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Abstract

An (F, Fq)-partition of a graph is a vertex-partition into two sets F' and Fy such
that the graph induced by F' is a forest and the one induced by Fy is a forest with
maximum degree at most d. We prove that every triangle-free planar graph admits an
(F, Fs)-partition. Moreover we show that if for some integer d there exists a triangle-
free planar graph that does not admit an (F, F4)-partition, then it is an NP-complete
problem to decide whether a triangle-free planar graph admits such a partition.

1 Introduction

We only consider finite simple graphs, with neither loops nor multi-edges. Planar graphs we
consider are supposed to be embedded in the plane. Consider 7 classes of graphs Gy, ..., G;.
A (Gi,...,G;)-partition of a graph G is a vertex-partition into i sets Vi, ..., V; such that, for
all 1 < j <4, the graph G[V;] induced by V; belongs to G;. In the following we will consider
the following classes of graphs:

e F the class of forests,
e F, the class of forests with maximum degree at most d,

e D, the class of d-degenerate graphs (recall that a d-degenerate graph is a graph such
that all subgraphs have a vertex of degree at most d),

e A, the class of graphs with maximum degree at most d,
e 7 the class of empty graphs (i.e. graphs with no edges).

For example, an (Z, F, Ds)-partition of G is a vertex-partition into three sets V1, Vo, V3 such
that G[V1] is an empty graph, G[V4] is a forest, and G[V3] is a 2-degenerate graph.

The Four Colour Theorem [I} 2] states that every planar graph G admits a proper 4-
colouring, that is that G can be partitioned into four empty graphs, i.e. G has an (Z,Z,Z,7)-
partition. Borodin [3] proved that every planar graph admits an acyclic colouring with at
most five colours (an acyclic colouring is a proper colouring in which every two colour classes
induce a forest). This implies that every planar graph admits an (Z, F, F)-partition. Poh [§]
proved that every planar graph admits an (Fa, F2, F2)-partition. Thomassen proved that
every planar graph admits an (F, Dy)-partition [10], and an (Z, D3)-partition [I1]. However,
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Classes Vertex-partitions | References
(Z,7,1,7) The Four Color Theorem [, 2]
(Z,F,F) Borodin [3]
Planar graphs (Fa, Fa, F2) Poh [§]
(F,D2) Thomassen [10]
(Z,Ds) Thomassen [T1]
(Z,7,7) Grotzsch [6]
o (F,F) Folklore
Planar graphs with girth 4 (Fs, F) Present paper (Theorem ()
(Z,F) Open question (Question [I)
Planar graphs with girth 5 | (Z,F) Borodin and Glebov [4]

Table 1: Known results.

there are planar graphs that do not admit any (F, F)-partition [5]. Borodin and Glebov [4]
proved that every planar graph of girth at least 5 (that is every planar graph with no triangles
nor cycles of length 4) admits an (Z, F)-partition.

We focus on triangle-free planar graphs. Raspaud and Wang [9] proved that every planar
graph with no triangles at distance at most 2 (and thus in particular every triangle-free
planar graph) admits an (F, F)-partition. However, it is not known whether every triangle-
free planar graph admits an (Z, F)-partition. We pose the following questions:

Question 1. Does every triangle-free planar graph admit an (Z,F)-partition?

Question 2. More generally, what is the lowest d such that every triangle-free planar graph
admits an (F, Fq)-partition?

Note that proving d = 0 in Question 2 would prove Question Il The main result of this
paper is the following:

Theorem 3. Every triangle-free planar graph admits an (F, Fs)-partition.

This implies that d < 5 in Question Our proof uses the discharging method. It
is constructive and immediately yields an algorithm for finding an (F, F5)-partition of a
triangle-free planar graph in quadratic time.

Note that Montassier and Ochem [7] proved that not every triangle-free planar graph
can be partitioned into two graphs of bounded degree (which shows that our result is tight
in some sense).

Finally, we show that if for some d, there exists a triangle-free planar graph that does
not admit an (F, Fy)-partition, then deciding whether a triangle-free planar graph admits
such a partition is NP-complete. That is, if the answer to Question [2]is some k& > 0, then
for all 0 < d < k, deciding whether a triangle-free planar graph admits an (F, F4)-partition
is NP-complete. We prove this by reduction to PLANAR 3-SAT.

All presented results on vertex-partition of planar graphs are summarized in Table [I1

Theorem [B] will be proved in Section 21 Section Blis devoted to complexity results.

Notation

Let G = (V, E) be a plane graph (i.e. planar graph together with its embedding).

For a set S C V, let G — S be the graph constructed from G by removing the vertices
of S and all the edges incident to some vertex of S. If z € V, then we denote G — {z} by
G — z. For a set S of vertices such that SNV = (), let G + S be the graph constructed from
G by adding the vertices of S. If x ¢ V, then we denote G + {z} by G + z. For a set E’ of
pairs of vertices of G such that E' N E = (), let G + E’ be the graph constructed from G by



adding the edges of E'. If e is a pair of vertices of G and e ¢ FE, then we denote G + {e} by
G + e. For a set W C V, we denote by G[W] the subgraph of G induced by W.

