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Abstract

An (F , Fd)-partition of a graph is a vertex-partition into two sets F and Fd such
that the graph induced by F is a forest and the one induced by Fd is a forest with
maximum degree at most d. We prove that every triangle-free planar graph admits an
(F , F5)-partition. Moreover we show that if for some integer d there exists a triangle-
free planar graph that does not admit an (F , Fd)-partition, then it is an NP-complete
problem to decide whether a triangle-free planar graph admits such a partition.

1 Introduction

We only consider finite simple graphs, with neither loops nor multi-edges. Planar graphs we
consider are supposed to be embedded in the plane. Consider i classes of graphs G1, . . . , Gi.
A (G1, . . . , Gi)-partition of a graph G is a vertex-partition into i sets V1, . . . , Vi such that, for
all 1 ≤ j ≤ i, the graph G[Vj ] induced by Vj belongs to Gj . In the following we will consider
the following classes of graphs:

• F the class of forests,

• Fd the class of forests with maximum degree at most d,

• Dd the class of d-degenerate graphs (recall that a d-degenerate graph is a graph such
that all subgraphs have a vertex of degree at most d),

• ∆d the class of graphs with maximum degree at most d,

• I the class of empty graphs (i.e. graphs with no edges).

For example, an (I, F , D2)-partition of G is a vertex-partition into three sets V1, V2, V3 such
that G[V1] is an empty graph, G[V2] is a forest, and G[V3] is a 2-degenerate graph.

The Four Colour Theorem [1, 2] states that every planar graph G admits a proper 4-
colouring, that is that G can be partitioned into four empty graphs, i.e. G has an (I, I, I, I)-
partition. Borodin [3] proved that every planar graph admits an acyclic colouring with at
most five colours (an acyclic colouring is a proper colouring in which every two colour classes
induce a forest). This implies that every planar graph admits an (I, F , F)-partition. Poh [8]
proved that every planar graph admits an (F2, F2, F2)-partition. Thomassen proved that
every planar graph admits an (F , D2)-partition [10], and an (I, D3)-partition [11]. However,
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Classes Vertex-partitions References

Planar graphs

(I, I, I, I) The Four Color Theorem [1, 2]
(I, F , F) Borodin [3]
(F2, F2, F2) Poh [8]
(F , D2) Thomassen [10]
(I, D3) Thomassen [11]

Planar graphs with girth 4

(I, I, I) Grötzsch [6]
(F , F) Folklore
(F5, F) Present paper (Theorem 3)
(I, F) Open question (Question 1)

Planar graphs with girth 5 (I, F) Borodin and Glebov [4]

Table 1: Known results.

there are planar graphs that do not admit any (F , F)-partition [5]. Borodin and Glebov [4]
proved that every planar graph of girth at least 5 (that is every planar graph with no triangles
nor cycles of length 4) admits an (I, F)-partition.

We focus on triangle-free planar graphs. Raspaud and Wang [9] proved that every planar
graph with no triangles at distance at most 2 (and thus in particular every triangle-free
planar graph) admits an (F , F)-partition. However, it is not known whether every triangle-
free planar graph admits an (I, F)-partition. We pose the following questions:

Question 1. Does every triangle-free planar graph admit an (I, F)-partition?

Question 2. More generally, what is the lowest d such that every triangle-free planar graph

admits an (F , Fd)-partition?

Note that proving d = 0 in Question 2 would prove Question 1. The main result of this
paper is the following:

Theorem 3. Every triangle-free planar graph admits an (F , F5)-partition.

This implies that d ≤ 5 in Question 2. Our proof uses the discharging method. It
is constructive and immediately yields an algorithm for finding an (F , F5)-partition of a
triangle-free planar graph in quadratic time.

Note that Montassier and Ochem [7] proved that not every triangle-free planar graph
can be partitioned into two graphs of bounded degree (which shows that our result is tight
in some sense).

Finally, we show that if for some d, there exists a triangle-free planar graph that does
not admit an (F , Fd)-partition, then deciding whether a triangle-free planar graph admits
such a partition is NP-complete. That is, if the answer to Question 2 is some k > 0, then
for all 0 ≤ d < k, deciding whether a triangle-free planar graph admits an (F , Fd)-partition
is NP-complete. We prove this by reduction to Planar 3-Sat.

All presented results on vertex-partition of planar graphs are summarized in Table 1.

Theorem 3 will be proved in Section 2. Section 3 is devoted to complexity results.

Notation

Let G = (V, E) be a plane graph (i.e. planar graph together with its embedding).
For a set S ⊂ V , let G − S be the graph constructed from G by removing the vertices

of S and all the edges incident to some vertex of S. If x ∈ V , then we denote G − {x} by
G − x. For a set S of vertices such that S ∩ V = ∅, let G + S be the graph constructed from
G by adding the vertices of S. If x /∈ V , then we denote G + {x} by G + x. For a set E′ of
pairs of vertices of G such that E′ ∩ E = ∅, let G + E′ be the graph constructed from G by
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adding the edges of E′. If e is a pair of vertices of G and e /∈ E, then we denote G + {e} by
G + e. For a set W ⊂ V , we denote by G[W ] the subgraph of G induced by W .

We call a vertex of degree k, at least k and at most k, a k-vertex, a k+-vertex and a
k−-vertex respectively, and by extension, for any fixed vertex v, we call a neighbour of v
of degree k, at least k and at most k, a k-neighbour, a k+-neighbour, and a k−-neighbour

of v respectively. When there is some ambiguity on the graph, we call a neighbour of v
in G a G-neighbour of v. We call a cycle of length ℓ, at least ℓ and at most ℓ a ℓ-cycle,
a ℓ+-cycle, and a ℓ−-cycle respectively, and by extension a face of length ℓ, at least ℓ and
at most ℓ a ℓ-face, a ℓ+-face, and a ℓ−-face respectively. We say that a vertex of G is big

if it is a 8+-vertex, and small otherwise. By extension, a big neighbour of a vertex v is a
8+-neighbour of v, and a small neighbour of v is a 7−-neighbour of v.

