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Abstract. The exchange interactions of Cr4N, Mn4N, Fe4N, Co4N, and Ni4N

compounds with perovskite structure were calculated to obtain the Curie temperatures

for these compounds from Monte Carlo calculations. Contrary to näıve expectation,

the exchange interactions vary markedly among these five compounds. In Fe4N,

the intra-sublattice interaction of the Fe 3c atoms is strongly negative, leading to

a significant reduction of the Curie temperature. The calculated Curie temperatures

are 291 K (Cr4N), 710 K (Mn4N), 668 K (Fe4N), 827 K (Co4N), and 121 K (Ni4N),

in good agreement with experimental observations where available. The much lower

Curie temperature of Ni4N compared to fcc Ni is explained on the basis of the exchange

interactions.
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1. Introduction

Transition metal (TM) nitrides are well-known for their excellent properties as hard-

coatings or diffusion barriers (TiN, ZrN, CrN, TaNx) [2]. The useful magnetic properties

of some magnetic nitrides have come only recently into the focus of research, particularly

in the spintronics community, despite first experiments on iron nitrides date back to the

1940s [1].

Epitaxial magnetic tunnel junctions containing γ′-Fe4N with the perovskite

structure as an electrode have shown large negative TMR [3] and inverse spin transfer

torque (STT) switching [4]. Exchange bias stacks with γ′-Fe4N and rocksalt CoN

as the antiferromagnet show negative exchange bias. Very large exchange bias at

room temperature was observed in stacks with body-centered tetragonal MnN as the

antiferromagnet [5]. Ferrimagnetic Mn4N has a low magnetic moment and a high

Curie temperature [6] and exhibits perpendicular magnetization on some substrates

[7], making it an ideal candidate for an electrode material in STT switching devices.

Fe4N and Mn4N crystallize in the perovskite structure (space group Pm3̄m, No.

221). The transition metals occupy the Wyckoff 1a (cube corner position (0, 0, 0))

and 3c (cube face (1/2, 1/2, 0)) positions, nitrogen sits on the Wyckoff 1b (cube center

(1/2, 1/2, 1/2)) position. The structure and the collinear magnetic configuration of

Mn4N are depicted in Fig. 1. Other possible magnetic TM nitrides with this structure

are Cr4N, Co4N, Ni4N, and their alloys.

Because of thermal instability of the late transition metal nitrides in general, it

is a challenging task to prepare samples of these compounds with ideal stoichiometry

and chemical order. Thus, it is difficult to assess what the intrinsic properties of the

ideal compounds are. A prominent and well studied example is Fe4N, for which total

magnetic moments between 8.7 and 11.6µB / cell were reported [8, 9, 10, 11, 12]. Even

more intriguing is the case of giant magnetic moments in α′′-Fe16N2 films, which depend

strongly on the precise film deposition conditions [13]. Also Co4N is a difficult case,

as it decomposes at about 540 K and loses nitrogen already at lower temperature [14],

making it particularly difficult to obtain crystalline samples of correct stoichiometry. As

a consequence, lattice constants between 3.59 and 3.74 Å [14, 15] and total magnetic

moments ranging from 5.9 to 7.5 µB / cell were reported [16, 17, 18], depending on the

preparation conditions.

Many articles discussing the magnetic ground states, possible metamagnetic

transitions under pressure, as well as densities of states of the tetrametal nitrides with

perovskite structure are found in the literature [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

It is the aim of the present article to create an understanding for the experimentally

observed Curie temperatures of the magnetic tetrametal nitrides, to predict the Curie

temperatures for compounds for which a direct measurement is inaccessible, and to

serve as a reference for the expected intrinsic properties of these compounds. To this

end, first principles calculations were carried out and Heisenberg exchange interaction

parameters were extracted. These were used to compute the Curie temperatures of the
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Figure 1. Structure and magnetic configuration of Mn4N. The Wyckoff positions

displayed in the figure are used to distinguish the inequivalent transition metal atoms.

compounds based on the Heisenberg Hamiltonian.

2. Computational approach

The calculations presented in this work were done in the framework of density functional

theory (DFT). In a first step, the lattice constants a and magnetic configurations

were determined with high-accuracy full-potential linearized augmented plane wave

(FLAPW) calculations with the elk code [30]. Tight numerical parameters were chosen‡
to ensure that the results are precise. In the second step, these lattice constants were

used to compute the exchange interactions in a real space approach based on the

Korringa-Kohn-Rostoker (KKR) multiple scattering theory. These calculations were

performed with the spin-polarized relativistic KKR package Munich SPR-KKR [31].