We call a vertex of degree k, at least k and at most k, a k-verter, a kT -verter and a
k~ -vertex respectively, and by extension, for any fixed vertex v, we call a neighbour of v
of degree k, at least k and at most k, a k-neighbour, a k™ -neighbour, and a k™ -neighbour
of v respectively. When there is some ambiguity on the graph, we call a neighbour of v
in G a G-neighbour of v. We call a cycle of length ¢, at least ¢ and at most ¢ a ¢-cycle,
a {t-cycle, and a £~ -cycle respectively, and by extension a face of length ¢, at least ¢ and
at most £ a {-face, a £*-face, and a £~ -face respectively. We say that a vertex of G is big
if it is a 8*-vertex, and small otherwise. By extension, a big neighbour of a vertex v is a
8T -neighbour of v, and a small neighbour of v is a 7~-neighbour of v.

Two neighbours v and w of a vertex v are consecutive if uvw forms a path on the boundary
of a face.

2 Proof of Theorem [3

We prove Theorem [B] by contradiction. Let G = (V, E) be a counter-example to Theorem
of minimum order.

Graph G is connected, otherwise at least one of its connected components would be a
counter-example to Theorem [, contradicting the minimality of G.

Let us consider any plane embedding of G. Let us prove a series of lemmas on the
structure of G, that correspond to forbidden configurations in G.

Lemma 4. There are no 2~ -vertices in G.

Proof. Suppose there is a 27 -vertex v in G. By minimality of G, G — v admits an (F, F5)-
partition (F, D). If v is a 1~ -vertex, then G[F U {v}] € F. Suppose v is a 2-vertex. If both
of its neighbours are in F, then G[D U {v}] € F5. Otherwise, G[F U {v}] € F. In all cases,
one can obtain an (F, Fs)-partition of G, a contradiction. (|

Lemma 5. Fvery 3-vertex in G has at least one big neighbour.

Proof. Suppose there is a 3-vertex v in GG that has three small neighbours. By minimality of
G, G — v admits an (F, Fs)-partition (F, D). If at least two neighbours of v are in D, then
G[F U{v}] € F. If no neighbour of v is in D, then G[D U {v}] € F5. Suppose exactly one
neighbour « of v is in D. If at most one of the neighbours of u is in F', then G[FFU{u}] € F,
and G[D\{u} U {v}] € F5. Otherwise, since u is small, at most four of the neighbours of u
are in D, thus G[D U {v}] € F5. In all cases, one can obtain an (F, Fs)-partition of G, a
contradiction. (]

Lemma 6. Every 4-vertezx or 5-vertex in G has at least one 4T -neighbour.

Proof. Suppose there is a 4-vertex or 5-vertex v in G that has no 4T-neighbour. Let the u;
be the neighbours of v, for i € {0,...,3} or i € {0,...,4}. Let G' = G —v — |J,{wi}. By
minimality of G, G’ admits an (F, F5)-partition (F, D). Add v to D, and for all u;, add u;
to D if its two neighbours distinct from v are in F', and add u; to F' otherwise. Vertex v has
at most five neighbours in D, and each of the w; that is in D has one neighbour in D. Each
of the u; that is in F' has at most one neighbour in F'. We have an (F, F5)-partition of G,
a contradiction. O

We will need the following observation in the next two lemmas.

Observation 7. Let vguivaus be a face of G, ug a neighbour of vg and ui a neighbour of
v1. Fither ug and vy are at distance at least 3, or uy; and vs are at distance at least 3.
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Figure 1: The forbidden configuration of Lemma Bl The big vertices are represented with
big circles, and the small vertices with small circles. The filled circles represent vertices
whose incident edges are all represented.

By contradiction, suppose that ug and v, are at distance at most two, and that w; and
vz are at distance at most two. Since G is triangle-free, a shortest path from ug to vy (resp.
from wu; to vs) does not contain any of the u; and v; except for its extremities. Then by
planarity there exists a vertex w adjacent to ug, ve, u; and vs. In particular vovsw is a
triangle, a contradiction.

Lemma 8. The following configuration does not occur in G: two adjacent 3-vertices vy and
vy such that for i € {0,1}, v; has a big neighbour b; and a small neighbour s;, and such that
voU181bo bounds a face of G.

Proof. Suppose such a configuration exists in G. See Figure [l for an illustration of this
configuration. Observe that all the vertices defined in the statement are distinct (since G
is triangle-free). By Observation [1, either by and by are at distance at least 3, or so and s1
are at distance at least 3. For the remaining of the proof, we no longer need the fact that
bos1 € E(G). We forget this assumption, and only remember that either by and b; are at
distance at least 3, or sp and s; are at distance at least 3. This provides some symmetry in
the graph.

Let Go = G —{wvo,v1} +bob1 and G; = G — {vg, v1} + sps1. By what precedes, either Gy
or G is triangle-free, thus there exists a j such that G; is a triangle-free planar graph. By
minimality of G, G; admits an (F, F5)-partition (F, D).

Let us first prove that if we do not have by and b; in D, and sy and s; in F, then the
conditions G[F| € F and G[D] € F5 lead to a contradiction. We will see that we can always
extend the (F, F5)-partition of G; to G.

e If at least three of the b; and s; are in D, then G[F U {vg,v1}] € F.
e If all of the b; and s; are in F', then G[D U {vg,v1}] € Fs.

e Suppose now that exactly three of the b; and s; are in F. W.l.o.g., by € D or sg € D.
We have G[F U{v}] € F and G[D U{v1}] € Fs.

e Suppose now that exactly two of the b; and s; are in F. If by and sg are in F (resp. by
and s1 are in F), then G[D U {w}] € F5 and G[F U{v1}] € F (resp. G[FU{vp}] € F
and G[D U {v1}] € Fs).

