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Riemann-Hilbert correspondence for unit F -crystals on

embeddable algebraic varieties

Sachio Ohkawa

Abstract

For a separated schemeX of finite type over a perfect field k of characteristic p > 0 which admits
an immersion into a proper smooth scheme over the truncatedWitt ringWn, we define the bounded
derived category of locally finitely generated unit F -crystals with finite Tor-dimension on X over
Wn, independently of the choice of the immersion. Then we prove the anti-equivalence of this
category with the bounded derived category of constructible étale sheaves of Z/pnZ-modules with
finite Tor dimension. We also discuss the relationship of t-structures on these derived categories
when n = 1. Our result is a generalization of the Riemann-Hilbert correspondence for unit F -
crystals due to Emerton-Kisin to the case of (possibly singular) embeddable algebraic varieties in
characteristic p > 0.
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1 Introduction

For a complex manifold X , Kashiwara [Kas1] and Mebkhout [Me1] independently established an anti-
equivalence, which is called the Riemann-Hilbert correspondence, between the triangulated category
Db

rh(DX) of DX -modules with regular holonomic cohomologies and that Db
c(X,C) of sheaves of C-

vector spaces on X with constructible cohomologies. There is a significant property from the point of
view of relative cohomology theories that this anti-equivalence respects Grothendieck’s six operations
f !, f!, f

∗, f∗, RHom and ⊗L defined on Db
rh(DX) and Db

c(X,C).
In [EK], Emerton and Kisin studied a positive characteristic analogue of the Riemann-Hilbert

correspondence. Let k be a perfect field of characteristic p > 0. We denote by Wn := Wn(k) the
ring of Witt vectors of length n. For a smooth scheme X over Wn, Emerton and Kisin defined the
sheaf DF,X of OX -algebras by adjoining to OX the differential operators of all orders on X and a
“local lift of Frobenius”. By using DF,X , they introduced the triangulated category Db

lfgu(DF,X) of
DX -modules with Frobenius structures with locally finitely generated unit cohomologies and proved
the anti-equivalence

Db
lfgu(DF,X)◦

∼=
−→ Db

ctf(Xét,Z/p
nZ)

between the subcategory Db
lfgu(DF,X)◦ of Db

lfgu(DF,X) consisting of complexes of finite Tor dimension

over OX and the triangulated category Db
ctf(Xét,Z/p

nZ) of étale sheaves of Z/pnZ-modules with con-
structible cohomologies and of finite Tor dimension over Z/pnZ, which they call the Riemann-Hilbert
correspondence for unit F -crystals. They also introduced three of Grothendieck’s six operations, which
are the direct image f+, the inverse image f ! and the tensor product ⊗L on Db

lfgu(DF,X), and proved

that their Riemann-Hilbert correspondence exchanges these to f!, f
−1 and ⊗L on Db

ctf(Xét,Z/p
nZ).

Emerton and Kisin established the Riemann-Hilbert correspondence for unit F -crystals only for
smooth schemes X over Wn. Since the triangulated category Db

ctf(Xét,Z/p
nZ) depends only on the

mod p reduction of X , it is natural to expect that there exists a definition of the triangulated category
Db

lfgu(DF,X)◦ and the Riemann-Hilbert correspondence depending only on the mod p reduction of X .
Also, there should be the Riemann-Hilbert correspondence for algebraic varieties over k which are not
smoothly liftable to Wn. The purpose of this article is to generalize the Emerton-Kisin theory to the
case of Wn-embeddable algebraic varieties over k. Here we say a separated k-scheme X of finite type
is Wn-embeddable if there exists a proper smooth Wn-scheme P and an immersion X →֒ P such that
the diagram

X

��

� � / P

��
Speck // SpecWn

(1.1)

is commutative. A quasi projective variety over k is a typical example of Wn-embeddable variety and
thus Wn-embeddable varieties form a sufficiently wide class of algebraic varieties in some sense.

The first problem is to define a reasonableD-module category forWn-embeddable algebraic varieties
over k. Our construction is based on Kashiwara’s theorem which roughly asserts that, for any closed
immersion X →֒ P of smooth algebraic varieties, the category of D-modules on P supported on X
is naturally equivalent to the category of D-modules on X . Using the characteristic p > 0 analogue
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of Kashiwara’s theorem due to Emerton-Kisin [EK, Proposition 15.5.3], we show that, when we are
given the diagram (1.1), the full triangulated subcategory of Db

lfgu(DF,P )
◦ consisting of complexes

supported on X does not depend on the choice of immersion X →֒ P (Corollary 4.6). We denote this
full subcategory by Db

lfgu(X/Wn)
◦. Then we show the Riemann-Hilbert correspondence

Db
lfgu(X/Wn)

◦ ∼=−→ Db
ctf(Xét,Z/p

nZ)

for anyWn-embeddable k-schemeX (Theorem 4.12). As in the case of [EK], we can naturally introduce
three of Grothendieck’s six operations, that is, direct and inverse images and tensor products. We then
prove that the Riemann-Hilbert correspondence respects these operations (Theorem 4.14). A striking
consequence of the Riemann-Hilbert correspondence over complex numbers is that one can introduce
an exotic t-structure on the topological side called the perverse t-structure, which corresponds to the
standard t-structure on the D-module side. For an algebraic variety X over k, Gabber introduced
in [Ga] the perverse t-structure on Db

c(Xét,Z/pZ), which we call Gabber’s perverse t-structure. In
the case when X is smooth over k, Emerton and Kisin showed that the standard t-structure on the
D-module side corresponds to Gabber’s perverse t-structure. In this paper, we generalize it to the case
of k-embeddable k-schemes. In the complex situation, conversely, a t-structure on the D-module side
corresponding to the standard t-structure on the topological side is explicitly described by Kashiwara
in [Kas2]. In this paper, we construct the analogue of Kashiwara’s t-structure on Db

lfgu(X/k) and

discuss the relationship of it and the standard t-structure on Db
c(Xét,Z/pZ).

