since it is easier to work with the zero obstacle, we extend the

obstacle as it was done in §3.2 in all of Ω and subtract it from the solution which we still denote

by u. More precisely:

Given Ω ⊂ R
n be an open bounded set with smooth boundary ∂Ω and Γ ⊂ ∂Ω lying in R

n−1.
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We consider the following problem:















































∆u− ∂tu = f, in Ω× (−T, T ]

∂νu ≥ 0, u ≥ 0 on Γ× (−T, T ]

u∂νu = 0 on Γ× (−T, T ]

u = φ− ψ on ∂p(Ω \ Γ× (−T, T ])

(4.1)

where ν is the unit outward normal, the functions ψ(x′, t) and φ(x, t) are smooth functions, satis-

fying the compatibility conditions of §2, and f := −(∆ψ̃ − ∂tψ̃). Notice that the extended ψ̃ can

be chosen, with no loss of generality, in such a way so that f is independent of xn.

The methods to follow can be easily extended to cover a more general nonhomogeneous term

f . But, in order to avoid minor technicalities and set forth the ideas involved behind it, we work

with (4.1).

4.1 Optimal regularity of the space derivative

The solution to the problem (4.1) is globally Lipschitz continuous in space and furthermore the

space normal to the hyperplane derivative enjoys a Cα for 0 < α ≤ 1
2 parabolic regularity up to

the hyperplane (see [2] and [1]). We will prove in this subsection that, actually, α = 1
2 . Recently,

in [17], the optimal space derivative regularity was also obtained using the parabolic Almqren’s

frequency formula approach.

First, we want to complete what had started in [4] i.e. to prove a parabolic monotonicity

formula analogous to the elliptic one for the global zero obstacle case. We thus take in (4.1) f = 0

and the domain Ω to be the half space R
n
+. In this situation, it is clear, perhaps by appropriately

blowing up the local solution, that the solution u is convex in the tangential and time directions.

For simplicity we take the origin to be a free boundary point. The proof of the monotonicity result

relies on the following eigenvalue problem (see the appendix of [4]):

Lemma 4.1. Set

λ0 = inf
w∈H1(Rn

+)

w=0 on R
n−1
−

´

R
n
+
|∇w(y,−1)|2e−

−|y|4

4 dy

´

R
n
+
w2(y,−1)e−

−|y|4

4 dy
,
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where

R
n
+ := {x = (x′, xn) ∈ R

n : xn > 0}

and

R
n−1
− := {(x′, 0) : x′ ∈ R

n−1, xn−1 < 0}.

Then λ0 = 1/4.

Let w be any function in Rn+× [−1, 0] that is caloric in R
n
+× [−1, 0], where Rn+ = {x = (x′, xn) ∈

R
n : xn > 0}. We assume that w has moderate growth at infinity,

ˆ

BR

w2(x,−1)dx ≤ Ce
|x|2

4+ε

for some positive constant C, R large and some ε > 0. We also set

G(x, t) =















1
(4πt)n/2 e

− |x|2

4t , t > 0

0 t ≤ 0.

(4.2)

Lemma 4.2. Set w(x, t) = uxn(x, t) where u is a solution, with the above restrictions, to problem

(4.1) and assume that w(0, 0) = 0. If

ϕ(t) :=
1

t1/2

ˆ 0

−t

ˆ

R
n
+

|∇w|2G(x,−s)dxds,

then ϕ(t) is increasing in t.

Proof. Note that ∆w2 = 2w∆w+2|∇w|2. We compute ϕ′(t), with a usual mollification argument,

to obtain

ϕ′(t) = − 1

2t3/2

ˆ 0

−t

ˆ

R
n
+

|∇w|2G(x,−s)dxds + 1

t1/2

ˆ

R
n
+

|∇w(x,−t)|2G(x, t)dx

= − 1

2t3/2

ˆ 0

−t

ˆ

Rn
+

(
1

2
∆w2 − wwt)G(x,−s)dxds +

1

t1/2

ˆ

Rn
+

|∇w(x,−t)|2G(x, t)dx.

By integrating by parts and noticing that ∆G+Gt = δ(0,0), w(0, 0) = 0 and G(x, 0) = 0, we obtain,
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ϕ′(t) = − 1

4t3/2

ˆ

Rn
+

w2(x,−t)G(x, t)dx +
1

t1/2

ˆ

Rn
+

|∇w(x,−t)|2G(x, t)dx

− 1

4t3/2

ˆ 0

−t

ˆ

Rn−1

2wwνG(x
′, 0,−s)dx′ds. (4.3)

Hence, by the eigenvalue problem of Lemma 4.1 and the complimentary conditions of the solution

on Rn−1, ϕ′(t) ≥ 0.