Now w.lo.g. by € F and sg € D. If sp has at most one G-neighbour in F, then
G[F U{so}] € F, we can replace F by F'U {so} and D by D\{so}, and we fall into a
previous case. We can thus assume that so has at least two of its G-neighbours in F,
and thus it has at most four of its G-neighbours in D. Therefore G[D U {v}] € Fs,
and G[FU{v}] € F.



In all cases, G has an (F, F5)-partition, a contradiction.

Remains the case where by and by are in D, and sy and s; are in F'. In the case where we
added the edge boby (i.e. the case j = 0), we have G[DU{vp,v1}] € Fs, since G[DU{wvg, v1}]
is equal to Go[D] where an edge is subdivided twice. Similarily, in the case where we added
the edge sgs1 (i.e. the case j = 1), we have G[F U {vp,v1}] € F, since G[F U {vg,v1}] is
equal to Gy[F| where an edge is subdivided twice. Again, G has an (F, Fs)-partition, a
contradiction. O

Wo w1

S0 U1

Vo S1

Figure 2: The forbidden configuration of Lemma

Lemma 9. The following configuration does not occur in G: a 3-vertex vy adjacent to a
4-verter v1 such that vg has a big neighbour b and a small neighbour sg, and v1 has three
other small neighbours s1, wg, and wy such that vovisib bounds a face of G and s1 has
degree 3.

Proof. Suppose such a configuration exists in G. See Figure [ for an illustration of this
configuration. Observe that all the vertices defined in the statement are distinct (since G is
triangle-free). By Observation [7, either b and wy are at distance at least 3, or sg and s; are
at distance at least 3. Let Go = G — {vg, v1} + bwo and G1 = G — {wg,v1} + sps1. By what
precedes, either G or G is triangle-free, thus there exists a j such that G; is a triangle-free
planar graph. By minimality of G, G; has an (F, Fs5)-partition (F, D).

Let us first prove that except in the case where {b, wp, w1} C D and {sg,s1} C F, the
conditions G[F| € F and G[D] € F; lead to a contradiction. We will see that we can always
extend the (F, F5)-partition of G; to G.

If at least four among the w;, the s; and b are in D, then G[F U {vp,v1}] € F.

Suppose now that at most three among the w;, the s; and b are in D. Suppose = €
{b, 0, 81, wo, w1 } is in D. If = has at most one G-neighbour in F, then G[F U {xz}] € F, and
we could consider F'U{z} instead of F' and D\{xz} instead of D. Note that this cannot lead
to the case we excluded ({b, wo, w1} C D and {so,s1} C F) unless at least four among the
w;, the s; and b are in D. Thus we can assume that for any z among the w; and s; such
that x € D, x has at most four G-neighbours in D, and thus adding one neighbour of x in
D cannot cause = to have at least six neighbours in D. We consider two cases according to
b:

e Suppose b € F. If at least three of the w; and s; are in F, then G[D U {vg,v1}] € Fs.

If at least two among the w; and s are in D, then G[F U{v1}] € F and G[DU{w}] €
Fs. Else, at least two among the w; and s; are in F, and we may assume that sq is in
D (otherwise we fall into a previous case), so G[D U {v1}] € F5 and G[F U {vy}] € F.

e Suppose now that b € D. As s; has degree 3, it has at most one G-neighbour in F,
and thus as previously we could consider F'U {s;} instead of F' and D\{s;} instead of



D. Again, this cannot lead to the case we excluded ({b,wo, w1} C D and {sg,s1} C F)
unless at least four among the w;, the s; and b are in D. Therefore we can assume
that s; € F. The w; are not both in D (otherwise we fall into the case we excluded).
We have G[D U {v1}] € F5 and G[F U {w}]| € F.

In all cases, G has an (F, F5)-partition, a contradiction.

Remains the case {b,wg, w1} C D and {sp,s1} C F. In the case where we added the
edge bwg (i.e. the case j = 0), b has at most five Go-neighbours in D, and thus at most
four G-neighbours in D, so G[D U{v}] € Fs, and G[F U {v1}] € F. In the case where we
added the edge sgs1 (i.e. the case j = 1), we have G[F U {vg,v1}] € F, since G[F U {vg, v1}]
is equal to Go[F| where an edge is subdivided twice. Again, G has an (F, F5)-partition, a
contradiction. O

bo U1

Wo bl

Figure 3: Configuration [I0l

We define a specific configuration:

Configuration 10. Two 4-faces byvoviwy and vovivevs, such that by is a big vertezr, vy and
wq are 3-vertices, v1 is a 4-vertezr, ve and vy are small vertices, and the fourth neighbour of
v1, say by, is a big vertex. See Figure[3 for an illustration of this configuration.

Wo bl

Figure 4: The forbidden configuration of Lemma [TTl

Lemma 11. The following configuration is forbidden: Configuration with the added
condition that there is a 4-face byvivowy with wy a 3-vertex, vy a 4-verter, and the fourth
neighbour of v, the third neighbour of w1, and the third neighbour of wy are small vertices.