The calculations were carried out in the full-potential mode, which is mandatory to

reproduce the FLAPW results. In this mode, the unit cell is partitioned into non-

overlapping polyhedra with the Wigner-Seitz method so that no interstitial regions

occur. Empty polyhedra were introduced in the octahedral interstices (Wyckoff 3d

positions (0, 0, 1/2)). An angular momentum cutoff of `max = 2 was used for the

expansion of the Green function and the Brillouin zone was sampled with a 28×28×28

k-point mesh. The energy integration of the Green’s function was done with 40 points

along an arc in the complex plane. In order to improve the total charge convergence

with respect to lmax, Lloyd’s formula was applied for the determination of the Fermi

energy [32, 33]. The exchange-correlation potential was modeled within the generalized

gradient approximation of Perdew, Burke, and Ernzerhof [34]. All calculations were

‡ APW+lo+LO basis set with optimized linearization energies, maximized muffin-tin radii, angular

momentum cutoffs for wavefunctions `APW = 10 and for the potential `V = 9, plane wave expansion

parameter for the wave functions rMTGmax = 8.0 and charge density and potential expansion

Gmax = 15.0 a.u.−1, 223 k-point mesh, smearing width 0.001 Ha.
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carried out in the scalar-relativistic representation of the valence states, thus neglecting

the spin-orbit coupling.

In the classical Heisenberg model the Hamiltonian of a spin system is given by

H = −
∑
i 6=j

Jijeiej, (1)

with the Heisenberg pair exchange coupling parameters Jij, and unit vectors ei pointing

in the direction of the magnetic moment on site i. SPR-KKR allows to calculate

the exchange coupling parameters by mapping the full system onto a Heisenberg

Hamiltonian. The parameters are determined within a real-space approach using the

formula by Liechtenstein et al. [35]. Positive sign of the Jij means a ferromagnetic

interaction, negative sign means an antiferromagnetic interaction.

Approximate Curie temperatures were calculated within the mean field

approximation (MFA). In a multi-sublattice system one has to solve the coupled

equations

3

2
kBT

MFA
C 〈eµ〉 =

∑
ν

Jµν0 〈eν〉 (2)

with Jµν0 =
∑
r 6=0

Jµν0r ,

where 〈eν〉 is the average z component of the unit vector eνr pointing in the direction of

the magnetic moment at site (ν, r). The coupled equations can be understood as an

eigenvalue problem, where the largest Eigenvalue of the Jµν0 matrix determines the Curie

temperature [36, 37]. The r-summation in Eq. (2) was taken to a radius of r/a = 6.0.

It is well known that the MFA overestimates the Curie temperature [38], as long as the

classical Heisenberg model is applicable, i.e. the absolute value of the local magnetic

moments does not change upon rotation or spin wave excitation.

More accurate Curie temperatures were calculated with Monte Carlo (MC)

simulations in the vampire atomistic spin dynamics program [39]. A 20 × 20 × 20

simulation supercell with periodic boundary conditions and 32,000 atoms was used,

where nitrogen atoms and empty polyhedra were neglected for faster calculations.

Because the exchange interactions have an RKKY contribution, they are oscillatory

and decay with distance r approximately as Jij(r) ∼ 1/r3, whereas the number of

interacting moments between r and r+ dr scales as r2dr. Therefore, interactions up to

r/a = 6.0 were included in the MC simulations to correctly reproduce the DFT ground

state, resulting in a total of 14,352 pair interactions. 10,000 MC steps were done for

thermalisation and measurement, respectively, at every temperature for temperatures

in steps of approximately TMFA
C /50. The Curie temperatures were determined by

interpolating the temperature dependence of the magnetization with cubic splines and

finding the inflection point.
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Table 1. Lattice constants, magnetic moments and MFA Curie temperatures of the

five magnetic TM4N compounds. Magnetic moments are given in µB per cell and

temperatures are in Kelvin. The direction of the TM(1a) moment is defined as positive

direction.

a (Å) mFLAPW mKKR TMFA
C TMC

C aexp (Å) mexp T exp
C

Cr4N 3.810 −1.06 −0.77 379 291 – – –

Mn4N 3.742 1.44 1.50 870 710 3.87a 1.1a 730a

Fe4N 3.784 9.86 9.67 995 668 3.80d 9.1d 767d

Co4N 3.722 6.32 6.22 1025 827 3.70c 7.4c –

Ni4N 3.732 1.57 1.26 143 121 3.73b 1.6b 125b

aReference [6]
bextrapolated from data on (Fe1−xNix)4N in Reference [8]
cReference [18]
dReference [10]