Two neighbours u and w of a vertex v are consecutive if uvw forms a path on the boundary
of a face.

2 Proof of Theorem 3

We prove Theorem 3 by contradiction. Let G = (V, E) be a counter-example to Theorem 3
of minimum order.

Graph G is connected, otherwise at least one of its connected components would be a
counter-example to Theorem 3, contradicting the minimality of G.

Let us consider any plane embedding of G. Let us prove a series of lemmas on the
structure of G, that correspond to forbidden configurations in G.

Lemma 4. There are no 2−-vertices in G.

Proof. Suppose there is a 2−-vertex v in G. By minimality of G, G − v admits an (F , F5)-
partition (F, D). If v is a 1−-vertex, then G[F ∪ {v}] ∈ F . Suppose v is a 2-vertex. If both
of its neighbours are in F , then G[D ∪ {v}] ∈ F5. Otherwise, G[F ∪ {v}] ∈ F . In all cases,
one can obtain an (F , F5)-partition of G, a contradiction.

Lemma 5. Every 3-vertex in G has at least one big neighbour.

Proof. Suppose there is a 3-vertex v in G that has three small neighbours. By minimality of
G, G − v admits an (F , F5)-partition (F, D). If at least two neighbours of v are in D, then
G[F ∪ {v}] ∈ F . If no neighbour of v is in D, then G[D ∪ {v}] ∈ F5. Suppose exactly one
neighbour u of v is in D. If at most one of the neighbours of u is in F , then G[F ∪ {u}] ∈ F ,
and G[D\{u} ∪ {v}] ∈ F5. Otherwise, since u is small, at most four of the neighbours of u
are in D, thus G[D ∪ {v}] ∈ F5. In all cases, one can obtain an (F , F5)-partition of G, a
contradiction.

Lemma 6. Every 4-vertex or 5-vertex in G has at least one 4+-neighbour.

Proof. Suppose there is a 4-vertex or 5-vertex v in G that has no 4+-neighbour. Let the ui

be the neighbours of v, for i ∈ {0, ..., 3} or i ∈ {0, ..., 4}. Let G′ = G − v −
⋃

i{ui}. By
minimality of G, G′ admits an (F , F5)-partition (F, D). Add v to D, and for all ui, add ui

to D if its two neighbours distinct from v are in F , and add ui to F otherwise. Vertex v has
at most five neighbours in D, and each of the ui that is in D has one neighbour in D. Each
of the ui that is in F has at most one neighbour in F . We have an (F , F5)-partition of G,
a contradiction.

We will need the following observation in the next two lemmas.

Observation 7. Let v0v1v2v3 be a face of G, u0 a neighbour of v0 and u1 a neighbour of

v1. Either u0 and v2 are at distance at least 3, or u1 and v3 are at distance at least 3.
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v0

v1

b0

b1

s0

s1

Figure 1: The forbidden configuration of Lemma 8. The big vertices are represented with
big circles, and the small vertices with small circles. The filled circles represent vertices
whose incident edges are all represented.

By contradiction, suppose that u0 and v2 are at distance at most two, and that u1 and
v3 are at distance at most two. Since G is triangle-free, a shortest path from u0 to v2 (resp.
from u1 to v3) does not contain any of the ui and vi except for its extremities. Then by
planarity there exists a vertex w adjacent to u0, v2, u1 and v3. In particular v2v3w is a
triangle, a contradiction.

Lemma 8. The following configuration does not occur in G: two adjacent 3-vertices v0 and

v1 such that for i ∈ {0, 1}, vi has a big neighbour bi and a small neighbour si, and such that

v0v1s1b0 bounds a face of G.

Proof. Suppose such a configuration exists in G. See Figure 1 for an illustration of this
configuration. Observe that all the vertices defined in the statement are distinct (since G
is triangle-free). By Observation 7, either b0 and b1 are at distance at least 3, or s0 and s1

are at distance at least 3. For the remaining of the proof, we no longer need the fact that
b0s1 ∈ E(G). We forget this assumption, and only remember that either b0 and b1 are at
distance at least 3, or s0 and s1 are at distance at least 3. This provides some symmetry in
the graph.

Let G0 = G − {v0, v1} + b0b1 and G1 = G − {v0, v1} + s0s1. By what precedes, either G0

or G1 is triangle-free, thus there exists a j such that Gj is a triangle-free planar graph. By
minimality of G, Gj admits an (F , F5)-partition (F, D).

Let us first prove that if we do not have b0 and b1 in D, and s0 and s1 in F , then the
conditions G[F ] ∈ F and G[D] ∈ F5 lead to a contradiction. We will see that we can always
extend the (F , F5)-partition of Gj to G.

• If at least three of the bi and si are in D, then G[F ∪ {v0, v1}] ∈ F .

• If all of the bi and si are in F , then G[D ∪ {v0, v1}] ∈ F5.

• Suppose now that exactly three of the bi and si are in F . W.l.o.g., b0 ∈ D or s0 ∈ D.
We have G[F ∪ {v0}] ∈ F and G[D ∪ {v1}] ∈ F5.

• Suppose now that exactly two of the bi and si are in F . If b0 and s0 are in F (resp. b1

and s1 are in F ), then G[D ∪ {v0}] ∈ F5 and G[F ∪ {v1}] ∈ F (resp. G[F ∪ {v0}] ∈ F
and G[D ∪ {v1}] ∈ F5).