Proof. Suppose such a configuration exists in G. See Figure @ for an illustration of this
configuration. Observe that all the vertices named in the statement are distinct since G is
triangle-free and w; is a small vertex whereas by is a big one.



Let us prove that either by and b; are at distance at least 3, or wg and wy, and wg and vs
are at distance at least 3. By contradiction, suppose that by and b; are at distance at most
two, and that either wy and w; are at distance at most two, or wg and v3 are at distance
at most 2. Since G is triangle-free, a shortest path from by to by, from wg to wy or from wy
to vz does not go through any of the vertices defined in the statement. Then by planarity
there exists a vertex w adjacent to by, b1, wy and either w; or vs. In particular bywow is a
triangle, a contradiction.

Let Go = G — {vg,v1} + boby and G1 = G — {vg, v1} + wowy + wovs. By what precedes,
either Go or G is triangle-free, thus there exists a j such that G; is a triangle-free planar
graph. By minimality of G, G; has an (F, F5)-partition (F, D).

Let s be the third neighbour of wyg, s; be the third neighbour of w; and s2 be the fourth
neighbour of ve. They are all small vertices, but there may be some that are equal between
themselves, or equal to some vertices we defined previously. However, if one of the s; is
in {vg, v1,v2,wp, wy }, then this s; is a 4~ -vertex in G (and in particular it has at most 4
neighbours in D).

Suppose first that by and b; are both in D.

1. Suppose wy is in D. Here we only consider (F, D) as an (F, Fs)-partition of G—{vg, v1}.

If v is also in D, then adding vy and v1 to F leads to an (F, F5)-partition of G. Suppose
vs is in F'. We show now that we can assume that ve is in D. By contradiction, suppose
vy is in F. We remove vy from F'.

Observe that we can assume that vy has no G-neighbour in D with five G-neighbours
in D. Indeed, suppose vy has a G-neighbour in D with five G-neighbours in D. This
G-neighbour is a 5+-vertex, so it is s. Moreover, s is not equal to v3 (because vg is
in F), and is not equal to any of the other vertices named in the statement (because
of the degree conditions). As sy is a small D-vertex, has at least five G-neighbours in
D and is adjacent to ve that is neither in F' nor in D, ss has at most one neighbour in
F. Therefore we can put s in F.

Observe that we can assume that vy has at most one G-neighbour in D. Suppose v
has two G-neighbours in D. These G-neighbours are so and w;. Vertex w; has at
most one neighbour in F', that is s1, so we can put wy in F.

Now vy has at most one G-neighbour in D, and no G-neighbour of vy in D has five
G-neighbours in D, so we can put vs in D. Therefore we can always assume that v
is in D. Note that we do not need to change where s5 is in the partition if it is equal
to one of the vertices named in the statement. Adding vy and v; to F leads to an
(F, Fs)-partition of G.

2. Suppose wy is in F, vg is in D and w; is in D. If s is in D, then putting vy, v1 and
vy in F leads to an (F, Fs)-partition of G. Suppose sg is in F. We put vg, v1 and w;
in F', and vy in D. If this increases the number of G-neighbours of vs in D above five,
then since v3 is small, v3 has at most one neighbour in F', which is vg, and we put vs
in F. This leads to an (F, Fs5)-partition of G.

3. Suppose wy is in F, vs is in D and w; is in F. Suppose sq is in F. We put vg and
v1 in F, and v in D. If this increases the number of G-neighbours of vs in D above
five, then since vs is small, v3 has at most one neighbour in F', which is vg, and we
put vs in F. This leads to an (F, Fs)-partition of G. Suppose sz is in D. If vy is
not in F, we may put it in F', since it has only one Gj-neighbour in F', that is w;.
Therefore we can assume that vy is in F'. If j = 0, then b; has at most 4 G-neighbours
in D (since it has at most 5 such Go-neighbours), so adding vy to F' and v; to D
leads to an (F, Fs)-partition of G. If j = 1, then adding vy and v; to F leads to an
(F, Fs)-partition of G.



4. Suppose wyg is in F and wvs is in F. Suppose j = 0. The vertex by has at most 4
G-neighbours in D (since it has at most 5 such Gg-neighbours), so we can add vy to
D. If vy is in D, then adding v to F' leads to an (F, Fs)-partition of G. If vs is in F
then adding v1 to D makes G[D] equal to Go[D] with an edge subdivided twice, and
this leads to an (F, F5)-partition of G. Suppose j = 1. Here we only consider (F, D)
as an (F, Fs)-partition of G — {vg,v1} +wovs. As in[ll we can suppose, up to changing
where s; and w; are in the partition, that vs is in D. Note that if s, is equal to one
of the vertices named in the statement, we do not need to move s in the partition.
Adding vy and v1 to F' leads to an (F, Fs)-partition of G.