Theorem 4.3. If u is a solution to the global convex case of (4.1) then ∇u ∈ C
1/2,1/4
x,t up to the

coincidence set.

Proof. It is enough to prove that u tends to zero in a parabolic C1 fashion as (x, t), a point in

the noncoincidence set, approaches a point (x0, t0) in the coincidence set which we take to be the

origin. Set w = uxn , then w satisfies the hypothesis of Lemma 4.2. In particular, w vanishes at the

origin therefore

1

t1/2

ˆ 0

−t

ˆ

R
n
+

|∇w(x, s)|2G(x,−s)dxds ≤ C. (4.4)

Since w vanishes on at least half of the space for all t ≤ 0, the Poincare inequality implies that

ˆ

R
n
+

w2(y,−r2)G(x− y, t+ r2)dy ≤ 4r2
ˆ

R
n
+

|∇w(y,−r2)|2G(x− y, t+ r2)dy. (4.5)

Since w2 is a subsolution across xn = 0 we have, for every (x, t) ∈ Q−
r/2 and s < r/2

w2(x, t) ≤
ˆ

Rn

w2(y, s)G(x− y, t− s)dy. (4.6)

Now integrate (4.6) with respect to s from −r2 to −r2/2 to obtain

r2w2(x, t) ≤
ˆ −r2/2

−r2

ˆ

Rn

w2(y, s)G(x− y, t− s)dyds (4.7)

and combining with Poincare inequality we have

w2(x, t) ≤ 4

ˆ −r2/2

−r2

ˆ

Rn

|∇w|2G(x− y, t− s)dyds (4.8)
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for every (x, t) ∈ Q−
r/2. Hence by (4.4), the proof is complete.

Now, we remove the restrictions previously imposed and we show how to improve the 0 < α < 1

in the Cα regularity to get C1/2. First we prove a lemma, which uses the normal semi-concavity,

the tangential semi-convexity, and the time semi-convexity.

Lemma 4.4. Let u be a solution of (4.1) in Q+
1 with ∇u, u+t ∈ C

α,α
2

x,t Then there exists a δ =

δ(α) > 0 such that

(0, 0, t) /∈ Γ({uxn < −rα+δ} ∩Q′
r)

for every t ∈ [−r2, 0] and 0 < r < 1, where Γ(A) denotes the convex hull of the set A.

Proof. If

(x′, 0,−r2) ∈ {uxn < −rα+δ}

then

u(x′, h,−r2) ≤ −rα+δh+
M

2
h2

since uxnxn < M . Take h = rα+mδ

M for some m > 1; in this case

u(x′, h,−r2) ≤ −r
2α+(m+1)δ

2M
.

Moreover, if we restrict the considerations to |x′| ≤ r
2M then

u(x′, h,−r2) +M |x′|2 ≤ −r
2α+(m+1)δ

4M
(4.9)

provided that δ < 2(1−α)
m+1 . On the other hand, since utt > −M1 and u+t is Holder continuous whose

exponent, with no loss of generality, can be taken to be the same α as above, we have

u(0, h,−r2) ≥ u(0, h, 0) −max{0, c1hαr2} −
M1

2
r4

≥ −c0h1+α −max{0, c1hαr2} −
M1

2
r4

> −c̄r(α+mδ)(1+α) (4.10)

Finally, if we choose δ > α(1−α)
αm−1 and m > 1 + 2

α we get a contradiction to (4.9) above. Note
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that the same argument applies for any t ∈ [−r2, 0].

We provide now our monotonicity formula for solutions to the local situation.

Lemma 4.5. Let δ > 0 and u be a solution to the Signorini problem (4.1). Set w = uxn and

ϕ(r) =
1

r

ˆ 0

−r2

ˆ

R
n
+

|∇(ηw)(x, s)|2G(x,−s)dxds

for r < 1 where η ∈ C∞
0 (Br) with η ≡ 1 and ηxn |Br∩Rn−1 = 0. There exists a universal constant

C > 0 such that

(i) if 2α+ δ > 1 then ϕ(r) ≤ C,

(ii) if 2α+ δ < 1 then ϕ(r) ≤ Cr2α+δ−1.