Now w.l.o.g. b0 ∈ F and s0 ∈ D. If s0 has at most one G-neighbour in F , then
G[F ∪ {s0}] ∈ F , we can replace F by F ∪ {s0} and D by D\{s0}, and we fall into a
previous case. We can thus assume that s0 has at least two of its G-neighbours in F ,
and thus it has at most four of its G-neighbours in D. Therefore G[D ∪ {v0}] ∈ F5,
and G[F ∪ {v1}] ∈ F .
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In all cases, G has an (F , F5)-partition, a contradiction.

Remains the case where b0 and b1 are in D, and s0 and s1 are in F . In the case where we
added the edge b0b1 (i.e. the case j = 0), we have G[D ∪{v0, v1}] ∈ F5, since G[D ∪{v0, v1}]
is equal to G0[D] where an edge is subdivided twice. Similarily, in the case where we added
the edge s0s1 (i.e. the case j = 1), we have G[F ∪ {v0, v1}] ∈ F , since G[F ∪ {v0, v1}] is
equal to G0[F ] where an edge is subdivided twice. Again, G has an (F , F5)-partition, a
contradiction.

v0

v1

s1

b

s0

w0 w1

Figure 2: The forbidden configuration of Lemma 9.

Lemma 9. The following configuration does not occur in G: a 3-vertex v0 adjacent to a

4-vertex v1 such that v0 has a big neighbour b and a small neighbour s0, and v1 has three

other small neighbours s1, w0, and w1 such that v0v1s1b bounds a face of G and s1 has

degree 3.

Proof. Suppose such a configuration exists in G. See Figure 2 for an illustration of this
configuration. Observe that all the vertices defined in the statement are distinct (since G is
triangle-free). By Observation 7, either b and w0 are at distance at least 3, or s0 and s1 are
at distance at least 3. Let G0 = G − {v0, v1} + bw0 and G1 = G − {v0, v1} + s0s1. By what
precedes, either G0 or G1 is triangle-free, thus there exists a j such that Gj is a triangle-free
planar graph. By minimality of G, Gj has an (F , F5)-partition (F, D).

Let us first prove that except in the case where {b, w0, w1} ⊂ D and {s0, s1} ⊂ F , the
conditions G[F ] ∈ F and G[D] ∈ F5 lead to a contradiction. We will see that we can always
extend the (F , F5)-partition of Gj to G.

If at least four among the wi, the si and b are in D, then G[F ∪ {v0, v1}] ∈ F .
Suppose now that at most three among the wi, the si and b are in D. Suppose x ∈

{b, s0, s1, w0, w1} is in D. If x has at most one G-neighbour in F , then G[F ∪ {x}] ∈ F , and
we could consider F ∪ {x} instead of F and D\{x} instead of D. Note that this cannot lead
to the case we excluded ({b, w0, w1} ⊂ D and {s0, s1} ⊂ F ) unless at least four among the
wi, the si and b are in D. Thus we can assume that for any x among the wi and si such
that x ∈ D, x has at most four G-neighbours in D, and thus adding one neighbour of x in
D cannot cause x to have at least six neighbours in D. We consider two cases according to
b:

• Suppose b ∈ F . If at least three of the wi and si are in F , then G[D ∪ {v0, v1}] ∈ F5.

If at least two among the wi and s1 are in D, then G[F ∪ {v1}] ∈ F and G[D ∪ {v0}] ∈
F5. Else, at least two among the wi and s1 are in F , and we may assume that s0 is in
D (otherwise we fall into a previous case), so G[D ∪ {v1}] ∈ F5 and G[F ∪ {v0}] ∈ F .

• Suppose now that b ∈ D. As s1 has degree 3, it has at most one G-neighbour in F ,
and thus as previously we could consider F ∪ {s1} instead of F and D\{s1} instead of
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D. Again, this cannot lead to the case we excluded ({b, w0, w1} ⊂ D and {s0, s1} ⊂ F )
unless at least four among the wi, the si and b are in D. Therefore we can assume
that s1 ∈ F . The wi are not both in D (otherwise we fall into the case we excluded).
We have G[D ∪ {v1}] ∈ F5 and G[F ∪ {v0}] ∈ F .

In all cases, G has an (F , F5)-partition, a contradiction.
Remains the case {b, w0, w1} ⊂ D and {s0, s1} ⊂ F . In the case where we added the

edge bw0 (i.e. the case j = 0), b has at most five G0-neighbours in D, and thus at most
four G-neighbours in D, so G[D ∪ {v0}] ∈ F5, and G[F ∪ {v1}] ∈ F . In the case where we
added the edge s0s1 (i.e. the case j = 1), we have G[F ∪ {v0, v1}] ∈ F , since G[F ∪ {v0, v1}]
is equal to G0[F ] where an edge is subdivided twice. Again, G has an (F , F5)-partition, a
contradiction.

b0

w0

v0

v1

v2

v3

b1

Figure 3: Configuration 10.

We define a specific configuration:

Configuration 10. Two 4-faces b0v0v1w0 and v0v1v2v3, such that b0 is a big vertex, v0 and

w0 are 3-vertices, v1 is a 4-vertex, v2 and v3 are small vertices, and the fourth neighbour of

v1, say b1, is a big vertex. See Figure 3 for an illustration of this configuration.

b0

w0

v0

v1

v2

v3

b1

w1

Figure 4: The forbidden configuration of Lemma 11.

Lemma 11. The following configuration is forbidden: Configuration 10 with the added

condition that there is a 4-face b1v1v2w1 with w1 a 3-vertex, v2 a 4-vertex, and the fourth

neighbour of v2, the third neighbour of w1, and the third neighbour of w0 are small vertices.