Now we may assume that at least one of by and by is in F. From now on we only consider
(F, D) as an (F, Fs)-partition of G — {vg, v1 }.

e Suppose by is in F and by is in D. In that case we put vg and wy in D, and v; in F.
Adding vp in D (resp. wo in D) may violate the degree condition of G[D] ; however, if
it happens, one can put vs (resp. sp) in F. In any case, we obtain an (F, F5)-partition
of G.

e Suppose by is in D and b is in F. If at least one of wy and vy is in F, then adding vg
in F and v; in D leads to an (F, F5)-partition of G. Assume wy and v9 are both in D.
If vg is in D, then adding vy and vy in F leads to an (F, Fs5)-partition of G. Assume
vg is in F'. We consider three cases:

— Suppose s; and wy are in F. Adding vy in F' and v in D leads to an (F, Fs)-
partition of G.

— Suppose sg is in F and wy is in D. If s; is in D, then we can put w; in F' and we
fall into the previous case. If s; is in F', then adding vy in F and v; in D leads
to an (F, Fs)-partition of G.

— Suppose sg is in D. If s1 is in D and has five G-neighbours in D distinct from
wy, then as s is small, it is distinct from all the vertices named in the statement,
and we can put it in F'. Therefore we can put wy in D and ve in F. We fall into
a previous case (at least one of wg and vs is in F').

e Suppose by and by are in F. If sg is in D and has five G-neighbours in D distinct from
wp, then as sq is small, it is distinct from all the vertices named in the statement aside
from vs, and we can put it in F. Therefore we can put wg in D. We consider the
following cases:

— If vo and w3 are in F', then adding vy and vy to D leads to an (F, Fs)-partition
of G.

— If vy is in F and ws is in D, then adding vy to F' and v; to D leads to an
(F, Fs)-partition of G.

— If vp is in D and vz is in F, then adding vy to D and vy to F leads to an
(F, Fs)-partition of G.

— If vo and w3 are in D, then adding vy to D and vy to F' leads to an (F,Fs)-

partition of G. Adding vy to D may violate the degree condition of G[D], but in
that case we can put vz in F.

O

We now apply a discharging procedure: first, for all j, every j-vertex v has a charge equal
to co(v) = j —4, and every j-face f has a charge equal to ¢o(f) = j — 4. By Euler’s formula,
the total charge is negative (equal to —8). Observe that, since G is triangle-free, every face
has a non-negative initial charge, and by Lemma Ml the vertices that have negative initial



charges are exactly the 3-vertices of G, and they have an initial charge of —1. Here is our
discharging procedure:

Discharging procedure:

e Step 1: Every big vertex gives % to each of its small neighbours. Furthermore, for
every 4-face uvwzx where u and v are big, and w and = are small, v gives i to z (and
u gives 1 to w).

e Step 2: Consider a 4-vertex v that does not correspond to vy in Configuration [I0l
Vertex v gives i to each of its small neighbours that are consecutive (as neighbours of
v) to exactly one big vertex, and % to each of its small neighbours that are consecutive
(as neighbours of v) to two big vertices.

Consider the case where v corresponds to v; in Configuration[I0l We use the notations
of Configuration [0l If wy has two big neighbours, then v, gives i to vy and % to va.
1

Otherwise, it gives 7 to wg and % to vp.

Every small 5T-vertex that has a big neighbour gives % to each of its small neighbours,
and an additional % for each that is consecutive (as neighbours of v) to at least one
big vertex. Every small 5T-vertex that has no big neighbour gives % to each of its
3-neighbours.

e Step 3: For every 4-face uvwzx, with u a big vertex, v a 3-vertex, w a 4-vertex, and x
a small vertex such that z gave charge to w in Step 2, w gives % to v.

e Step 4: Every 5'-face that has a big vertex in its boundary gives i to each of the
small vertices in its boundary. Every 5'-face that has no big vertex in its boundary
1

gives = to each of the vertices in its boundary.

e Step 5: For every 4-face uvwz, with u a big vertex, v a 3-vertex, w a 4-vertex and x
a 3-vertex such that the other face that has vw in its boundary is a 5*-face, w gives
1
= tov.
5

For every vertex or face x of G, for every i € {1,2,3,4,5}, let ¢;(x) be the charge of x at
the end of Step i. Observe that during the procedure, no charges are created and no charges
disappear; hence the total charge is kept fixed.

We now prove that every vertex and every face has a non-negative charge at the end of
the procedure. That leads to the following contradiction:

0< Z cs(x) = Z co(x) = -8

2EV(G)UF(G) 2EV(G)UF(G)
Lemma 12. Every face has non-negative charge at the end of the procedure.

Proof. At the beginning of the procedure, for every j-face f we have ¢o(f) =j —4 >0 (as
j > 4). The procedure does not involve 4-faces. Hence if j = 4, then ¢5(f) = co(f) = 0. If
j = 5, then f gives at most four times i if it is incident to a big vertex and at most five

times % otherwise in Step 4. It follows that c¢5(f) > 0. If j > 6, then f can give % to each
of its incident vertices (and so } or +) during Step 4, and ¢5(f) > j —4 — % > 0. O

Lemma 13. A 4T -vertex never has negative charge.

Proof. Consider a j-vertex z with j > 4. At the beginning, co(z) = j —4 > 0. We will show
that ¢;(z) > 0fori=1,...,5.

e Suppose z is a big vertex. Such a vertex only loses charge in Step 1. Since j > 8, we
have ¢o(z) > % In Step 1, vertex z loses % for each of its small neighbours, and at
most % for each of its big neighbours. Therefore it has more charge than what it gives,
and thus it keeps a non-negative charge.



e Suppose z is a small 5T-vertex. It does not lose charge in Steps 1, 3, 4 and 5.