Table 2. Local magnetic moments computed with an FLAPW program, with a KKR

program, and obtained from neutron diffraction where available.

mFLAPW
1a mFLAPW

3c mKKR
1a mKKR

3c mexp
1a mexp

3c

Cr4N 1.79 −0.96 1.60 −0.79 – –

Mn4N 3.07 −0.64 3.04 −0.59 3.88a -0.9a

Fe4N 2.91 2.29 2.91 2.21 2.98b 2.01b

Co4N 1.93 1.47 1.86 1.44 – –

Ni4N 0.68 0.30 0.60 0.22 – –

aReference [40]
bReference [9]

3. Results

The calculated lattice constants, magnetic moments and Curie temperatures are

collected in Table 1. Additionally, the site-resolved magnetic moments are collected

in Table 2. The site- and distance-resolved exchange interactions, distance-resolved

MFA Curie temperatures and coupling matrices Jµν0 are presented in Figure 2.

3.1. Lattice constants and magnetic moments

To the best of the author’s knowledge, no experiments on Cr4N were reported to date,

so all results on Cr4N are predictions.

For Mn4N, the experimental lattice constant is 3.4% larger than the theoretical

value. Given the good agreement between calculated and experimental lattice constants

for the other three compounds Fe4N, Co4N, and Ni4N, this result could indicate that

Mn4N incorporates additional N atoms on the Wyckoff 3d positions, giving rise to an

enhanced lattice constant. On the other hand, the calculated total moment is too

large and the local magnetic moments are quite underestimated with respect to neutron

diffraction results, see Table 2. Both underestimations indicate that electron-electron
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correlation might play a significant role in Mn4N and has to be taken into account

for a correct description of this compound. The noncollinear magnetization components

reported by Fruchart et al. [41] and Uhl et al. [42] are rather small and are not expected

to significantly increase the lattice constant.

The calculated lattice constant of Fe4N is very close to the observed value and the

calculated magnetic moment lies well within the reported range of magnetic moments

between 8.7 and 11.6µB / cell [8, 9, 10, 11, 12]. It was put forward by Blancá et al. that

Fe4N is found at a steep transition between low-spin and high-spin behaviour, which

makes the magnetism of this compound particularly sensitive to the lattice constant.

The same authors also pointed out that electron-electron correlation plays a significant

role in Fe4N. Notably, the local magnetic moments on both the 1a and 3c sites are higher

than in bcc Fe (m = 2.22µB). The moments are however close to Fe in fcc crystals,

such as pure fcc Fe with expanded lattice constant or FeNi alloys (mFe = 2.6µB) [43].

As mentioned in the introduction, Co4N is a challenging case from the experimental

point of view, because it is difficult to prepare the compound with the correct

stoichiometry. With the lattice constant close to the theoretical value, the observed

magnetic moment is significantly higher than the theoretical value. However, the

value cited in Table 1 was obtained indirectly by polarized neutron reflectometry and

might suffer from systematic overestimation. The theoretical average moment is slightly

smaller than the value for hcp Co (m = 1.72µB). However, the 1a moment is larger in

Co4N, whereas the 3c moments are reduced with respect to the hcp Co value.

The calculated lattice constant and magnetic moment agree very well with

extrapolated experimental results for Ni4N. However, the results appear surprising at a

first glance, in view of the fact that Ni4N is very similar to fcc Ni, but has larger lattice

constant. Due to the lattice expansion, one might expect higher magnetic moment

instead of the actually reduced value as compared to fcc Ni (m = 0.61µB). Inspecting

the local moments in Table 2 we find that the isolated Ni 1a moment is increased as

expected, but at the same time the Ni 3c moments are quenched due to the covalent

interaction with the central N atom.

3.2. Exchange interaction and Curie temperatures

To assess the validity of the KKR calculations, we start by comparing the KKR results

for the magnetic moments with the FLAPW results, which are taken as the reference

values. The KKR results are in overall good agreement with the FLAPW results,

with the largest discrepancies being present for Cr4N and Ni4N. In these two cases,

an underestimation of the 3c magnetic moment is mostly responsible for the deviation

from the FLAPW results. The agreement between the KKR results and the reference

FLAPW calculation is sufficiently good to use the KKR ground states as starting points

for the calculations of exchange interactions and Curie temperatures.