The content of each section is as follows: In the second section, we recall several notions, terminolo-
gies and cohomological operations on DF,P -modules from [EK] which we often use in this paper. We
also recall the statement of the Riemann-Hilbert correspondence for unit F -crystals of Emerton-Kisin
(Theorem 2.3). In the third section, we define the local cohomology functor RΓZ for DF,P -modules
and prove compatibilities with RΓZ and other operations for DF,P -modules, which are essential tools
to define and study the triangulated category Db

lfgu(X/Wn)
◦ for any Wn-embeddable k-scheme X . In

subsection 4.1, we introduce the category Db
lfgu(X/Wn)

◦ for any Wn-embeddable k-scheme X and in

subsection 4.2, we construct three of Grothendieck’s six operations on Db
lfgu(X/Wn)

◦. Our arguments
in these subsections are heavily inspired by that of Caro in [Ca]. In subsection 4.3, we prove the
Riemann-Hilbert correspondence for unit F -crystals on Wn-embeddable k-schemes, which is our main
result. In the fifth section, we discuss several properties on Db

lfgu(X/k) (in the case n = 1) related

to t-structures. In subsection 5.1, we introduce the standard t-structure on Db
lfgu(X/k) depending on

the choice of the immersion X →֒ P . We prove that the standard t-structure corresponds to Gabber’s
perverse t-structure via the Riemann-Hilbert correspondence. As a consequence, we know that the
definition of the standard t-structure is independent of the choice of X →֒ P (Theorem 5.5). In subsec-
tion 5.2, we define the abelian category µlfgu,X as the heart of the standard t-structure on Db

lfgu(X/k),

and prove that the natural functor Db(µlfgu,X) → Db
lfgu(X/k) is an equivalence of triangulated cat-

egories (Theorem 5.6), which can be regarded as an analogue of Beilinson’s theorem. In subsection
5.3, depending on the choice of the immersion X →֒ P , we introduce the constructible t-structure
on Db

lfgu(X/k) by following the arguments in [Kas2] and prove that it corresponds to the standard
t-structure on the étale side via the Riemann-Hilbert correspondence. As a consequence, we see that
the constructible t-structure does not depend on the choice of X →֒ P (Corollary 5.19).
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Conventions

Throughout this paper, we fix a prime number p and a base perfect field k of characteristic p. We
denote by W the ring of Witt vectors associated to k and by Wn the quotient ring W/(p)n for any
natural number n. For a scheme X , we denote the structure sheaf of X by OX . For a smooth
Wn-scheme X , the dimension of X is a continuous integer valued function on X defined by

dX : x ∈ X 7→ dimension of the component of X containing x.

For a morphism f : X → Y of smooth Wn-scheme, we denote a function dX − dY ◦ f by dX/Y and
a function −dX/Y by dY/X . For an abelian category C, we denote by D(C) the derived category of
C. For a scheme X and an OX -algebra A, we denote by D(A) the derived category of left A-modules
and by Dqc(A) the full triangulated subcategory of D(A) consisting of complexes whose cohomology
sheaves are quasi-coherent as OX -modules. For A-modules F and G, we denote by HomA(F ,G) the
sheaf of A-linear homomorphism from F to G. We denote a complex by a single letter such asM and
byMn the n-th term ofM. For an objectM in D(A), we denote by Hi(M) the i-th cohomology of
M and by SuppM the support ofM, which is defined as the closure of

⋃

i SuppH
i(M).

2 Preliminaries

In this section we recall the notion of locally finitely generated unit DF,X-modules introduced in [EK]
and the Riemann-Hilbert correspondence for unit F -crystals in [EK].

2.1 Locally finitely generated unit DF,X-modules

For a smooth Wn-scheme X , we denote by DX the sheaf of differential operators of X overWn defined
in [EGA4, §16]. For a morphism of smooth Wn-schemes f : X → Y and a left DY -module M,
f∗M := OX ⊗f−1OY

f−1M has a natural structure of left DX -modules. When there exists a lifting
F : X → X of the absolute Frobenius on X⊗Wn k, the left DX -module structure on F ∗M is known to
be independent of the choice of the lifting F up to canonical isomorphism by [EK, Proposition 13.2.1].
Since the lifting F above always exists Zariski locally on X , we obtain a functor

F ∗ : (left DX-module)→ (left DX-module)

by glueing for any smooth Wn-scheme X . We set

DF,X :=
⊕

r≥0

(F ∗)rDX .

Then DF,X naturally forms a sheaf of associativeWn-algebras such that the natural embedding DX →
DF,X is a Wn-algebra homomorphism by [EK, Cprpllary 13.3.5]. It is proved in [EK, Proposition
13.3.7] that giving a left DF,X -module M is equivalent to giving a DX -module M together with a
morphism ψM : F ∗M→M of left DX -modules, which we call ψM the structural morphism ofM.

Next let us recall the notion of locally finitely generated unit DF,X -modules. We say that a
left DF,X -module M is unit if M is quasi-coherent as an OX -module and the structural morphism
ψM : F ∗M → M is an isomorphism. We say that a DF,X-module M is locally finitely generated

4



unit if it is unit and Zariski locally on X , there exists a coherent OX -submodule M ⊂ M such that
the natural morphism DF,X ⊗OX M → M is surjective. Then the locally finitely generated unit left
DF,X-modules form a thick subcategory of the category of quasi-coherent left DF,X -modules [EK,
Proposition 15.3.4]. We say that a locally finitely generated unit DF,X-module M is an F -crystal if
M is locally free of finite rank as an OX -module.

Finally we introduce some notations on triangulated categories. We denote by D(DF,X) the derived
category of left DF,X -modules and by Dqc(DF,X) (resp. Dlfgu(DF,X)) the full triangulated subcategory
ofD(DF,X) consisting of those complexes whose cohomology sheaves are quasi-coherent asOX -modules
(resp. are locally finitely generated unit left DF,X -modules). If • is one of ∅, -, +, b, we denote by
D•(DF,X) the full triangulated subcategories of D(DF,X) consisting of those complexes satisfying the
appropriate boundedness condition. We use the notations D•qc(DF,X) and D•lfgu(DF,X) in a similar

manner. We denote by Db
lfgu(DF,X)◦ the full triangulated subcategory of Db

lfgu(DF,X) consisting of
those complexes which are of finite Tor dimension as OX -modules.