Suppose z has a big neighbour. It has at most j —1 small neighbours, and it has charge
at least i( j — 1) at the beginning of the procedure, since j > 5. Moreover, it receives
% from each of its big neighbours in Step 1. Therefore it does not give more charge
that it has in Step 2.

Suppose now that z has no big neighbour. If z is a 5-vertex, then by Lemma [6]
it has at most four 3-vertices, and c3(z) > 1 — 4% > 0. If z is a 6T-vertex, then
ca(z) > j—4—j320.

e Suppose z is a 4-vertex. It does not lose charge in Steps 1 and 4. Suppose z gives
charge in Step 2. Consider first that z does not correspond to vy in Configuration [0l

If z is adjacent to a small vertex that is consecutive (as a neighbour of z) to two big
neighbours, then z gives at most twice % in Step 2 and received twice % in Step 1;
hence cz(z) > 0. Otherwise, z gives at most twice & in Step 2, and received at least
once % in Step 1; hence c2(z) > 0. Let us now consider the case where 2z corresponds
to vy in Configuration [0l The vertex z has a big neighbour that gave % to z in Step
1, and z gives i to two of its neighbours in Step 2. Therefore z received in Step 1 at

least as much as what it gives in Step 2.

u €T u €T u
'
v z v z v

Figure 5: Some configurations that appear in Lemma [I3

Suppose z gives charge in Step 3. There is a 4-face wvzx with u a big vertex, v a
3-vertex, and x a small vertex such that x gave charge to z in Step 2. Suppose z is
consecutive to exactly one big vertex (as neighbours of x). The vertex x gave at least
% to z in Step 2, and there is exactly one such face with the same z and x (i.e. there is
no pair (u’,v") distinct from (u, v) that verifies the properties we stated for (u,v))(see
Figure [ left). Therefore z can give i to v in Step 3. Suppose z is consecutive to
exactly two big vertices (as neighbours of z). The vertex & gave 3 to z in Step 2,
and there are at most two such faces with the same z and x (i.e. there is at most one
pair (u’,v’) distinct from (u,v) that verifies the properties we stated for (u,v)) (see
1

Figure [B, right). Therefore z can give 7 to each of the corresponding v’s in Step 3.

Therefore z received in Step 2 at least as much as what it gives in Step 3.

Suppose z gives charge in Step 5. There is a 4-face uvzzx, with v a big vertex, v a
3-vertex, and x a 3-vertex such that the other face, say f, that has vz in its boundary
is a 5T-face. Vertex z received at least % from f in Step 4, and it gives % to v. There
is a problem only if there is another 4-face u’v’zx’, such that vzv' is on the boundary
of f, v is a big vertex, and 2’ and v’ are 3-vertices. But then z would have four
3-neighbours, contradicting Lemma [6l Therefore z received in Step 4 at least as much
as what it gives in Step 5.

In all cases, z never has negative charge. O

Lemma 14. At the end of the procedure, every 3-vertex has non-negative charge.
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Proof. Let z be a 3-vertex. It never loses charge in the procedure, so we only need to prove
that it received at least 1 over the whole procedure. Assume by contradiction that it received
less than that.

By Lemma B vertex z has at least one big neighbour b. Let xg and x1 be its two other
neighbours. Vertex b gives  to z in Step 1, so z only needs to receive 3 from g, 1, and
its surrounding faces. In particular, if one of the x; is a big vertex, then it gives % to z in
Step 1, and z receives all the charge it needs, a contradiction. Therefore xy and z; are small
vertices.

Let f be the face that contains zgzx; in its boundary, fy be the face that contains xgzb
in its boundary and f; the face that contains x12b in its boundary. Let yo and y; be such
that bzzgyg and bzzxiy; are 4-paths that are in the boundaries of fo and f; respectively. Let
us count the charge that zq, yo, and fy give to z plus half the charge that f gives to z. If
we show that this sum is at least %, then by symmetry we will know that z received at least
% from xg, =1, Yo, Y1, and the faces f, fo, and f1, and that leads to a contradiction.

Observe that fy is a 4-face. If it is a 5'-face, then since it has the big vertex b in its
boundary, it gives i to z in Step 4, a contradiction.

Observe that yg is a small vertex. If yy is a big vertex, then yq gives i to z in Step 1, a
contradiction. See Figure [@] for a representation of the vertices we know.

Figure 6: The face fo and the vertex 7.

Observe that zg has degree 4. Suppose xp is a 5T-vertex. It gives at least % to z in Step
2, a contradiction. Suppose xg is a 3-vertex. Then xg has a big neighbour by Lemma Bl and
it cannot be yg. This contradicts Lemma [Rl

Let a and o’ be the neighbours of zg distinct from z and yg, such that a is consecutive
to z(as a neighbour of zg). Suppose a is a big vertex. If xy does not correspond to v; in
Configuration[I0, then zq gives % to z in Step 2. If xg corresponds to v; in Configuration [0}
then z corresponds to wy that is not adjacent to two big vertices, so z( also gives % to z in
Step 2. Therefore a is a small vertex.