Proof. Suppose such a configuration exists in G. See Figure 4 for an illustration of this
configuration. Observe that all the vertices named in the statement are distinct since G is
triangle-free and w1 is a small vertex whereas b0 is a big one.
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Let us prove that either b0 and b1 are at distance at least 3, or w0 and w1, and w0 and v3

are at distance at least 3. By contradiction, suppose that b0 and b1 are at distance at most
two, and that either w0 and w1 are at distance at most two, or w0 and v3 are at distance
at most 2. Since G is triangle-free, a shortest path from b0 to b1, from w0 to w1 or from w0

to v3 does not go through any of the vertices defined in the statement. Then by planarity
there exists a vertex w adjacent to b0, b1, w0 and either w1 or v3. In particular b0w0w is a
triangle, a contradiction.

Let G0 = G − {v0, v1} + b0b1 and G1 = G − {v0, v1} + w0w1 + w0v3. By what precedes,
either G0 or G1 is triangle-free, thus there exists a j such that Gj is a triangle-free planar
graph. By minimality of G, Gj has an (F , F5)-partition (F, D).

Let s0 be the third neighbour of w0, s1 be the third neighbour of w1 and s2 be the fourth
neighbour of v2. They are all small vertices, but there may be some that are equal between
themselves, or equal to some vertices we defined previously. However, if one of the si is
in {v0, v1, v2, w0, w1}, then this si is a 4−-vertex in G (and in particular it has at most 4
neighbours in D).

Suppose first that b0 and b1 are both in D.

1. Suppose w0 is in D. Here we only consider (F, D) as an (F , F5)-partition of G−{v0, v1}.

If v3 is also in D, then adding v0 and v1 to F leads to an (F , F5)-partition of G. Suppose
v3 is in F . We show now that we can assume that v2 is in D. By contradiction, suppose
v2 is in F . We remove v2 from F .

Observe that we can assume that v2 has no G-neighbour in D with five G-neighbours
in D. Indeed, suppose v2 has a G-neighbour in D with five G-neighbours in D. This
G-neighbour is a 5+-vertex, so it is s2. Moreover, s2 is not equal to v3 (because v3 is
in F ), and is not equal to any of the other vertices named in the statement (because
of the degree conditions). As s2 is a small D-vertex, has at least five G-neighbours in
D and is adjacent to v2 that is neither in F nor in D, s2 has at most one neighbour in
F . Therefore we can put s2 in F .

Observe that we can assume that v2 has at most one G-neighbour in D. Suppose v2

has two G-neighbours in D. These G-neighbours are s2 and w1. Vertex w1 has at
most one neighbour in F , that is s1, so we can put w1 in F .

Now v2 has at most one G-neighbour in D, and no G-neighbour of v2 in D has five
G-neighbours in D, so we can put v2 in D. Therefore we can always assume that v2

is in D. Note that we do not need to change where s2 is in the partition if it is equal
to one of the vertices named in the statement. Adding v0 and v1 to F leads to an
(F , F5)-partition of G.

2. Suppose w0 is in F , v3 is in D and w1 is in D. If s2 is in D, then putting v0, v1 and
v2 in F leads to an (F , F5)-partition of G. Suppose s2 is in F . We put v0, v1 and w1

in F , and v2 in D. If this increases the number of G-neighbours of v3 in D above five,
then since v3 is small, v3 has at most one neighbour in F , which is v0, and we put v3

in F . This leads to an (F , F5)-partition of G.

3. Suppose w0 is in F , v3 is in D and w1 is in F . Suppose s2 is in F . We put v0 and
v1 in F , and v2 in D. If this increases the number of G-neighbours of v3 in D above
five, then since v3 is small, v3 has at most one neighbour in F , which is v0, and we
put v3 in F . This leads to an (F , F5)-partition of G. Suppose s2 is in D. If v2 is
not in F , we may put it in F , since it has only one Gj -neighbour in F , that is w1.
Therefore we can assume that v2 is in F . If j = 0, then b1 has at most 4 G-neighbours
in D (since it has at most 5 such G0-neighbours), so adding v0 to F and v1 to D
leads to an (F , F5)-partition of G. If j = 1, then adding v0 and v1 to F leads to an
(F , F5)-partition of G.
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4. Suppose w0 is in F and v3 is in F . Suppose j = 0. The vertex b0 has at most 4
G-neighbours in D (since it has at most 5 such G0-neighbours), so we can add v0 to
D. If v2 is in D, then adding v1 to F leads to an (F , F5)-partition of G. If v2 is in F ,
then adding v1 to D makes G[D] equal to G0[D] with an edge subdivided twice, and
this leads to an (F , F5)-partition of G. Suppose j = 1. Here we only consider (F, D)
as an (F , F5)-partition of G−{v0, v1}+w0v3. As in 1, we can suppose, up to changing
where s2 and w1 are in the partition, that v2 is in D. Note that if s2 is equal to one
of the vertices named in the statement, we do not need to move s2 in the partition.
Adding v0 and v1 to F leads to an (F , F5)-partition of G.

Now we may assume that at least one of b0 and b1 is in F . From now on we only consider
(F, D) as an (F , F5)-partition of G − {v0, v1}.

• Suppose b0 is in F and b1 is in D. In that case we put v0 and w0 in D, and v1 in F .
Adding v0 in D (resp. w0 in D) may violate the degree condition of G[D] ; however, if
it happens, one can put v3 (resp. s0) in F . In any case, we obtain an (F , F5)-partition
of G.