Proof. We compute

|∇(ηw)|2 =
1

2
(∆(ηw)2 − ∂t(ηw)

2)− 2ηw∇η∇w − ηw2∆η (4.11)

and

ϕ′(r) = − 1

2r2

ˆ 0

−r2

ˆ

R
n
+

(∆(ηw)2 − ∂t(ηw)
2)G(x,−s)dxds + 2

ˆ

R
n
+

|∇(ηw)(x,−r2)|2G(x, r2)dx

+
1

r2

ˆ 0

−r2

ˆ

Rn
+

(2ηw∇η∇w + ηw2∆η)dxdt. (4.12)

We integrate by parts to obtain

ϕ′(r) =
1

2r2

ˆ 0

−r2

ˆ

R
n
+

(∇(ηw)2∇G+ ∂t(ηw)
2G)dxds − 1

2r2

ˆ 0

−r2

ˆ

Rn−1

[(ηw)2]ν(x
′, 0, s)G(x′, 0,−s)dx′ds

+
1

r2

ˆ 0

−r2

ˆ

R
n
+

(2η∇w∇η + ηw2∆η)G(x,−s)dxds + 2

ˆ

R
n
+

|∇(ηw)(x,−r2)|2G(x, r2)dx.

(4.13)
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Integrating again by parts, we obtain

ϕ′(r) = − 1

2r2

ˆ 0

−r2

ˆ

R
n
+

(ηw)2(∆G+ ∂tG)dxds −
1

2r2

ˆ 0

−r2

ˆ

Rn−1

(ηw)2νG(x,−s)dx′ds

− 1

2r2

ˆ

R
n
+

(ηw)2(x,−r2)G(x, r2)dx+
1

r2

ˆ 0

−r2

ˆ

R
n
+

(η∆ηw2 + 2ηw∇η∇w)G(x,−s)dxds

+ 2

ˆ

R
n
+

|∇(ηw)(x,−r2)|2G(x, r2)dx. (4.14)

Since w(0, 0) = 0, we have

ϕ′(r) = − 1

2r2

ˆ

R
n
+

(ηw)2(x,−r2)G(x, r2)dx+ 2

ˆ

R
n
+

|∇(ηw)(x,−r2)|2G(x, r2)dx

− 1

2r2

ˆ 0

−r2

ˆ

Rn−1

2ηwηwνG(x,−s)dx′ds+
1

r2

ˆ 0

−r2

ˆ

R
n
+

η∆ηw2G(x,−s)dxds

+
2

r2

ˆ 0

−r2

ˆ

Rn
+

ηw∇η∇wG(x,−s)dxds

(4.15)

or

ϕ′(r) = − 1

2r2

ˆ

R
n
+

(ηw)2(x,−r2)G(x, r2)dx+ 2

ˆ

R
n
+

|∇(ηw)(x,−r2)|2G(x, r2)dx

+
1

2r2

ˆ 0

−r2

ˆ

R
n
+

∇η2∇w2G(x,−s)dxds + 1

r2

ˆ 0

−r2

ˆ

R
n
+

η∆ηw2G(x,−s)dxds

+
1

r2

ˆ 0

−r2

ˆ

Rn−1

η2wf G(x,−s)dx′ds (4.16)

and finally

ϕ′(r) ≥ − 1

2r2

ˆ

R
n
+

(ηw)2(x,−r2)G(x, r2)dx+ 2

ˆ

R
n
+

|∇(ηw)(x,−r2)|2G(x, r2)dx−Crα.

Now, consider the truncated function w = −(w + rα+δ)− and note that

ˆ

R
n
+

|∇(ηw)(x,−r2)|2G(x, r2)dx ≤
ˆ

R
n
+

|∇(ηw)(x,−r2)|2G(x, r2)dx.
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Hence

ϕ′(r) ≥ − 1

2r2

ˆ

R
n
+

[η(w − w) + ηw]2(x,−r2)G(x, r2)dx+ 2

ˆ

R
n
+

|∇(ηw)(x,−r2)|2G(x, r2)dx− Crα

and

ϕ′(r) ≥ − 1

2r2

ˆ

R
n
+

η2[(w − w)2 + 2w(w − w)]G(x, r2)dx− Crα

or

ϕ′(r) ≥ −3

2
r2α+2δ−2 − Crα ≥ −3

2
r2α+δ−2.

Therefore

ϕ(1) − ϕ(r) ≥ −3

2

(

1

2α+ δ − 1

)

+
3

2

(

1

2α+ δ − 1

)

r2α+δ−1.