2.2 Cohomological operations for left DF,X-modules

For a morphism f : X → Y of smooth Wn-schemes, f∗DF,Y := OX ⊗f−1OY
f−1DF,Y has a natural

structure of left DF,X -module by [EK, Corollary 14.2.2]. It also forms a right f−1DF,Y -module via the
right multiplication on f−1DF,Y . So f∗DF,Y has a structure of

(

DF,X , f−1DF,Y
)

-bimodule, which we
denote by DF,X→Y . For a DF,Y -moduleM, we define a left DF,X -module f∗M by DF,X→Y ⊗f−1DF,Y

f−1M. Note that f∗M∼= OX ⊗f−1OY
f−1M as an OX -module. We then define a functor

Lf∗ : D−(DF,Y )→ D−(DF,X)

to be the left derived functor of f∗. One has Lf∗M ∼= OX ⊗L
f−1OY

M as a complex of OX -modules.
We also define a functor

f ! : D−(DF,Y )→ D−(DF,X)

by f !M := Lf∗M[dX/Y ]. For the definition of the shift functor (−)[dX/Y ] by the function dX/Y ,
we refer the reader to [EK, §0]. The second inverse image functor is appropriate to formulate the
compatibility with the Riemann-Hilbert correspondence (see Theorem 2.3 (2) bellow). Let ⋆ be one of
qc or lfgu and ∗ one of ◦ or ∅. Then the functor f ! restricts to a functor

f ! : Db
⋆(DF,Y )

∗ → Db
⋆(DF,X)∗

by [EK, Proposition 14.2.6 and Proposition 15.5.1].
Next let us define the direct image functor f+ for DF,X-modules for a morphism f : X → Y of

smooth Wn-schemes. First of all, we recall the definition of the direct image functor

fB+ : D−(DX)→ D−(DY )

for DX -modules. For a smooth Wn-scheme Y , we denote by ωY the canonical bundle of Y over Wn.
Then DY ⊗OY ω−1Y has two natural left DY -module structures. The first one is the tensor product
of left DY -modules DY and ω−1Y (cf. [B, 1.2.7.(b)]). On the other hand, using the right DY -module
structure on DY defined by the multiplication of DY on the right, one has the second left DY -module
structure on DY ⊗OY ω

−1
Y by [B, 1.2.7.(b)]. So DY ⊗OY ω

−1
Y naturally forms a left (DY ,DY )-bimodule.

For a morphism f : X → Y of smooth Wn-schemes, by pulling DY ⊗OY ω
−1
Y back with respect to the
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second DY -module structure, one has left (f−1DY ,DX)-module f∗d
(

DY ⊗OY ωY
−1

)

. Here, in order to
avoid confusion we use the terminology f∗d instead of f∗. By tensoring ωX on the right, one obtains
an (f−1DY ,DX)-bimodule

DY←X := f∗d
(

DY ⊗OY ω
−1
Y

)

⊗OX ωX .

On the other hand, by pulling DY ⊗OY ω
−1
Y back with respect to the first DY -module structure, one has

left (DX , f−1DY )-module f∗g
(

DY ⊗OY ω
−1
Y

)

. By tensoring ωX on the left, we obtain an (f−1DY ,DX)-
bimodule

DY←X
′ := ωX ⊗OX f∗g

(

DY ⊗OY ω
−1
Y

)

.

Then there exists the natural isomorphism of (f−1DY ,DX)-bimodules

DY←X
∼=
−→ DY←X

′.

For more details see [B, 3.4.1]. We define a functor fB+ : D−(DX)→ D−(DY ) by

fB+M := Rf∗
(

DY←X ⊗
L
DX
M

)

.

Let us go back to the situation ofDF,X -modules. We defineDF,Y←X by ωX⊗OXf
∗
(

DF,Y ⊗OY ω
−1
Y

)

.
Then DF,Y←X has a natural (f−1DF,Y ,DF,X)-bimodule structure (see [EK, §14.3]). We remark that
DF,Y←X has finite Tor dimension as a right DF,X -module by [EK, Proposition 14.3.5] and, since Y is
a noetherian topological space, Rf∗ has finite cohomological amplitude. We define a functor

f+ : D−(DF,X)→ D−(DF,Y )

by

f+M := Rf∗

(

DF,Y←X ⊗
L
DF,X

M
)

.

Let ⋆ be one of qc or lfgu and ∗ one of ◦ or ∅. The functor f+ restricts to a functor

f+ : Db
⋆(DF,X)∗ → Db

⋆(DF,Y )
∗

by [EK, Proposition 14.3.9 and Proposition 15.5.1].

Remark 2.1. Let f : X → Y be a morphism f : X → Y of smooth Wn-schemes. The natural
inclusion of (DY ,DY )-bimodules DY → DF,Y induces an inclusion of (f−1DY ,DX)-bimodules ι :
DY←X → DF,Y←X . We then obtain morphisms in the derived category of (f−1DY ,DF,X)-bimodules

DY←X ⊗
L
DX
DF,X → DY←X ⊗DX DF,X

D1⊗D2 7→ι(D1)D2
−−−−−−−−−−−−→ DF,Y←X .

For an objectM in D−(DF,X), applying the functor Rf∗(−⊗L
DF,X

M) to the composite of the above
morphisms, we obtain a DY -linear morphism

fB+M→ f+M.

It is proved in [EK, §14.3.10] that the morphism fB+M→ f+M is an isomorphism.
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Let X be a smooth Wn-scheme. LetM and N be DF,X -modules with structural morphisms ψM
and ψN . Then M ⊗OX N has a natural structure of left DX -modules. We define the structural
morphism onM⊗OX N to be the composite of DX -linear morphisms

F ∗ (M⊗OX N )∼=F ∗M⊗OX F ∗N
ψM⊗ψN
−−−−−−→M⊗OX N .

Here the first isomorphism follows from [B, 2.3.1] and its proof. We thus obtain the DF,X-module
structure onM⊗OX N and define a bi-functor

D−(DF,X)×D−(DF,X)→ D−(DF,X)

by (M,N ) 7→ M⊗L
OX
N . This functor restricts to a bi-functor

Db
lfgu(DF,X)×Db

lfgu(DF,X)◦ → Db
lfgu(DF,X)

by [EK, Proposition 15.5.1].

Proposition 2.2. Let f : X → Y be a morphism of smooth Wn-schemes. IfM and N are objects in
D−(DF,Y ), then there are natural isomorphisms

Lf∗M⊗L
OX

Lf∗N
∼=
−→ Lf∗

(

M⊗L
OY
N
)

and
f !M⊗L

OX
f !N [dY/X ]

∼=
−→ f !

(

M⊗L
OY
N
)

.

Proof. The second isomorphism follows from the first one. Let P →M (resp. Q → N ) be a resolution
of M (resp. N ) by flat DF,Y -modules. Note that P and Q are complexes of flat OY -modules. So
P⊗OY Q →M⊗

L
OY
N gives a resolution ofM⊗L

OY
N by flat DF,Y -modules (cf. [Ha, Lemma 4.1]) and

f∗P is a complex of flat OX -modules. By the universal mapping property of the tensor product, one
has a natural DF,X-linear morphism f∗P ⊗OX f∗Q → f∗ (P ⊗OY Q). Evidently it is an isomorphism
as a morphism in D(OX) and hence it is the desired isomorphism.