• Suppose b0 is in D and b1 is in F . If at least one of w0 and v2 is in F , then adding v0

in F and v1 in D leads to an (F , F5)-partition of G. Assume w0 and v2 are both in D.
If v3 is in D, then adding v0 and v1 in F leads to an (F , F5)-partition of G. Assume
v3 is in F . We consider three cases:

– Suppose s2 and w1 are in F . Adding v0 in F and v1 in D leads to an (F , F5)-
partition of G.

– Suppose s2 is in F and w1 is in D. If s1 is in D, then we can put w1 in F and we
fall into the previous case. If s1 is in F , then adding v0 in F and v1 in D leads
to an (F , F5)-partition of G.

– Suppose s2 is in D. If s1 is in D and has five G-neighbours in D distinct from
w1, then as s1 is small, it is distinct from all the vertices named in the statement,
and we can put it in F . Therefore we can put w1 in D and v2 in F . We fall into
a previous case (at least one of w0 and v2 is in F ).

• Suppose b0 and b1 are in F . If s0 is in D and has five G-neighbours in D distinct from
w0, then as s0 is small, it is distinct from all the vertices named in the statement aside
from v3, and we can put it in F . Therefore we can put w0 in D. We consider the
following cases:

– If v2 and v3 are in F , then adding v0 and v1 to D leads to an (F , F5)-partition
of G.

– If v2 is in F and v3 is in D, then adding v0 to F and v1 to D leads to an
(F , F5)-partition of G.

– If v2 is in D and v3 is in F , then adding v0 to D and v1 to F leads to an
(F , F5)-partition of G.

– If v2 and v3 are in D, then adding v0 to D and v1 to F leads to an (F , F5)-
partition of G. Adding v0 to D may violate the degree condition of G[D], but in
that case we can put v3 in F .

We now apply a discharging procedure: first, for all j, every j-vertex v has a charge equal
to c0(v) = j − 4, and every j-face f has a charge equal to c0(f) = j − 4. By Euler’s formula,
the total charge is negative (equal to −8). Observe that, since G is triangle-free, every face
has a non-negative initial charge, and by Lemma 4, the vertices that have negative initial
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charges are exactly the 3-vertices of G, and they have an initial charge of −1. Here is our
discharging procedure:

Discharging procedure:

• Step 1 : Every big vertex gives 1
2 to each of its small neighbours. Furthermore, for

every 4-face uvwx where u and v are big, and w and x are small, v gives 1
4 to x (and

u gives 1
4 to w).

• Step 2 : Consider a 4-vertex v that does not correspond to v1 in Configuration 10.
Vertex v gives 1

4 to each of its small neighbours that are consecutive (as neighbours of
v) to exactly one big vertex, and 1

2 to each of its small neighbours that are consecutive
(as neighbours of v) to two big vertices.

Consider the case where v corresponds to v1 in Configuration 10. We use the notations
of Configuration 10. If w0 has two big neighbours, then v1 gives 1

4 to v0 and 1
4 to v2.

Otherwise, it gives 1
4 to w0 and 1

4 to v0.

Every small 5+-vertex that has a big neighbour gives 1
4 to each of its small neighbours,

and an additional 1
4 for each that is consecutive (as neighbours of v) to at least one

big vertex. Every small 5+-vertex that has no big neighbour gives 1
4 to each of its

3-neighbours.

• Step 3 : For every 4-face uvwx, with u a big vertex, v a 3-vertex, w a 4-vertex, and x
a small vertex such that x gave charge to w in Step 2, w gives 1

4 to v.

• Step 4 : Every 5+-face that has a big vertex in its boundary gives 1
4 to each of the

small vertices in its boundary. Every 5+-face that has no big vertex in its boundary
gives 1

5 to each of the vertices in its boundary.

• Step 5 : For every 4-face uvwx, with u a big vertex, v a 3-vertex, w a 4-vertex and x
a 3-vertex such that the other face that has vw in its boundary is a 5+-face, w gives
1
5 to v.

For every vertex or face x of G, for every i ∈ {1, 2, 3, 4, 5}, let ci(x) be the charge of x at
the end of Step i. Observe that during the procedure, no charges are created and no charges
disappear; hence the total charge is kept fixed.

We now prove that every vertex and every face has a non-negative charge at the end of
the procedure. That leads to the following contradiction:

0 ≤
∑

x∈V (G)∪F (G)

c5(x) =
∑

x∈V (G)∪F (G)

c0(x) = −8

Lemma 12. Every face has non-negative charge at the end of the procedure.

Proof. At the beginning of the procedure, for every j-face f we have c0(f) = j − 4 ≥ 0 (as
j ≥ 4). The procedure does not involve 4-faces. Hence if j = 4, then c5(f) = c0(f) = 0. If
j = 5, then f gives at most four times 1

4 if it is incident to a big vertex and at most five
times 1

5 otherwise in Step 4. It follows that c5(f) ≥ 0. If j ≥ 6, then f can give 1
3 to each

of its incident vertices (and so 1
4 or 1

5 ) during Step 4, and c5(f) ≥ j − 4 − j

3 ≥ 0.

Lemma 13. A 4+-vertex never has negative charge.

Proof. Consider a j-vertex z with j ≥ 4. At the beginning, c0(z) = j − 4 ≥ 0. We will show
that ci(z) ≥ 0 for i = 1, ..., 5.

• Suppose z is a big vertex. Such a vertex only loses charge in Step 1. Since j ≥ 8, we
have c0(z) ≥ j

2 . In Step 1, vertex z loses 1
2 for each of its small neighbours, and at

most 1
2 for each of its big neighbours. Therefore it has more charge than what it gives,

and thus it keeps a non-negative charge.

9



• Suppose z is a small 5+-vertex. It does not lose charge in Steps 1, 3, 4 and 5.