Since ϕ(1) is universally bounded the proof is complete.

Next, we state our main result of this subsection:

Theorem 4.6. Let u the solution of (4.1), then ∇u is C
1
2
, 1
4

x,t up to the hyperplane R
n−1.

Proof. Let w = uxn and w be as in the proof of Lemma 4.5. Fix s > 0, choose R > 0 large enough

and ε < s. We define a cut-off function η = η(x) so that suppη ∈ BR+1(0), η ≡ 1 on BR(0) and

|∇η| ≤ C.

Then

(∆ − ∂ξ)(η
2w) = 2η2|∇w|2 + 4wη∇w∇η + 2(η∆η + |∇η|2)w2 + 2η2w(∆w − ∂ξw). (4.17)

Recall that (∆+∂ξ)G(x,−ξ) = δ(0,0), therefore using (4.17), an integration by parts along with the

fact that η is compactly supported we obtain

2

ˆ −ε

−s

ˆ

R
n
+

η2|∇w|2G(x,−ξ)dxdξ = −
ˆ

R
n
+

η2w2G(x, ε)dx +

ˆ

R
n
+

η2w2G(x, s)dx

−4

ˆ −ε

−s

ˆ

R
n
+

wη∇η∇wG(x,−ξ)dxdξ − 2

ˆ −ε

−s

ˆ

R
n
+

(η∆η + |∇η|2)w2G(x,−ξ)dxdξ
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− 2

ˆ −ε

−s

ˆ

R
n
+

η2w(∆w − ∂ξw)G(x,−ξ)dxdξ. (4.18)

Observe that

ˆ −ε

−s

ˆ

Rn
+

wη|∇η||∇w|G(x,−ξ)dxdξ ≤ C

ˆ −ε

−s

ˆ

B+
R+1\B

+
R

|w||∇w|e
−R2/4|ξ|

|ξ|n/2 dxdξ

≤ Ce−R
2/4+ε0

ˆ 0

−s

ˆ

B+
R+1\B

+
R

|w||∇w|dxdξ.

Using Cauchy-Schwartz, we conclude that the last three terms on the right hand side of (4.18)

behave the same, in particular they decay to zero as R→ ∞. Therefore we conclude that

(ηw)2(0, 0) ≤
ˆ

Rn
+

(ηw)2G(x, s)dx

or, after rescaling,

(ηw)2(x, t) ≤
ˆ

R
n
+

(ηw)2(y, s)G(x − y, t− s)dy. (4.19)

for every (x, t) ∈ Q+
r/2 and −r2 < s < − r2

2 . By Poincaré inequality for Gaussian measures (see [8])

we have that

ˆ

R
n
+

(ηw)2(y, s)G(x− y, t− s)dy ≤ 2|s|
ˆ

R
n
+

|∇(ηw)(y, s)|2G(x− y, t− s)dy (4.20)

for (x, t) ∈ Q+
r/2 and −r2 < s < − r2

2 . Combine (4.19) and (4.20) to obtain

(ηw)2(x, t) ≤ C|s|
ˆ

R
n
+

|∇(ηw)(y, s)|2G(x− y, t− s)dy (4.21)

for every (x, t) ∈ Q+
r/2 and −r2 < s < − r2

2 . An integration with respect to s in (4.21) shows that

(ηw)2(x, t) ≤ C

ˆ −r2/2

−r2

ˆ

R
n
+

|∇(ηw)(y, s)|2G(x− y, t− s)dyds

for every (x, t) ∈ Q+
r/2. Now the dichotomy for ϕ(r) in Lemma 4.5 provides a C1/2 modulus of

continuity for w, as in the proof of Theorem 5 in [4].
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4.2 Hölder continuity of the time derivative near a free boundary point of

positive parabolic density

Although the positive time derivative is always Hölder continuous (see §3.2), one does not expect

to obtain continuity of the full time derivative without further restrictions. The purpose of this

section is to show that, indeed, Hölder continuity of the full time derivative can be achieved near

free boundary points of positive parabolic density with respect to the coincidence set. In order to

achieve this desired result we employ the well known ”hole filling” method of Widman (see [22])

adapted for parabolics by Struwe (see [21]). As it was mentioned in the introduction, the results

of the present section are independent of the quasi-convexity.