Observe that yg is a 4T-vertex. Suppose yo is a 3-vertex. By Lemma [ there is at least
one big vertex in {a,a’'}, which has to be a’. If f is a 4-face, then xy corresponds to vy in
Configuration I}, and it gives i to z in Step 2. Therefore f is a 51 -face, and it gives at least
% to z in Step 4, and z( gives g to z in Step 5. As % + % > i, this leads to a contradiction.

Suppose first that yg corresponds to v; in Configuration IOl See Figure[7 for an illustra-
tion of the vertices we know, and of the correspondence with vertices of Configuration [I0l
By Lemma [T1] the third neighbour of wq is big. Therefore yg gives i to xg in Step 2. It
follow that xg gives i to z in Step 3, a contradiction.

Now yo does not correspond to vy in Configuration [0 Vertex gy gives % to xp in Step 2,
since xg is a neighbour of yy consecutive (as a neighbour of yg) to a big neighbour. Therefore
Zo gives i to z in Step 3, a contradiction. O

Lemmas conclude the proof of Theorem Bl
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Figure 7: The case in Lemma [[4 where yq corresponds to v; in Configuration

3 NP-completeness

By Theorem ] there exists a smallest integer dy < 5 such that every triangle-free planar
graph has an (F, Fq,)-partition. For all d > dj, every triangle-free planar graph has an
(F, Fq)-partition. Let us assume that dy > 1.

In this section, for a fixed d we consider the complexity of the following problem Py: given
a triangle-free planar graph G, does G have an (F, Fy)-partition? This can be answered
positively in constant time for d > dy. However, we prove the following:

Theorem 15. For d < dy, the problem Py is NP-complete.

The problem is clearly in NP, since checking that a graph is acyclic and/or has degree
at most d can be done in polynomial time. Let us show that the problem is NP-hard.

Let G be a counter-example to the property that every triangle-free planar graph admits
an (F,Fy) partition. We consider such a G with minimum number of vertices, and with
minimum number of edges among the counter-examples with minimum number of vertices.
Let ¢ = uv be an edge of G, and G’ = G — e. By minimality of G, G’ admits an (F, Fg)-
partition. In such a partition (F, D), v and v are either both in F' or both in D, and if they
are in F', then there is a path from u to v in G'[F] (otherwise it would be an (F, F,4)-partition
of G). Observe that in G’, u and v are at distance at least 3, since G is triangle-free. We
call a copy of G’ an anti-edge uv.

We want to make a gadget H with a vertex x that admits an (F, F4)-partition, and such
that x is in F' for all (F, Fg)-partition (F, D) of H.

V9 U ) D D D
00 01 od L *

| | |

Lo Lo !

| | | | | |
() Uy Ud D D D

T F

Figure 8: The gadget H in Case[ll and an (F, F4)-partition. Dashed lines are anti-edges.

We construct H as follows:

1. Suppose for all (F, Fy)-partition (F, D) of G, u and v are in D. See Figure [ for an
illustration of the construction of H and an (F, Fy)-partition of H in this case. Take
d + 1 copies of G', called Gy, ..., G, and add a new vertex x adjacent to each copy
of u. Consider an (F, Fy)-partition (F, D) of G’. This leads to an (F,Fy)-partition
(F3, D;) of each Gy, and (|, F; U {x},U; D;) is an (F, Fy)-partition of H.

12



Figure 9: The gadget H in Case[2 and an (F, Fy)-partition.

Let us now prove that for any (F, F4)-partition (F, D) of H, x belongs to F. For any
(F, Fa)-partition (F, D) of H, if € D, then there exists a u; that is in F, so the
corresponding G admits an (F, Fg)-partition with u; € F', a contradiction.

2. Suppose there exists an (F, Fy)-partition (F, D) of G’ such that v and v are in F.
See Figure [ for an illustration of the construction of H and an (F, Fy)-partition of
H in this case. We construct H as follows. Consider a vertex x. We add new vertices
V0, -+, Vg and wy, ..., wq to the graph, adjacent to x. Then for 0 < i< dand 0 < j <1,
we add a new vertex u;;, the anti-edge v;u;;, and the edge u;;w;.

Graph H admits an (F, Fy)-partition. Indeed, consider an (F, F4)-partition of G’ with
w and v in F', and apply it to every anti-edge of H (as before, we take the union of
the F; and the union of the D;). Then the v; and w;; are all in F. Add all the w; to
D. Add z to F. We then have an (F, F4)-partition of H.

Let us now prove that for any (F, F4)-partition (F, D) of H, x belongs to F. For any
(F, Fq)-partition (F, D) of H, if x € D, then there exists an 4 such that v; and w; are
in F, thus u;p and u;; are in F, so there is a cycle in H[F], a contradiction.

H

Figure 10: The gadget H' with an (F, F4)-partition.

Observe that we can make a gadget H' with a vertex y that admits an (F, F4)-partition,
and such that y is in D for all (F, Fy)-partition (F, D) of H' (see Figure [I0): we take three
copies of H, and make a 4-cycle with the corresponding copies of x and a new vertex y.
Taking an (F, Fy)-partition of H for each copy of H, and adding y to D leads to an (F, Fq)-
partition of H'. Conversely, in an (F, Fy)-partition (F, D) of H’, all the copies of z are in
F soyisin D.