The site- and distance-resolved pair exchange parameters Jij are dominated by

direct interactions within a distance of one unit cell. At larger distances, RKKY-like
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Figure 2. Top row and middle row: Heisenberg exchange parameters as a function of

interatomic distance in the tetrametal nitrides for intra-sublattice and inter-sublattice

interactions, respectively. Bottom row: Mean-field estimate of the Curie temperature

as a function of interatomic distances included in the construction of Jµν0 . Insets:

Graphical representation of the coupling matrices Jµν0 . Note the scale changes between

different compounds.

interactions come into play and decay approximately as 1/r3. To make the results more

accessible, two additional representations are given in Figure 2: the distance dependent

mean-field Curie temperatures and graphical representations of the coupling matrices

Jµν0 . The former contain all interactions within a sphere of given radius that are used to

construct the mean field equation 2. In the latter case, the matrix represents the total

interaction between each pair of crystallographic sites with indices µ and ν.

At short interaction distances, the following trends can be identified for the

interactions. Each 1a site has twelve 3c sites as nearest neighbors at distance r = a/
√

2.

The direct nearest-neighbor interaction between 1a and 3c sites is antiferromagnetic for

Cr4N and Mn4N, whereas it is ferromagnetic in the other cases. These interactions are

responsible for the ferrimagnetic ground states of Cr4N and Mn4N. Each 3c site has

four 1a sites and eight 3c sites at distance r = a/
√

2 as nearest neighbors, ignoring the

two nitrogen atoms at r = a/2. With the exception of Mn4N, this nearest-neighbor

3c − 3c interaction is always ferromagnetic. The exchange between 3c sites through

the cube center nitrogen atom, i.e. the nearest 3c intra-sublattice interaction at r = a,

is always ferromagnetic. This situation is clearly different from, e.g., MnO, where a
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similar octahedron of Mn2+ ions surrounds an O2− ion. In that case, opposing Mn

ions are coupled antiferromagnetically via superexchange through the oxygen ion. The

exchange between 1a sites through the central nitrogen atom, i.e. the 1a intra-sublattice

interaction at r =
√

3a, seems to oscillate with the transition metal valence electron

count, being ferromagnetic for even and antiferromagnetic for odd valence electron

numbers.

Contrary to näıve expectation, the coupling matrices are very different for the

five tetrametal nitrides. The coupling matrices of Cr4N and Ni4N can be seen as

prototypical for simple ferri- and ferromagnets, respectively. In Cr4N, the total intra-

sublattice interactions (i.e. the interaction of atoms within one sublattice) and the

total inter-sublattice interaction between crystallographically equivalent 3c atoms are

all ferromagnetic, whereas the 1a− 3c interaction is antiferromagnetic giving rise to the

ferrimagnetic ground state. In Ni4N, the total couplings are ferromagnetic, rendering

Ni4N a rather simple ferromagnet.

In the intermediate cases Mn4N, Fe4N, and Co4N the situation is more complicated.

In Mn4N, the interactions are dominated by the 1a site, with the total intra-sublattice

interaction being ferromagnetic and the total 1a− 3c inter-sublattice interaction being

antiferromagnetic. The total 3c intra-sublattice interactions are essentially zero and

the total 3c inter-sublattice interaction is weakly antiferromagnetic. This has already

been pointed out in an earlier theoretical study based on total energy calculations

[42]. In Co4N most coupling elements are ferromagnetic up to the 1a intra-sublattice

interaction, which somewhat surprisingly turns out to be weakly antiferromagnetic.

The most remarkable coupling matrix is that of Fe4N, where all interactions sum up

to ferromagnetic coupling with the exception of the 3c intra-sublattice interactions,

which are strongly antiferromagnetic. As can be seen from the TMFA
C (r) graph, a major

negative contribution from the 3c − 3c interaction sets in at r =
√

2a and leads to a

drastic reduction of the MFA Curie temperature. The reduction was also confirmed by

Monte Carlo calculations with a restricted interaction range. This peculiar interaction

does in fact limit the Curie temperature in Fe4N, which would otherwise potentially be

a few hundred K higher.