Suppose z has a big neighbour. It has at most j −1 small neighbours, and it has charge
at least 1

4 (j − 1) at the beginning of the procedure, since j ≥ 5. Moreover, it receives
1
2 from each of its big neighbours in Step 1. Therefore it does not give more charge
that it has in Step 2.

Suppose now that z has no big neighbour. If z is a 5-vertex, then by Lemma 6,
it has at most four 3-vertices, and c2(z) ≥ 1 − 4 1

4 ≥ 0. If z is a 6+-vertex, then
c2(z) ≥ j − 4 − j 1

4 ≥ 0.

• Suppose z is a 4-vertex. It does not lose charge in Steps 1 and 4. Suppose z gives
charge in Step 2. Consider first that z does not correspond to v1 in Configuration 10.
If z is adjacent to a small vertex that is consecutive (as a neighbour of z) to two big
neighbours, then z gives at most twice 1

2 in Step 2 and received twice 1
2 in Step 1;

hence c2(z) ≥ 0. Otherwise, z gives at most twice 1
4 in Step 2, and received at least

once 1
2 in Step 1; hence c2(z) ≥ 0. Let us now consider the case where z corresponds

to v1 in Configuration 10. The vertex z has a big neighbour that gave 1
2 to z in Step

1, and z gives 1
4 to two of its neighbours in Step 2. Therefore z received in Step 1 at

least as much as what it gives in Step 2.

u

v z

x u

v

u′

v′z

x

Figure 5: Some configurations that appear in Lemma 13.

Suppose z gives charge in Step 3. There is a 4-face uvzx with u a big vertex, v a
3-vertex, and x a small vertex such that x gave charge to z in Step 2. Suppose z is
consecutive to exactly one big vertex (as neighbours of x). The vertex x gave at least
1
4 to z in Step 2, and there is exactly one such face with the same z and x (i.e. there is
no pair (u′, v′) distinct from (u, v) that verifies the properties we stated for (u, v))(see
Figure 5, left). Therefore z can give 1

4 to v in Step 3. Suppose z is consecutive to
exactly two big vertices (as neighbours of x). The vertex x gave 1

2 to z in Step 2,
and there are at most two such faces with the same z and x (i.e. there is at most one
pair (u′, v′) distinct from (u, v) that verifies the properties we stated for (u, v)) (see
Figure 5, right). Therefore z can give 1

4 to each of the corresponding v’s in Step 3.
Therefore z received in Step 2 at least as much as what it gives in Step 3.

Suppose z gives charge in Step 5. There is a 4-face uvzx, with u a big vertex, v a
3-vertex, and x a 3-vertex such that the other face, say f , that has vz in its boundary
is a 5+-face. Vertex z received at least 1

5 from f in Step 4, and it gives 1
5 to v. There

is a problem only if there is another 4-face u′v′zx′, such that vzv′ is on the boundary
of f , u′ is a big vertex, and x′ and v′ are 3-vertices. But then z would have four
3-neighbours, contradicting Lemma 6. Therefore z received in Step 4 at least as much
as what it gives in Step 5.

In all cases, z never has negative charge.

Lemma 14. At the end of the procedure, every 3-vertex has non-negative charge.

10



Proof. Let z be a 3-vertex. It never loses charge in the procedure, so we only need to prove
that it received at least 1 over the whole procedure. Assume by contradiction that it received
less than that.

By Lemma 5, vertex z has at least one big neighbour b. Let x0 and x1 be its two other
neighbours. Vertex b gives 1

2 to z in Step 1, so z only needs to receive 1
2 from x0, x1, and

its surrounding faces. In particular, if one of the xi is a big vertex, then it gives 1
2 to z in

Step 1, and z receives all the charge it needs, a contradiction. Therefore x0 and x1 are small
vertices.

Let f be the face that contains x0zx1 in its boundary, f0 be the face that contains x0zb
in its boundary and f1 the face that contains x1zb in its boundary. Let y0 and y1 be such
that bzx0y0 and bzx1y1 are 4-paths that are in the boundaries of f0 and f1 respectively. Let
us count the charge that x0, y0, and f0 give to z plus half the charge that f gives to z. If
we show that this sum is at least 1

4 , then by symmetry we will know that z received at least
1
2 from x0, x1, y0, y1, and the faces f , f0, and f1, and that leads to a contradiction.

Observe that f0 is a 4-face. If it is a 5+-face, then since it has the big vertex b in its
boundary, it gives 1

4 to z in Step 4, a contradiction.
Observe that y0 is a small vertex. If y0 is a big vertex, then y0 gives 1

4 to z in Step 1, a
contradiction. See Figure 6 for a representation of the vertices we know.

zb

x0

x1

y0

f0

f

Figure 6: The face f0 and the vertex x1.

Observe that x0 has degree 4. Suppose x0 is a 5+-vertex. It gives at least 1
4 to z in Step

2, a contradiction. Suppose x0 is a 3-vertex. Then x0 has a big neighbour by Lemma 5, and
it cannot be y0. This contradicts Lemma 8.

Let a and a′ be the neighbours of x0 distinct from z and y0, such that a is consecutive
to z(as a neighbour of x0). Suppose a is a big vertex. If x0 does not correspond to v1 in
Configuration 10, then x0 gives 1

4 to z in Step 2. If x0 corresponds to v1 in Configuration 10,
then z corresponds to w0 that is not adjacent to two big vertices, so x0 also gives 1

4 to z in
Step 2. Therefore a is a small vertex.