2.3 Riemann-Hilbert correspondence for unit F -crystals

Let X be a smooth Wn-scheme. We denote by Db(Xét,Z/p
nZ) the bounded derived category of

complexes of Z/pnZ-modules on the étale siteXét. We letDb
ctf(Xét,Z/p

nZ) denote the full triangulated
subcategory of Db

ctf(Xét,Z/p
nZ) consisting of complexes whose cohomology sheaves are constructible

and which have of finite Tor dimension over Z/pnZ.
For a morphism f : X → Y of smooth Wn-schemes, the inverse image

f−1 : Db
ctf(Yét,Z/p

nZ)→ Db
ctf(Xét,Z/p

nZ)

and the direct image with proper support

f! : D
b
ctf(Xét,Z/p

nZ)→ Db
ctf(Yét,Z/p

nZ)

are defined. For a review of constructions of these functors, we refer the reader to [EK, §8].

7



Let X be a smooth Wn-scheme. We denote by πX : Xét → X the natural morphism of sites,
where X means the Zariski site of X . Then DF,Xét

:= π∗XDF,X naturally forms a sheaf of associative
Wn-algebras on Xét. By étale descent, we have an equivalence of triangulated categories (cf. [EK, §7
and 16.1.1])

π∗X : Db
qc(DF,X)→ Db

qc(DF,Xét
)

with quasi-inverse πX∗. For an objectM ∈ Db
lfgu(DF,X)◦, we set

SolX(M) = RHomDF,Xét
(π∗X(M),OXét

)[dX ].

Then this correspondence defines a contravariant functor

SolX : Db
lfgu(DF,X)◦ → Db

ctf(Xét,Z/p
nZ)

by [EK, Proposition 16.1.7]. Conversely, for an object L ∈ Db
ctf(Xét,Z/p

nZ), we set

MX(L) = πX∗RHomZ/pnZ(L,OXét
)[dX ].

Then this correspondence defines a contravariant functor

MX : Db
ctf(Xét,Z/p

nZ)→ D+(DF,X).

Now we may state one of the main results in [EK].

Theorem 2.3. Let X be a smooth Wn-scheme. Then the functor SolX is an anti-equivalence of tri-
angulated categories between Db

lfgu(DF,X)◦ and Db
ctf(Xét,Z/p

nZ) with quasi-inverse MX . Furthermore
SolX and MX satisfy the following properties:

(1) If f : X → Y is a morphism of smooth Wn-schemes, then SolX and MX interchange f ! and
f−1.

(2) Let f be a morphism of smooth Wn-schemes such that f can be factored as f = g ◦ h, where g
is an immersion of smooth Wn-schemes and h is a proper smooth morphism of smooth Wn-schemes.
Then SolX and MX interchange f+ and f!.

(3) SolX and MX interchange the functors ⊗L
OX

and ⊗L
Z/pnZ up to shift. More precisely, for objects

M and N in Db
lfgu(DF,X)◦, there exists a canonical isomorphism

SolX(M)⊗L
Z/pnZ SolX(N )

∼=
−→ SolX

(

M⊗L
OX
N
)

[dX ].

Proof. See [EK, Proposition 16.1.10 and Corollary 16.2.6].

2.4 Remark in the case n = 1

Let X be a smooth k-scheme and assume that n = 1 in this subsection. Let OF,X denote a sheaf of the
non-commutative polynomial ring OX [F ] in a formal variable F , which satisfies the relation Fa = apF
for a ∈ OX . One can naturally regard OF,X as a subring of DF,X . Giving an OF,X -module M is
equivalent to giving an OX -moduleM with a structural morphism F ∗M→M, where F denotes the
absolute Frobenius on X . We say an OF,X -moduleM is unit if the structural morphism F ∗M→M
is an isomorphism and we say an OF,X -module M is locally finitely generated unit if it is unit and
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locally finitely generated as an OF,X -module. Similar to the case of DF,X -modules, the locally finitely
generated unitOF,X -modules form a thick subcategory of the category of quasi-coherentOF,X -modules.
So one can consider the bounded derived category Db

lfgu(OF,X) of complexes of OF,X-modules whose
cohomology sheaves are locally finitely generated unit. Similar to the case of DF,X -modules, one can
define the inverse and direct image functors for a morphism of smooth k-schemes (see [EK, §2 and
§3]) and the derived tensor product on Db

lfgu(OF,X). Then Emerton and Kisin proved that the natural
functor

Db
lfgu(DF,X)→ Db

lfgu(OF,X)

induces an equivalence of triangulated categories with quasi inverse DF,X ⊗L
OF,X

(−), which is compat-

ible with the functors f+, f
! and ⊗L

OX
, where f is a morphism of smooth k-schemes [EK, Proposition

15.4.3].

Remark 2.4. In [EK], Emerton and Kisin firstly established the theory of OF,X -modules for smooth
k-schemes. They proved many properties of DF,X-modules for smoothWn-schemes including Theorem
2.3 by reducing them to the corresponding properties of OF,X⊗Wnk-modules.

3 Local cohomology functor

Let P be a smooth Wn-scheme. Let Z be a closed subset of P and jZ the canonical open immersion
P \ Z →֒ P . For a sheaf F of abelian groups on P , we set ΓZF := Ker(F → jZ∗j

−1
Z F). IfM is a left

DF,P -module, then ΓZM naturally forms a left DF,P -module. We have a left exact functor ΓZ from
the category of left DF,P -modules to itself. Then the local cohomology functor

RΓZ : D+(DF,P )→ D+(DF,P )

is defined to be the right derived functor of ΓZ . By definition, we have a distinguished triangle

RΓZM→M→ RjZ∗j
−1
Z M

+
−→ (3.1)

forM ∈ D+(DF,P ). Note that RjZ∗ = jZ+ and j−1Z = j!Z . We can also define the local cohomology
functor

RΓZ : D+(OP )→ D+(OP )

on the level of OP -modules. Then the forgetful functor D+(DF,P ) → D+(OP ) commutes with RΓZ .
It is proved by Grothendieck that RΓZ has finite cohomological amplitude.