Definition 4.7. A free boundary point (x′0, 0, t0) is of positive parabolic density with respect to the

coincidence set if there exist positive constants c > 0 and r0 > 0 such that |Q′
r(x

′
0, 0, t0) ∩ {u =

0}| ≥ c|Q′
r(x

′
0, 0, t0)| ∀r < r0.

So the main result of this subsection is stated as follows::

Theorem 4.8. Let (x0, t0) be a free boundary point of positive parabolic density with respect to the

coincidence set to problem (4.1). Then ut is Hölder continuous in a neighborhood of (x0, t0).

Proof. Since, by §3.2, u+t is Hölder continuous, it suffices to prove the theorem for u−t . Actually,

we will show that u−t decays to zero in parabolic cylinders shrinking to the free boundary point

(x0, t0). We consider the penalized solution uε of (4.1) in Q+
r (x0, t0) with r < r0, where r0 is as in

Definition 4.7. For simplicity we take (x0, t0) = (0, 0) and r = 1. Differentiate with respect to t to

have as in (3.8)














∆vε − ∂tv
ε = f εt , in Q+

1

−∂νvε = β′ε(u
ε)vε on Q′

1

(4.22)

where vε := (uε)t. For any (ξ, τ) ∈ Q+
1
5

we want to multiply the equation by an appropriate test

function and integrate by parts over the set Q+
3
5

(ξ, τ) := Q 3
5
(ξ, τ) ∩ {xn ≥ 0} ⊂ Q+

1 . This will lead

us to an estimate which will iterated to yield the desired result.

The aforesaid appropriate test function will be the product of following three functions:

The first one is the square of a smooth function ζ(x, t) supported in Q+
3
5

(ξ, τ) such that ζ ≡ 1
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for every (x, t) ∈ Q+
2
5

(ξ, τ), |∇ζ| ≤ c with supp(∇ζ) ⊂ (B+
3
5

(ξ, τ)\B+
2
5

(ξ, τ))× (τ − 9
25 , τ ], 0 ≤ ζt ≤ c

with supp(ζt) ⊂ B 3
5
(ξ, τ) × (τ − 9

25 , τ − 4
25 ).

The second one is a smoothing of the fundamental solution G(x, t) of the heat equation (see

(4.2)), i.e.

G
(ξ,τ)
δ (x, t) := (G(x− ξ, τ − t)χ(x, t)Ec

δ(ξ,τ)
+ p(x− ξ, t− τ)χ(x, t)Eδ(ξ,τ))χ(x, t){t<τ}

where Eδ(ξ, τ) := {(x, t) ∈ Rn+1 : t ≤ τ, G(x − ξ, t − τ) ≥ 1
δn }, the ”heat” ball of ”radius” δ

about (ξ, τ), and p(x, t) := 1
δn (

|x|2

4t + log eδn

(4π|t|)n/2 )χ(x, t){t<0}. Notice that G
(ξ,τ)
δ is a C1 function

everywhere in R
n+1 except at (ξ, τ). In order to deal with this problem we just translate the

singularity outside of our domain by a small amount ε′ > 0 and then we let ε′ to tend to zero, for

simplicity we omit this technicality.

Finally the third function is (vε)− which can be smoothed out by the standard way; again we

omit it for the sake of simplicity.

Therefore we multiply the equation in (4.22) by ζ2G
(ξ,τ)
δ (vε)− and integrate by parts over

Q+
3
5

(ξ, τ) to obtain

ˆ

Q+
3
5

(ξ,τ)
(∇(ζ2G

(ξ,τ)
δ (vε)−)∇vε + (ζ2G

(ξ,τ)
δ (vε)−)∂tv

ε)dxdt = −
ˆ

Q′
3
5

(ξ,τ)
(ζ2G

(ξ,τ)
δ (vε)−)β′(uε)vεdx′dt

−
ˆ

Q+
3
5

(ξ,τ)
ζ2G

(ξ,τ)
δ (vε)−ftdxdt (4.23)

By calculating appropriately and by noticing that due to the non negativity of β′ε the boundary

integral term has the right sign, so it can be omitted, we obtain

ˆ

Q+
3
5

(ξ,τ)
(G

(ξ,τ)
δ |∇(ζ(vε)−)|2 + 1

2
[∇G(ξ,τ)

δ ∇(ζ(vε)−)2 +G
(ξ,τ)
δ ∂t(ζ(v

ε)−)2])dxdt

≤
ˆ

Q+
3
5

(ξ,τ)
G

(ξ,τ)
δ (|∇ζ|2 + ζζt)((v

ε)−)2dxdt+
1

2

ˆ

Q+
3
5

(ξ,τ)
∇G(ξ,τ)

δ ∇ζ2((vε)−)2dxdt
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+

ˆ

Q+
3
5

(ξ,τ)
ζ2G

(ξ,τ)
δ (vε)−ftdxdt.