Observe that y0 is a 4+-vertex. Suppose y0 is a 3-vertex. By Lemma 9, there is at least
one big vertex in {a, a′}, which has to be a′. If f is a 4-face, then x0 corresponds to v1 in
Configuration 10, and it gives 1

4 to z in Step 2. Therefore f is a 5+-face, and it gives at least
1
5 to z in Step 4, and x0 gives 1

5 to z in Step 5. As 1
10 + 1

5 ≥ 1
4 , this leads to a contradiction.

Suppose first that y0 corresponds to v1 in Configuration 10. See Figure 7 for an illustra-
tion of the vertices we know, and of the correspondence with vertices of Configuration 10.
By Lemma 11, the third neighbour of w0 is big. Therefore y0 gives 1

4 to x0 in Step 2. It
follow that x0 gives 1

4 to z in Step 3, a contradiction.
Now y0 does not correspond to v1 in Configuration 10. Vertex y0 gives 1

4 to x0 in Step 2,
since x0 is a neighbour of y0 consecutive (as a neighbour of y0) to a big neighbour. Therefore
x0 gives 1

4 to z in Step 3, a contradiction.

Lemmas 12–14 conclude the proof of Theorem 3.

11



b0

w0

v0

y0 = v1

x0 = v2

a′ = v3

b = b1

z = w1

x1

a

Figure 7: The case in Lemma 14 where y0 corresponds to v1 in Configuration 10.

3 NP-completeness

By Theorem 3, there exists a smallest integer d0 ≤ 5 such that every triangle-free planar
graph has an (F , Fd0

)-partition. For all d ≥ d0, every triangle-free planar graph has an
(F , Fd)-partition. Let us assume that d0 ≥ 1.

In this section, for a fixed d we consider the complexity of the following problem Pd: given
a triangle-free planar graph G, does G have an (F , Fd)-partition? This can be answered
positively in constant time for d ≥ d0. However, we prove the following:

Theorem 15. For d < d0, the problem Pd is NP-complete.

The problem is clearly in NP, since checking that a graph is acyclic and/or has degree
at most d can be done in polynomial time. Let us show that the problem is NP-hard.

Let G be a counter-example to the property that every triangle-free planar graph admits
an (F , Fd) partition. We consider such a G with minimum number of vertices, and with
minimum number of edges among the counter-examples with minimum number of vertices.
Let e = uv be an edge of G, and G′ = G − e. By minimality of G, G′ admits an (F , Fd)-
partition. In such a partition (F, D), u and v are either both in F or both in D, and if they
are in F , then there is a path from u to v in G′[F ] (otherwise it would be an (F , Fd)-partition
of G). Observe that in G′, u and v are at distance at least 3, since G is triangle-free. We
call a copy of G′ an anti-edge uv.

We want to make a gadget H with a vertex x that admits an (F , Fd)-partition, and such
that x is in F for all (F , Fd)-partition (F, D) of H .

x

u0 u1 ud

v0 v1 vd

...

F

D D D

D D D

...

Figure 8: The gadget H in Case 1, and an (F , Fd)-partition. Dashed lines are anti-edges.

We construct H as follows:

1. Suppose for all (F , Fd)-partition (F, D) of G′, u and v are in D. See Figure 8 for an
illustration of the construction of H and an (F , Fd)-partition of H in this case. Take
d + 1 copies of G′, called G′

0, ..., G′

d, and add a new vertex x adjacent to each copy
of u. Consider an (F , Fd)-partition (F, D) of G′. This leads to an (F , Fd)-partition
(Fi, Di) of each Gi, and (

⋃
i Fi ∪ {x},

⋃
i Di) is an (F , Fd)-partition of H .
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x

u00

u10

ud0

u01

u11

ud1

v0

v1

vdw0

w1

wd...

F

F

F

F

F

F

F

F

F

FD

D

D...

Figure 9: The gadget H in Case 2, and an (F , Fd)-partition.

Let us now prove that for any (F , Fd)-partition (F, D) of H , x belongs to F . For any
(F , Fd)-partition (F, D) of H , if x ∈ D, then there exists a ui that is in F , so the
corresponding G′

i admits an (F , Fd)-partition with ui ∈ F , a contradiction.

2. Suppose there exists an (F , Fd)-partition (F, D) of G′ such that u and v are in F .
See Figure 9 for an illustration of the construction of H and an (F , Fd)-partition of
H in this case. We construct H as follows. Consider a vertex x. We add new vertices
v0, ..., vd and w0, ..., wd to the graph, adjacent to x. Then for 0 ≤ i ≤ d and 0 ≤ j ≤ 1,
we add a new vertex uij , the anti-edge viuij , and the edge uijwi.

Graph H admits an (F , Fd)-partition. Indeed, consider an (F , Fd)-partition of G′ with
u and v in F , and apply it to every anti-edge of H (as before, we take the union of
the Fi and the union of the Di). Then the vi and uij are all in F . Add all the wi to
D. Add x to F . We then have an (F , Fd)-partition of H .

Let us now prove that for any (F , Fd)-partition (F, D) of H , x belongs to F . For any
(F , Fd)-partition (F, D) of H , if x ∈ D, then there exists an i such that vi and wi are
in F , thus ui0 and ui1 are in F , so there is a cycle in H [F ], a contradiction.

yD

F

F

F
H

H

H

Figure 10: The gadget H ′ with an (F , Fd)-partition.

Observe that we can make a gadget H ′ with a vertex y that admits an (F , Fd)-partition,
and such that y is in D for all (F , Fd)-partition (F, D) of H ′ (see Figure 10): we take three
copies of H , and make a 4-cycle with the corresponding copies of x and a new vertex y.
Taking an (F , Fd)-partition of H for each copy of H , and adding y to D leads to an (F , Fd)-
partition of H ′. Conversely, in an (F , Fd)-partition (F, D) of H ′, all the copies of x are in
F , so y is in D.