Lemma 3.1. Let P be a smooth Wn-scheme and Z a closed subset of P . Denote by jZ the open
immersion P \ Z →֒ P . Then the following conditions are equivalent for M ∈ D(OP ).

1. RΓZM
∼=−→M.

2. RjZ∗j
−1
Z M=0.

3. SuppM is contained in Z.

Proof. The equivalence of 1 and 2 follows from (3.1). Assuming that SuppM⊂ Z, one has j−1Z M = 0.
This shows 3⇒ 2. Finally 1⇒ 3 is evident.
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Lemma 3.2. Let P be a smooth Wn-scheme and Z a closed subset of P . There exists a natural
OP -linear isomorphism

RΓZ (M)⊗L
OP
N
∼=
−→ RΓZ

(

M⊗L
OP
N
)

(3.2)

for anyM ∈ D−(OP ) and N ∈ D−qc(OP ). Furthermore for anyM ∈ D−(DP ) (resp. M∈ D−(DF,P ))
and N ∈ D−qc(DP ) (resp. N ∈ D

−
qc(DF,P )) (3.2) is a DP -linear (resp. DF,P -linear) isomorphism.

Proof. Note first that both sides are well-defined. Let us construct a natural morphism in the Lemma.
LetM be an object of D−(OP ) and N an object of D−qc(OP ). One has RΓZ (M)⊗L

OP
N →M⊗L

OP
N .

Then since RΓZ (M)⊗L
OP
N is supported on Z, we have RΓZ

(

RΓZ (M)⊗L
OP
N
) ∼=
−→ RΓZ (M)⊗L

OP
N

by Lemma 3.1. So RΓZ (M)⊗L
OP
N →M⊗L

OP
N uniquely factors as

RΓZ (M)⊗L
OP
N → RΓZ

(

M⊗L
OP
N
)

→M⊗L
OP
N

and we get the desired morphism. Note that ifM is an object of D−(DP ) (resp. D
−(DF,P )) and N is

an object of D−qc(DP ) (resp. D
−
qc(DF,P )) then (3.2) is DP -linear (resp. DF,P -linear). Let us prove that

(3.2) is an isomorphism. It suffices to show that this is an isomorphism in D(OP ). The assertion is
Zariski local on P and so we may assume that P is affine. Note that the source is a way-out left functor
in N . Also, since RΓZ is finite cohomological amplitude, the target is also a way-out left functor in
N . Using the lemma on way-out functors (cf. [Ha, Chap I, Proposition 7.1]), we reduce to the case
where N is a single quasi-coherent OP -module. Furthermore since any quasi-coherent OP -module is a
quotient of a free OP -module (because P is affine), we may assume that N is a single free OP -module.
Now since RΓZ commutes with infinite direct sums, we reduce the assertion to prove the case when
N = OP . Then both sides are equal to RΓZM and we are done.

Proposition 3.3. Let P be a smooth Wn-scheme and Z a closed subset of P . The local cohomology
functor induces a functor

RΓZ : Db
lfgu(DF,P )

◦ → Db
lfgu(DF,P )

◦.

Proof. Let us first show that, for anyM ∈ Db
lfgu(DF,P ), RΓZM has locally finitely generated coho-

mology sheaves. Let jZ denote the open immersion P \ Z →֒ P . Then there exists a distinguished
triangle

RΓZM→M→ RjZ∗j
−1
Z M

+
−→ .

Since M and RjZ∗j
−1
Z M are objects of Db

lfgu(DF,P ) by [EK, Proposition 15.5.1], RΓZM is also an

object of Db
lfgu(DF,P ) by [EK, Proposition 15.3.4]. Next we show that, for any M ∈ Db

lfgu(DF,P )
◦,

RΓZM is of finite Tor dimension over OP . According to [Ill, I, Proposition 5.1], it is enough to show
that RΓZ (M) ⊗L

OP
N is a bounded complex for any OP -module N . First of all, suppose that N is

a quasi-coherent OP -module. Then, by Lemma 3.2, we have RΓZ (M) ⊗L
OP
N
∼=
−→ RΓZ

(

M⊗L
OP
N
)

.

SinceM is of finite Tor dimension,M⊗L
OP
N is a bounded complex of OP -modules. So we know that

RΓZ (M) ⊗L
OP
N is bounded since RΓZ is finite cohomological amplitude. Now if N is an arbitrary

OP -module, then the stalks of RΓZ (M) ⊗L
OP
N is uniformly bounded, hence so is RΓZ (M) ⊗L

OP
N

because P is quasi-compact.
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Lemma 3.4. Let f : P → Q be a morphism of smooth Wn-schemes and ZQ a closed subset of Q. We
denote by ZP the inverse image of ZQ. Let us assume that Q is separated over Wn. There exists a
natural isomorphism

Lf∗ ◦ RΓZQ(OQ)
∼=−→ RΓZP (OP ).

Proof. We begin with the case when f is flat. Let us take an injective resolution J of OQ. Since f
is flat, f∗OQ → f∗J is an isomorphism. Let jZQ (.resp jZP ) denote the open immersion Q \ZQ →֒ Q
(resp. P \ ZP →֒ P ). Since f is flat, there exist exact sequences of complexes of DF,P -modules

0→ f∗ΓZQJ → f∗J → f∗jZQ∗j
−1
ZQ
J

and
0→ ΓZP f

∗J → f∗J → jZP ∗j
−1
ZP
f∗J .

Let us denote by f ′ the restriction of f to P \ ZP . Then we define a DF,P -linear morphism a :
f∗jZQ∗j

−1
ZQ
J → jZP ∗j

−1
ZP
f ′∗J to be the composite of morphisms

f∗jZQ∗j
−1
ZQ
J → jZP ∗j

−1
ZP
f∗jZQ∗j

−1
ZQ
J ∼= jZP ∗f

′∗j−1ZQ
jZQ∗j

−1
ZQ
J
∼=
−→ jZP ∗f

′∗j−1ZQ
J ∼= jZP ∗j

−1
ZP
f∗J ,

where the first morphism and the third one are induced from the adjunction morphisms id→ jZP ∗j
−1
ZP

and j−1ZQ
jZQ∗

∼=
−→ id respectively. Since the diagram

f∗J

id

��

// f∗jZQ∗j
−1
ZQ
J

a

��
f∗J // jZP ∗j

−1
ZP
f∗J ,

is commutative, we obtain a DF,Q-linear morphism b : Lf∗ ◦ RΓZQ(OQ) = f∗ΓZQ(J ) → ΓZP f
∗J ∼=

RΓZP (f
∗OP ). By flat base change theorem, we know that a is an isomorphism of OP -modules. Hence

b is an isomorphism.
Next we shall consider the case where f is a closed immersion i : P →֒ Q. One has a natural

DF,P -linear morphism Li∗RΓZQOQ → Li∗OQ = OP . As a complex of OP -modules, we can calculate
as

Li∗RΓZQOQ = OP ⊗
L
i−1(OQ) i

−1
(

RΓZQ(OQ)
)

∼=
−→ i−1RΓZQ

(

(i∗OP )⊗
L
OQ
OQ

)

∼= i−1RΓZQ (RΓP (i∗OP ))∼= i−1RΓZP (i∗OP ).