Using the fact that supp(µ) = Eδ(ξ, τ) where µ := −(∆ + ∂t)G
(ξ,τ)
δ with dµ = 1

4δn dEδ(ξ, τ) and

|Eδ(ξ, τ)| = 4δn (see [19]) and that, for δ small enough, the inequalities 0 ≤ G
(ξ,τ)
δ ≤ C(n) in (B+

4
5

\

B+
1
5

)× (−2
5 , 0), and c(n) ≤ G

(ξ,τ)
δ ≤ C(n) in B+

4
5

× (−2
5 ,− 4

25 ), we have

ˆ

Q+
2
5

(ξ,τ)
G

(ξ,τ)
δ |∇(vε)−|2dxdt+

 

E+
δ (ξ,τ)

(vǫ)−dEδ(ξ, τ) ≤ C(n)

ˆ − 4
25

− 2
5

ˆ

B+
4
5

((vε)−)2dxdt

+ C(n)

ˆ 0

− 2
5

ˆ

B+
4
5

\B+
1
5

((vε)−)2dxdt+ C(n)M (4.24)

where M := ||vε||∞||ft||∞.

Now, we first let ε tend to 0 in order to obtain (4.24) for v−, then we let δ to go to 0, and,

finally, we take the supremum over (ξ, τ) ∈ Q+
1
4

to obtain, a fortiori,

ˆ

Q+
1
5

G(x,−t)|∇v−|2dxdt+ sup
Q+

1
5

(v−)2 ≤ C(n)

ˆ − 4
25

− 2
5

ˆ

B+
4
5

(v−)2dxdt+ C sup
Q+

1 \Q+
1
5

(v−)2 + CM. (4.25)

Next we want to control the first integral of the right hand side of (4.25) by one similar to the

first integral of the left hand side of (4.25). To do that we first multiply the equation in (4.22) by

ζ2(vε)− where ζ is a smooth cutoff function supported in B1 × (−1, t) , for any t ≤ − 4
25 , ζ ≡ 1 on

B 4
5
× (−2

5 , t), and vanishing near its parabolic boundary with |∇ζ| ≤ c and 0 ≤ ζt ≤ c, then we

integrate by parts over this set intersected by R
n
+ to have

ˆ t

−1

ˆ

B+
1

(∇(ζ2(vε)−)∇vε + (ζ2(vε)−)∂tv
ε)dxdt = −

ˆ t

−1

ˆ

B′
1

(ζ2(vε)−)β′(uε)vεdx′dt

−
ˆ t

−1

ˆ

B+
1

ζ2(vε)−ftdxdt.

Again, exploiting the positivity of β′ and letting ε go to zero, we arrive, as above but in a much
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simpler way, at the following inequality

ˆ

B+
4
5

(v−)2(x, t)dx+

ˆ t

− 2
5

ˆ

B+
4
5

|∇v−|2dxdt ≤ c

ˆ

Q+
1

(v−)2dxdt+ C(n)Mrn+2

∀ t ∈ (−2
5 ,− 4

25 ). Observe that a sufficient portion of the coincidence set is present in Q1 so that

the parabolic Poincaré inequality can be applied to dominate the integral on the right hand side

of the above inequality. Therefore, since the second term on the left hand side is non negative, we

have, for every −2
5 ≤ t ≤ − 4

25 ,

ˆ

B+
4
5

(v−)2(x, t)dx ≤ C(n)

ˆ

Q+
1

|∇v−|2dxdt+ C(n)M.

We then integrate the above inequality with respect to t from −2
5 to − 4

25 to get

ˆ − 4
25

− 2
5

ˆ

B+
4
5

(v−)2dxdt ≤ C(n)

ˆ

Q+
1

|∇(v−)|2dxdt+ C(n)M.