We will first make a reduction from the problem Planar 3-sat to P0, and then from
P0 to Pd with d < d0.
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First reduction: from Planar 3-sat to P0

Here we will use the gadget H for d = 0.
Consider an instance I of Planar 3-sat. The instance I is a boolean formula in conjunc-

tive normal form, associated to a planar graph GI . For each clause C of I with variables x, y
and z, we make a 4-cycle KC = xCyCzCaC . For each variable x that appears kx times in the
formula, we make the following gadget Gx a path px,0...px,2kx−1, and for all i ∈ [0, 2kx − 2]
we add two adjacent vertices, qx,i and rx,i+1, adjacent to px,i and px,i+1 respectively (see
Figure 12). We then add a copy of H for each clause C such that aC corresponds to the
vertex x of H , and a copy of H for each qx,i and each rx,i such that qx,i and rx,i respectively
correspond to the vertex x of H . Then for every clause C and every variable x that appears
in C, we add an edge from xC to a px,i, with an even i if the literal associated to x in C
is a positive literal and an odd i otherwise, such that no two xC are adjacent to the same
px,i (see Figure 11). It is possible to do so without breaking planarity, since the graph GI

is planar. We call G′

I the graph we obtain.

Gx Gy Gz

xC

yC

zC

aC

H

Gx Gy Gz

D

F

F

F

H

Figure 11: The cycle KC of a clause C with variables x, y and z, and an (F , Fd)-partition
in the case where variable x satisfies the clause.

Suppose I is satisfiable, and let us consider an assignation σ of the variables that satisfies
I. Let us make an (F , F0)-partition of G′

I . We first take an (F , F0)-partition for each copy
of H . All the aC , qx,i and rx,i are in F . For each variable x, if σ(x) = 1, then we put all the
px,2i in F and the px,2i+1 in D, else we put all the px,2i in D and the px,2i+1 in F . Then
for each clause C, we choose a variable x of C that satisfies the clause (i.e. x is true if the
literal associated to x in C is a positive literal, and false otherwise), we put xC in D and for
the two other variables of C, we put the corresponding yC in F .

All the vertices are in F or in D. Let v be a G′

I -vertex in D. If v is in a copy of H , then
it has no neighbour in D. If v is a xC , then the three other vertices of KC are in F . If v is
a px,i, then px,i+1 and px,i−1 are in F if they exist, and all the qj and rj are in F . Suppose
there are two G′

I [F ]-neighbours in D. One is a xC and the other is a px,i (with the same x).
Then by construction the variable x satisfies clause C (i.e. x is true if the literal associated
to x in C is a positive literal, and false otherwise). If x is associated to a positive literal in
clause C, then σ(x) = 1 and i is even, thus px,i is in F , a contradiction. If x is associated to
a negative literal in clause C, then σ(x) = 0 and i is odd, thus px,i is in F , a contradiction.
Graph G′

I [F ] has no cycle: there is no cycle in the copies of H with every vertex in F ; for
each clause C, KC has a vertex in D, and for each i ∈ [0, 2kx − 2], px,2i or px,2i+1 is in D.
Therefore (F, D) is an (F , F0)-partition of G′

I .
Suppose now that there is an (F , F0)-partition (F, D) of G′

I . All the aC , the qx,i and the
rx,i are in F . For all variable x and all i ∈ [0, 2kx − 2], either px,i ∈ F and px,i+1 ∈ D, or
px,i ∈ D and px,i+1 ∈ F . Therefore for all x, either all the px,i are in F for i even and in D
for i odd, or all the px,i are in D for i even and in F for i odd. Let σ be the assignation of
the variables x such that σ(x) = 1 if px,0 is in F , and σ(x) = 0 otherwise. Let C be a clause
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KC0
KC1

KC2

px,0 px,1 px,2 px,3

qx,0 qx,1 qx,2rx,1 rx,2 rx,3

H H H H H H

...

KC0
KC1

KC2

F D F D

F F FF F F

H H H H H H

...

Figure 12: The gadget Gx for a variable x, with an (F , Fd)-partition that corresponds to
the assignation of x to true. Here the literal associated to x in C0 is positive, and that
associated to x in C1 and C2 is negative.

of I. At least one of the xC is in D (otherwise KC is a cycle with every vertex in F ), and
it is adjacent to a px,i with i even if x is positive and i odd if x is negative in C. This px,i

is in F , so if x is positive in C, then σ(x) = 1, else σ(x) = 0. Therefore σ satisfies clause C,
and this is true for all C, so σ satisfies I.

It is easy to see that the reduction is polynomial, and that G′

I is a triangle-free planar
graph. Thus this is a polynomial reduction from Planar 3-sat to P0.

Second reduction: from P0 to Pd with d < d0

Consider an instance I of P0. For each vertex v in I, add d copies of H ′, such that the
corresponding copies of y are adjacent to v. We call Id the resulting graph.

Suppose I admits an (F , F0)-partition. Consider an (F , Fd)-partition of H ′. Apply it to
every copy of H ′ we made in Id. Complete it with an (F , F0)-partition of I. The obtained
partition is an (F , Fd)-partition of Id.

Suppose now that Id admits an (F , Fd)-partition (F, D). In each copy of H ′, we have
y ∈ D, so each vertex in I has exactly d (Id − V (I))-neighbours in D and no (Id − V (I))-
neighbours in F . Therefore (F ∩ V (I), D ∩ V (I)) is an (F , F0)-partition of I.

It is easy to see that the reduction is polynomial, and that Id is a triangle-free planar
graph. Thus this is a polynomial reduction from P0 to Pd.
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