So Li∗RΓZQOQ is supported on ZP and Li∗RΓZQOQ → OP uniquely factors as

Li∗RΓZQOQ
b
−→ RΓZP (OP )→ OP .

Furthermore, because of the above calculation Li∗RΓZQOQ ∼= i−1RΓZP (i∗OP ), we know that b is an
isomorphism in D(OP ). Hence b is isomorphism in D(DF,P ).

Finally the general case follows from these two cases since we can decompose f as P →֒ P ×Q→ Q,
where P →֒ P ×Q is the graph embedding and P ×Q→ Q is the second projection.
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Proposition 3.5. Let f : P → Q be a morphism of smooth Wn-schemes and ZQ a closed subset of
Q. We denote by ZP the inverse image of ZQ. Let us assume that Q is separated over Wn. Then, for
anyM ∈ D−qc(DF,Q), there exists a natural isomorphism

Lf∗ ◦ RΓZQM
∼=
−→ RΓZP ◦ Lf

∗M

and also a natural isomorphism

f ! ◦ RΓZQM
∼=
−→ RΓZP ◦ f

!M.

Proof. The second isomorphism follows by applying the shift operator to the first one. By using
Proposition 2.2, Lemma 3.2 and Lemma 3.4, we obtain

Lf∗RΓZQ(M)
∼=
←− Lf∗

(

RΓZQ(OQ)⊗
L
OQ
M

)

∼=
−→ Lf∗RΓZQ(OQ)⊗

L
OP

Lf∗M
∼=
−→ RΓZP (OP )⊗

L
OP

Lf∗M = RΓZP (Lf
∗M).

Next we show the compatibility of the local cohomology functor and the direct image. We begin
with the corresponding result for usual DP -modules (without Frobenius structures).

Proposition 3.6. Let f : P → Q be a morphism of smooth Wn-schemes and ZQ a closed subset of
Q. We denote by ZP the inverse image of ZQ. Let M be an object in Db(DP ). Then there exists a
natural isomorphism of functors

RΓZQ ◦ f
B
+(M)→ fB+ ◦ RΓZP (M).

We need some lemmas.

Proposition 3.7. Let f : P → Q be a morphism of smooth Wn-schemes. If M is an object in
D−qc(DQ) and N is an object in D−(f−1DQ), then there exists a natural isomorphism

M⊗L
OP

Rf∗N
∼=
−→ Rf∗

(

f−1M⊗L
f−1OQ

N
)

.

in D−(DQ).

Proof. Note first that both sides are defined. Let us take an f∗-acyclic resolution I of N and a DQ-flat
resolution P ofM. Then we have a natural DQ-linear morphism

M⊗L
OP

Rf∗N := P ⊗OP f∗I → f∗
(

f−1P ⊗f−1OQ
I
)

→ Rf∗
(

f−1P ⊗f−1OY
I
)

= Rf∗

(

f−1M⊗L
f−1OY

N
)

.

It is enough to prove that this is an isomorphism in D(OQ). Then this follows from [Ha, II, Proposition
5.6].
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Lemma 3.8. Let f : P → Q be a morphism of smooth Wn-schemes. For an object E in D−(DQ) and
an object F in D−(DP ), there exists an isomorphism

(

f−1E ⊗L
f−1OQ

DQ←P
)

⊗L
DP
F
∼=
−→ DQ←P ⊗

L
DP

(

Lf∗E ⊗L
OP
F
)

in Db(f−1DQ).

Proof. The proof is the same as that of the corresponding proposition for D-modules of higher level
proved in[Ca, Proposition 1.2.25].

Let us prove Proposition 3.6.

Proof. Applying Proposition 3.7 to the case with M = RΓZQ(OQ) and N = DQ←P ⊗L
DP
M, we

obtain

RΓZQ(OQ)⊗
L
OQ

Rf∗
(

DQ←P ⊗
L
DP
M

) ∼=
−→ Rf∗

(

f−1
(

RΓZQ(OQ)
)

⊗L
f−1OQ

(

DQ←P ⊗
L
DP
M

)

)

.

The left hand side is isomorphic to RΓZQ ◦ f
B
+(M) by Lemma 3.2. On the other hand, by Lemma 3.8,

we have

f−1RΓZQ(OQ)⊗
L
f−1OQ

DQ←P ⊗
L
DP
M ∼= (f−1RΓZQ(OQ)⊗

L
f−1OQ

DQ←P )⊗
L
DP
M

∼= DQ←P ⊗
L
DP

(

Lf∗RΓZQ(OQ)⊗
L
OP
M

)

.

Lemma 3.2 and Proposition 3.5 imply that

DQ←P ⊗
L
DP

(

Lf∗RΓZQ(OQ)⊗
L
OP
M

) ∼=
−→ DQ←P ⊗

L
DP

(

RΓZP (OP )⊗
L
OP
M

)

∼=
−→ DQ←P ⊗

L
DP

RΓZP (M).

Therefore the right hand side of the first isomorphism is isomorphic to

Rf∗
(

DQ←P ⊗
L
DP

RΓZP (M)
)

= fB+ ◦ RΓZP (M).

Proposition 3.9. Let f : P → Q be a morphism of smooth Wn-schemes and ZQ a closed subset of
Q. We denote by ZP the inverse image of ZQ. Let M be an object in Db(DF,P ). Then there exists a
natural isomorphism

RΓZQ ◦ f+(M)→ f+ ◦ RΓZP (M).

in Db(DF,Q)

Proof. Let us construct a natural transformation RΓZQ ◦ f+ → f+ ◦ RΓZP . For an object M in
Db(DF,P ), the natural morphism RΓZPM→M induces a morphism RΓZQf+RΓZPM→ RΓZQf+M.
Since, by Remark 2.1 and Proposition 3.6, f+RΓZPM ∼= fB+RΓZPM ∼= RΓZQf

B
+M as a complex of

DQ-module, we know that f+RΓZPM is supported on ZQ. Therefore we have a natural morphism

f+RΓZPM
∼=←− RΓZQf+RΓZPM→ RΓZQf+M.