Insert this in (4.25) above and, using the fact that G(x,−t) ≥ c(n) for −2
5 ≤ t ≤ − 4

25 , to have

ˆ

Q+
1
5

G(x,−t)|∇v−|2dxdt+ sup
Q+

1
5

(v−)2 ≤

C(n)(

ˆ

Q+
1 \Q+

1
5

G(x,−t)|∇v−|2dxdt+ sup
Q+

1 \Q+
1
5

(v−)2)) + C ′(n)M. (4.26)

Set ω(ρ) :=
´

Q+
ρ
G|∇v−|2dxdt+ supQ+

ρ
(v−)2, then add C(n)ω(15) to both sides of (4.26) and divide

the new inequality by 1 + C(n) to have

ω(
1

5
) ≤ λω(1) + c (4.27)

where λ = C(n)
1+C(n) . Iteration of (4.27) implies that there exists an α = α(λ) ∈ (0, 1) and a constant

C = C(n, ||ut||∞, ||ft||∞) such that

ω(ρ) ≤ Cρα
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for every 0 < ρ ≤ r0
5 . This concludes the Hölder continuity from the past. The continuity from the

future follows, now, by standard methods.

4.3 Free boundary regularity

In the study of free boundary regularity it turns out that in order to achieve smoothness of the free

boundary one has to focus his attention in a neighborhood of certain free boundary points, which we

shall call them non-degenerate, (see Definition 4.9 below). A good candidate for a non-degenerate

free boundary point must include one of positive parabolic density of the coincidence set. The

fact, that ut is Hölder continuous at such a point (see §4.2), yields a control of the speed of the

interphase, a crucial step for our further analysis of the regularity of the free boundary. Since it is

more convenient to work with the zero obstacle and with the right hand side of the equation to vanish

at the point, which, for simplicity, we take it to be the origin, we set ũ(x′, xn, t) = u(x′, xn, t) −

ψ(x′, t) + 1
2Hψ(0, 0)x

2
n (H := ∆ − ∂t). Observe that {ũ(x′, xn, t) = 0} = {u(x′, xn, t) = ψ(x′, t)}

and upon reflection ũ in B∗
1 := {(x, t) ∈ R

n+1 : |x|2 + t2 < 1} satisfies:















































ũ(x′, 0, t) ≥ 0 in B∗
1 ∩ {xn = 0}

ũ(x′, xn, t) = ũ(x′,−xn, t) in B∗
1

∆ũ(x′, xn, t)− ∂tũ(x
′, xn, t) = Hψ(0, 0) −Hψ(x′, t) in B∗

1 \ {ũ = 0}

∆ũ(x′, xn, t)− ∂tũ(x
′, xn, t) ≤ Hψ(0, 0) −Hψ(x′, t) in B∗

1

(4.28)

For simplicity of notation we ”drop” the ”∼” for the rest of this section.

Now we pass the ut term to the right hand side of the equation and if we assume that Hψ is at

least Cα we can apply the elliptic theory developed in [7], [14] and extended in [9] at the t-level of

the point. Consequently, if the origin is regular then at t = 0 the blow up limit v0 of the solution

u (up to sub-sequences) exists, and, in appropriate coordinates,

v0(x) =
2

3
ρ

3
2 cos(

3

2
θ)

where ρ =
√

x21 + x2n and θ = arctan(xnx1 ) (unique up to rotations).

Now, we are ready to state the ”hyperbolic” definition of our non-degenerate free boundary
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point.

Definition 4.9. Let (x0, t0) be a free boundary point and B∗
r (x0, t0) := {(x, t) ∈ Rn+1 : (x−x0)

2+

(t− t0)
2 < r2}, set

l := lim sup
r→0+

||u||L∞(B∗
r (x0,t0))

r3/2

A point (x0, t0) is called a non-degenerate free boundary point if it is of positive parabolic density

of the coincidence set and 0 < l <∞, otherwise degenerate.

With this definition at our hands we state the main result of this section:

Theorem 4.10. Let u be a solution to (4.28). Assume the origin to be a non-degenerate free

boundary point. Then the free boundary is a C1,α n-dimensional surface about the origin.

The following ”hyperbolic” blow up sequence will be very useful for our analysis since, at a

point, it preserves the geometry of the free boundary:

ur(x, t) :=
u(rx, rt)

r3/2
.

Lemma 4.11. Let u be a solution to (4.28). If (0, 0) is a non-degenerate free boundary point then

there exists a sequence urj of blow ups which converges uniformly on compact subsets to a function

u0 such that, (in appropriate coordinates),

u0(x, t) =
2

3
ρ(t)

3
2 cos(

3

2
θ(t))

where ρ(t) :=
√

(x1 + ωt)2 + x2n and θ(t) := arctan( xn
x1+ωt

) for some ω ∈ R.