We will first make a reduction from the problem PLANAR 3-SAT to P, and then from
Py to Py with d < dj.

13



First reduction: from PLANAR 3-SAT to F,

Here we will use the gadget H for d = 0.

Consider an instance I of PLANAR 3-SAT. The instance I is a boolean formula in conjunc-
tive normal form, associated to a planar graph G;. For each clause C' of I with variables z, y
and z, we make a 4-cycle Ko = xcyczcac. For each variable x that appears k, times in the
formula, we make the following gadget G, a path py o...pz 2k, —1, and for all i € [0, 2k, — 2]
we add two adjacent vertices, ¢; and r; 41, adjacent to p,; and pg ;11 respectively (see
Figure [2). We then add a copy of H for each clause C such that ac corresponds to the
vertex = of H, and a copy of H for each ¢, ; and each 7, ; such that ¢, ; and r; ; respectively
correspond to the vertex x of H. Then for every clause C and every variable x that appears
in C, we add an edge from z¢ to a p, ;, with an even ¢ if the literal associated to = in C
is a positive literal and an odd ¢ otherwise, such that no two x¢ are adjacent to the same
Dz,i (see Figure[[)). It is possible to do so without breaking planarity, since the graph G
is planar. We call G} the graph we obtain.

Figure 11: The cycle K¢ of a clause C with variables z, y and z, and an (F, F4)-partition
in the case where variable x satisfies the clause.

Suppose [ is satisfiable, and let us consider an assignation o of the variables that satisfies
I. Let us make an (F, Fy)-partition of G;. We first take an (F, Fy)-partition for each copy
of H. All the ac, ¢z, and r;; are in F. For each variable z, if o(x) = 1, then we put all the
Dz,2: in F' and the p; ;41 in D, else we put all the p; 2; in D and the p; 2,41 in F. Then
for each clause C, we choose a variable z of C' that satisfies the clause (i.e. z is true if the
literal associated to x in C' is a positive literal, and false otherwise), we put z¢ in D and for
the two other variables of C, we put the corresponding y¢ in F.

All the vertices are in F or in D. Let v be a G}-vertex in D. If v is in a copy of H, then
it has no neighbour in D. If v is a z¢, then the three other vertices of K¢ are in F. If v is
a Pz, then pg ;41 and py ;1 are in F' if they exist, and all the ¢; and r; are in F'. Suppose
there are two G’ [F]-neighbours in D. One is a z¢ and the other is a p, ; (with the same z).
Then by construction the variable x satisfies clause C' (i.e. x is true if the literal associated
to z in C is a positive literal, and false otherwise). If x is associated to a positive literal in
clause C, then o(x) = 1 and i is even, thus p, ; is in F, a contradiction. If x is associated to
a negative literal in clause C, then o(z) = 0 and ¢ is odd, thus p,; is in F, a contradiction.
Graph G[F] has no cycle: there is no cycle in the copies of H with every vertex in F; for
each clause C, K¢ has a vertex in D, and for each ¢ € 0,2k, — 2], ps2; OF Dy 2i+1 is in D.
Therefore (F, D) is an (F, Fo)-partition of G7.

Suppose now that there is an (F, Fo)-partition (F, D) of G%. All the ac, the ¢, ; and the
Ty are in F. For all variable « and all ¢ € [0,2k, — 2|, either p,; € F and ps 11 € D, or
Dz € D and p; ;41 € F. Therefore for all z, either all the p, ; are in F' for 7 even and in D
for i odd, or all the p,; are in D for ¢ even and in F for ¢ odd. Let o be the assignation of
the variables « such that o(x) = 1if py o isin F, and o(z) = 0 otherwise. Let C be a clause
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Dz,0 D1 Dz.2 Pz,3

Figure 12: The gadget G, for a variable x, with an (F, F4)-partition that corresponds to
the assignation of = to true. Here the literal associated to x in Cy is positive, and that
associated to x in C7 and Cs is negative.

of I. At least one of the z¢ is in D (otherwise K¢ is a cycle with every vertex in F'), and
it is adjacent to a p,; with ¢ even if x is positive and ¢ odd if x is negative in C. This p, ;
is in F, so if x is positive in C, then o(x) = 1, else o(z) = 0. Therefore o satisfies clause C,
and this is true for all C, so o satisfies I.

It is easy to see that the reduction is polynomial, and that G is a triangle-free planar
graph. Thus this is a polynomial reduction from PLANAR 3-SAT to Pj.

Second reduction: from F, to P; with d < d,

Consider an instance I of Py. For each vertex v in I, add d copies of H’, such that the
corresponding copies of y are adjacent to v. We call I; the resulting graph.

Suppose I admits an (F, Fp)-partition. Consider an (F, F4)-partition of H'. Apply it to
every copy of H' we made in I;. Complete it with an (F, Fy)-partition of I. The obtained
partition is an (F, F4)-partition of I;.

Suppose now that I; admits an (F, Fy)-partition (F, D). In each copy of H', we have
y € D, so each vertex in I has exactly d (I4 — V(I))-neighbours in D and no (Ig — V(I))-
neighbours in F'. Therefore (F NV (I), D NV (I)) is an (F, Fp)-partition of I.

It is easy to see that the reduction is polynomial, and that I; is a triangle-free planar
graph. Thus this is a polynomial reduction from Py to Py.
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