Again by Proposition 3.6 we conclude that it is an isomorphism.
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4 Riemann-Hilbert correspondence for unit F -crystals

4.1 Category Db
lfgu(X/Wn)

◦

Definition 4.1. Let P be a smooth Wn-scheme and let Z and T be closed subsets of P . We define
the category CP,Z,T to be the full triangulated subcategory of Db

lfgu(DF,P )
◦ consisting of complexes M

satisfying

RΓZM
∼=
−→M and RΓTM = 0. (4.1)

Lemma 4.2. Let P be a smooth separated Wn-scheme. Let Z, Z ′, T and T ′ be closed subsets of P
satisfying Z \ T = Z ′ \ T ′. Then we have the equality

CP,Z,T = CP,Z′,T ′ .

Proof. First we prove the equality in the case Z = Z ′. One has Z∩T = Z∩T ′. Then an isomorphism

RΓZM
∼=
−→M induces

RΓTM
∼=
←− RΓZ∩TM = RΓZ∩T ′M

∼=
−→ RΓT ′M.

Next we consider the case T = T ′. We have to show that RΓZM
∼=
−→M if and only if RΓZ′M

∼=
−→M

under the assumption RΓTM = 0. For a closed subset C of P , let us denote by jC the canonical open

immersion P\C →֒ P . Then the conditionRΓZM
∼=
−→M is equivalent to the condition RjZ∗j

−1
Z M = 0.

One always has RΓTRjZ∗j
−1
Z M

∼= RjZ∗j
−1
Z RΓTM = 0 by Proposition 3.5 and Proposition 3.9. By

the distinguished triangle

RΓTRjZ∗j
−1
Z M→ RjZ∗j

−1
Z M→ RjT∗j

−1
T RjZ∗j

−1
Z M

+
−→,

we see that the condition RjZ∗j
−1
Z M = 0 is equivalent to the condition RjT∗j

−1
T RjZ∗j

−1
Z M = 0. Let

us denote by j the open immersion (P \ T ) \ (Z \ T ) = (P \ T ) \ (Z ′ \ T ) →֒ P \ T and by j′ the open
immersion (P \ T ) \ (Z \ T ) →֒ P . We have the following cartesian diagram:

(P \ T ) \ (Z \ T )

��

� � j / P \ T
� _

jT

�
P \ Z � � jZ / P.

Applying the flat base change theorem to the complex j−1Z M of OP\Z -modules, we obtain

j−1T RjZ∗j
−1
Z M

∼= Rj∗j
′−1M∼= j−1T RjZ′∗j

−1
Z′ M.

Therefore we know that RjT∗j
−1
T RjZ∗j

−1
Z M = 0 if and only if RjT∗j

−1
T RjZ′∗j

−1
Z′ M = 0. The general

case follows from these two cases.

Proposition 4.3. Let P be a smooth separated Wn-scheme and X a locally closed subset of P . Let
j : U →֒ P be an open immersion of smooth Wn-schemes such that an immersion X →֒ P factors as
a closed immersion X →֒ U and the open immersion U →֒ P . Let Z be a closed subset of P such that
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Z∩U = X. We set T := (P \ U)∩Z. Then the direct image functor Rj∗(= j+) induces an equivalence
of triangulated categories

Rj∗ : CU,X,∅ → CP,Z,T

with quasi-inverse j−1(= j!).

Proof. Firstly we shall see that the functors Rj∗ and j−1 are well-defined. Let M be an object in

CU,X,∅. By Proposition 3.9, we have RΓZ(Rj∗M) ∼= Rj∗RΓZ∩UM = Rj∗RΓXM
∼=
−→ Rj∗M. We also

have RΓT (Rj∗M) = 0 as T ∩ U = ∅ and thus know that Rj∗ restricts to a functor CU,X,∅ → CP,Z,T .

Conversely, let N be an object in CP,Z,T . Applying the functor j−1 to RΓZN
∼=
−→ N we obtain

RΓXj
−1N

∼=
−→ j−1N . There exist natural adjunction morphisms (cf. [EK, Lemma 4.3.1])

j−1Rj∗M→M and N → Rj∗j
−1N .

One has j−1Rj∗M
∼=
−→ M for any M ∈ CU,X,∅. Let us prove that the adjunction morphism N →

Rj∗j
−1N is an isomorphism for any N ∈ CP,Z,T . One has a distinguished triangle

RΓP\UN → N → Rj∗j
−1N

+1
−−→ .

We need to show that RΓP\UN is quasi-isomorphic to zero. Let us consider a distinguished triangle

RΓZRΓP\UN → RΓP\UN → RjZ∗j
−1
Z RΓP\UN

+1
−−→, (4.2)

where jZ denotes the open immersion P \Z →֒ P . One has RΓZRΓP\UN = RΓTN = 0. On the other
hand, we obtain

RjZ∗j
−1
Z RΓP\UN = RΓP\URjZ∗j

−1
Z N = 0.

So the assertion follows from (4.2).

Recall that a Wn-embeddable k-scheme is a separated k-scheme X of finite type such that there
exists a proper smoothWn-scheme P and an immersionX →֒ P which fits in the following commutative
diagram:

X

��

� � / P

��
Speck // SpecWn.

Definition 4.4. Let X be a Wn-embeddable k-scheme with an immersion X →֒ P into a proper smooth
Wn-scheme P . We define the category CP,X to be CP,Z,T for some closed subsets Z and T of P with
X = Z \ T . This definition is well-defined by Lemma 4.2.

Theorem 4.5. Let f : P → Q be a proper smooth morphism of smooth Wn-schemes. We assume that
Q is separated over Wn. Suppose that we are given closed immersions i1 : X →֒ P and i2 : X →֒ Q
such that f ◦ i1 = i2. Then f+ induces an equivalence of categories

f+ : CP,X,∅
∼=
−→ CQ,X,∅ (4.3)

with a quasi-inverse RΓX ◦ f !.
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Proof. Since the definition of the category CP,X,∅ depends only on the underlying topological space
of X by Lemma 4.2, we may assume that X is reduced. First of all, we note that the functors f+ and
RΓX ◦ f ! are well-defined. Indeed, forM ∈ CP,X,∅, by Proposition 3.9, we have

RΓXf+M
∼=
−→ f+RΓf−1(X)M
∼=
←− f+RΓf−1(X)RΓXM
∼=
−→ f+RΓXM
∼=
−→ f+M.