Proof. Since 0 < l <∞, it is clear that we can extract a subsequence urj converging uniformly on

compact subsets to a non trivial limit u0. This u0 is a harmonic function for every fixed t outside

of the coincidence set; and the coincidence set, due to the density assumption, is a convex cone in

R
n, or more precisely in (x′, t) variables. Also, by the discussion above, at t = 0 u0 =

2
3ρ

3/2 cos 3
2θ

where ρ =
√

x21 + x2n and θ = arctan(xnx1 ). Moreover the convex cone is composed by the following

two supporting hyperplanes Ax1 + at = 0 for t ≥ 0 and Bx1 + bt = 0 for t ≤ 0 with the constants

A ≥ 0, B ≥ 0 and bA ≤ aB. We want to prove that this convex cone is actually a non-horizontal
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half space i.e. A > 0, B > 0, and bA = aB, and u0 admits the stated representation; we do this in

several steps:

Step I: A > 0 and B > 0

For, if A = 0 then for every t > 0 u0(x, t) is harmonic in all of Rn i.e. of polynomial growth.

But for t = 0 u0 has 3/2 degree of growth, therefore, by continuity of u0, a contradiction. Similarly

B > 0.

Step II: For each fixed t, u ∼ |x| 32 as |x| → ∞ with x · e1 ≥ ε for some ε > 0

It is enough to show the bound by below. Therefore take a sequence x(j) such that |x(j)| → ∞

with x(j) · e1 ≥ ε for every j then by convexity u0(x
(j), t) ≥ u0(x

(j), 0) + (u0)t(x
(j), 0)t, hence by

the behavior of u0 at t = 0 the result follows.

Step III: For each fixed t,

u0(x, t) =
2

3
ρ(t)

3
2 cos(

3

2
θ(t)),

where for t > 0, ρ(t) =
√

(x1 +
a
A t)

2 + x2n, θ(t) = arctan xn
x1+

a
A
t and for t < 0, ρ(t) =

√

(x1 +
b
B t)

2 + x2n,

θ(t) = arctan xn
x1+

b
B
t

Indeed, for each fixed t > 0, u0 is a harmonic function which vanishes for {x1 ≤ − a
A t}∩{xn = 0}

and grows at infinity with 3
2 exponent, therefore by Phragmen-Lindelof theorem we obtain the

representation. Analogously, for t < 0.

Step IV: bA = aB

For, if not then

∂tu0(0, 0
+)− ∂tu0(0, 0

−) = (
a

A
− b

B
)ρ

1
2 cos(

1

2
θ) 6= 0,

whence, by approximation, a contradiction to the continuity of ∂tu at the origin.

Set ω := a
A and the proof is complete.

Finally we prove our theorem:

Proof. Obviously the existence of ω in Lemma 4.11 implies the differentiability of the free boundary

at the origin. Also, due to the upper semi-continuity of the elliptic Almgren’s frequency function,

we have the differentiability of the free boundary for any nearby point p = (xp, tp) at least when
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tp ≤ 0, since ut is continuous there. Now, if tp > 0 and p = (xp, tp) still near the origin, we observe

that the frequency function will converge to 3
2 . Consequently, the point p = (xp, tp) will be a free

boundary point of positive parabolic density with respect to zero set, which renders ut continuous

there. Hence we have the differentiability of the free boundary there, too. To prove the continuous

differentiability of it consider two distinct free boundary points nearby, say p and 0. Assume, on

the contrary, that it is not true, that is ω(p) does not converge to ω(0) as p→ 0. Consider the blow

up sequences u
(p)
rj and u

(0)
ri around p and 0, respectively, where u

(p)
rj (x, t) :=

u(rj((x,t)−p))

r3J/2
. These

sequences converge uniformly to

u
(p)
0 (x, t) :=

2

3
ρ

3
2 (p, t) cos

3

2
θ(p, t)

and

u
(0)
0 (x, t) :=

2

3
ρ

3
2 (0, t) cos

3

2
θ(0, t)

respectively, where ρ(p, t) :=
√

(x1(p) + ω(p)t(p))2 + x2n) and θ(p, t) := arctan xn
x(p))+ω(p)t(p) . So, if

ω(p) does not converge to ω(0) then u
(p)
0 does not converge to u

(0)
0 , therefore a contradiction to the

continuity of the solution u. Hence a Cα estimate of the free boundary normals follows easily.
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