The mean field Curie temperatures TMFA
C overestimate the experimentally known

Curie temperatures by 15 - 30%. In contrast, the Monte Carlo Curie temperatures TMC
C

underestimate the experimental values by about 3% in Mn4N and Ni4N and by 13%

in Fe4N. Still, the overall agreement with the experimental results can be considered

excellent. For Cr4N we predict the Curie temperature to be close to room temperature

and Co4N is expected to have the highest Curie temperature among all the tetrametal

nitrides. Surprisingly, the Curie temperature of Ni4N is very close to the experimental

value, whereas the calculated Curie temperature of fcc Ni (348 K) at the experimental

lattice constant is much lower than the experimentally observed value of 633 K. This can

be interpreted as a localization effect of the Ni 1a moment, which allows to apply the

Heisenberg model in contrast to fcc Ni which has largely itinerant character. By reducing

the coupling matrix of Ni4N to the 1a− 1a interaction, the MFA Curie temperature is
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Figure 3. Top row: Heisenberg exchange parameters as a function of interatomic

distance in expanded fcc metals. Bottom row: Mean-field estimate of the Curie

temperature as a function of interatomic distances included in the construction of

Jµν0 . Insets: Graphical representation of the coupling matrices Jµν0 . Note the

scale changes between different compounds. The Monte Carlo Curie temperature are

TMC
C (Fe) = 750 K and TMC

C (Ni) = 337 K.

reduced by only 11%, indicating that the intra-sublattice interactions of the localized

moment on the 1a site are responsible to a large part for the Curie temperature of

Ni4N, making the Heisenberg model valid in this case. Finally it should be noted that

no simple trend relating the total moment, absolute moment (sum of the absolute local

moments) or any of the local moments to the Curie temperature can be identified.

3.3. Comparison with expanded fcc metals without nitrogen

To study the role of the nitrogen atom on the exchange coupling, the Heisenberg

parameters were calculated for fcc Fe and fcc Ni at the lattice constants of Fe4N and

Ni4N, respectively. The results are presented in Figure 3. 1a and 3c site labels are used

equivalent to the tetrametal nitride case, however this distinction is somewhat artificial

because these sites are crystallographically equivalent without the central nitrogen atom.

In both cases, enhanced magnetic moments with respect to bcc Fe and fcc Ni at the

experimental lattice constant are observed. Remarkably, the magnetic moments are also

enlarged with respect to the nitrides at the same lattice constant, indicating that the

covalent interaction with the cube centered nitrogen quenches the magnetic moment of

the face centered transition metal atoms. The magnetic moment of expanded fcc Fe is

found to be 10.84µB / cell in the KKR calculation, and 2.8µB / cell is found for expanded

fcc Ni. This observation may provide an alternative explanation for the broad range
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of magnetic moments observed for Fe4N: at reduced nitrogen content, the magnetic

moment is increased, whereas additionally incorporated nitrogen at the Wyckoff 3d

interstices would further reduce the moment. Similarly, disorder of nitrogen between

3c and 3d positions could increase or decrease the magnetic moment, depending on the

degree of disorder.

The exchange parameters of the expanded fcc metals are very different from the

nitrides. This is evident at the first glance by comparing the representations of the

coupling matrices in Figures 2 and 3. In expanded fcc Fe, the positive intra-sublattice

interactions dominate the total interactions, whereas in Fe4N the largest contribution

comes from the 1a − 3c interaction. In contrast, the total intra-3c interaction is

antiferromagnetic in Fe4N, whereas it is ferromagnetic in expanded fcc Fe. However,

the Monte Carlo Curie temperature TMC
C (Fe) = 750 K of the expanded fcc Fe is very

similar to that of Fe4N.

In fcc Ni the inter-sublattice interactions dominate the total exchange interactions,

whereas the intra-sublattice interactions are comparatively weak. This is again very

different from the nitride, where the 1a − 1a interaction dominates the exchange

interactions. The Monte Carlo Curie temperature of expanded fcc Ni (TMC
C (Ni) = 337 K)

is very close to the value of fcc Ni at the experimental lattice constant, whereas the value

of Ni4N is roughly three times smaller. This finding underlines that the tetrametal

nitrides cannot be simply interpreted as fcc metals with enhanced lattice constant.

Instead, the covalent interaction with the body-centered nitrogen atom has large impact

on the electronic structure of the compounds.

4. Summary

The exchange interactions and Curie temperatures of the five possible magnetic

tetrametal nitrides were calculated and very good agreement with experimental data

was obtained. It was shown that the exchange interactions are neither intuitive nor do

they vary systematically across the series of compounds ranging from Cr4N to Ni4N.

Interestingly, the Curie temperature of Fe4N is limited by the surprising presence of a

strong antiferromagnetic intra-sublattice interaction between the cube corner atoms. A

comparison between Ni4N and fcc Ni showed that the tetrametal nitrides cannot be seen

as fcc metals with expanded lattice constant.
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