We also have RΓX
(

RΓXf
!N

) ∼=
−→ RΓXf

!N for any N ∈ CQ,X,∅. Next let us construct a natural
transformation from f+ to RΓX ◦ f ! and its inverse. By [EK, Corollary 14.5.15], there are canonical
adjunction morphisms

f+f
!N → N and M→ f+f

!M. (4.4)

We thus obtain natural transformations of functors

f+RΓXf
!N → f+f

!N → N (4.5)

and
M

∼=
←− RΓXM→ RΓXf

!f+M. (4.6)

Let us prove that these morphisms are isomorphisms by the induction on n. We begin with the
case n = 1. Then P and Q are smooth k-schemes. Let us firstly consider the case when X is smooth
over k. Then [EK, Corollary 15.5.4 and Proposition 15.5.3] imply that

f+RΓXf
!N

∼=
−→ f+i1+i

!
1f

!N
∼=
−→ i2+i

!
2N

∼=
−→ N .

This shows that (4.5) is an isomorphism. In order to see that (4.6) is an isomorphism, we claim that
the natural morphism i!1M → i!1f

!f+M is an isomorphism. Indeed, since M ∈ CP,X,∅ is supported
on X , there exists M′ ∈ Db

lfgu(DF,X) such that i1+M′ ∼= M by [EK, Corollary 15.5.4]. Then we

have i!1M∼= i!1i1+M
′ ∼=M′ and i!1f

!f+M∼= i!1f
!f+i1+M′ ∼= i!2i2+M

′ ∼=M′, hence we see the claim.

Applying the functor i1+ to the isomorphism i!1M
∼=
−→ i!1f

!f+M we see that ΓXM→ RΓXf
!f+M is

an isomorphism by [EK, Proposition 15.5.3].
Next let us prove the case n = 1 for general X by the induction on the dimension d of X . If d = 0,

then X is étale over k and the assertion follows from the smooth case. Let X0 be a d-dimensional
smooth open subscheme of X such that H := X \X0 is of dimension < d. Let us consider the following
diagram:

X \H //

))

P \ f−1(H)

�f ′

��

j′ // P

f

��
Q \H

j // Q.
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Let us consider the following morphism of distinguished triangles

RΓf−1(H)M //

��

M

��

// Rj′∗j
′−1M

��

+ //

RΓXf
!f+RΓf−1(H)M // RΓXf !f+M // RΓXf !f+Rj

′
∗j
′−1M

+ // .

In the left term, we have RΓf−1(H)M
∼=
←− RΓf−1(H)RΓXM

∼=
−→ RΓHM and we also calculate

RΓXf
!f+RΓf−1(H)M∼= RΓXf

!f+RΓf−1(H)RΓHM∼= RΓHf
!f+RΓHM

by Proposition 3.9 and Proposition 3.5. Hence the induction hypothesis implies that the left vertical
arrow is an isomorphism. Similarly, by the smooth case, one can see that the right vertical arrow is
an isomorphism. As a consequence, we see that M → RΓXf

!f+M is an isomorphism. Next let us
consider the following morphism of distinguished triangles

f+RΓXf
!RΓHN //

��

f+RΓXf
!Rj∗j

−1N

��

// f+RΓXf !Rj∗j
−1N

��

+ //

RΓHN // N // Rj∗j−1N
+ // .

In the left term, we have f+RΓXf
!RΓHN ∼= f+RΓHf

!RΓHN by Proposition 3.5. Hence the left
vertical arrow is an isomorphism by the induction hypothesis. In the right term, we can calculate as

f+RΓXf
!Rj∗

(

j−1N
)

∼= f+RΓXRj′∗f
′!
(

j−1N
)

∼= f+Rj
′
∗RΓX\Hf

′!
(

j−1N
)

∼= Rj∗f
′
+RΓX\Hf

′!
(

j−1N
)

by Proposition 3.9. So the right vertical arrow is an isomorphism by the smooth case and hence the
middle arrow is also an isomorphism. This finishes the proof in the case n = 1. Now let us consider a
distinguished triangle

M⊗L
Z/pnZ Z/pZ→M→M⊗L

Z/pnZ Z/pn−1Z
+
−→ .

Then the induction hypothesis, Lemma 3.2 and [EK, Proposition 14.8.1] reduce us to the case n = 1
and we are done.

Corollary 4.6. Let f : P → Q be a proper smooth morphism of smooth Wn-schemes. We assume
that Q is separated over Wn. Suppose that we are given immersions i1 : X →֒ P and i2 : X →֒ Q such
that f ◦ i1 = i2. Then f+ induces an equivalence of categories

f+ : CP,X
∼=
−→ CQ,X (4.7)

with a quasi-inverse RΓX̄P
◦ f !. Here X̄P denotes the closure of X in P .
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Proof. Let us prove that f+ restricts to a functor CP,X → CQ,X . Let V be an open subset of P
such that i2 factors as a closed immersion X →֒ V and the open immersion j2 : V →֒ Q. Denote
by U the open subset f−1(V ) of Q. Then i1 factors as a closed immersion X →֒ U and the open
immersion j1 : U →֒ P . For an object M in CP,X , by Proposition 4.3, there exists M′ ∈ CU,X
satisfying Rj1∗M

′ ∼=M. We have f+M ∼= f+Rj1∗M
′ ∼= Rj2∗f|U+M

′. In the course of the proof of
Theorem 4.5, we saw that f|U+M

′ is in CV,X . Hence we know that f+M ∼= Rj2∗f|U+M
′ is in CQ,X

by Proposition 4.3.
Next let us prove that RΓX̄P

◦f ! restricts to a functor CQ,X → CP,X . Let TQ be a closed subset of Q
such that X̄Q\TQ = X in Q, where X̄Q denotes the closure of X in Q. We denote by X̄P the the closure
of X in P . Let T be a closed subset of P such that X̄P \T = X and we set TP := T ∩ f−1(TQ). Then
TP is a closed subset of P such that X̄P \TP = X and we have CP,X = CP,X̄P ,TP

and CQ,X = CQ,X̄Q,TQ
.

For an object M in CQ,X̄Q,TQ
, one has RΓX̄P

(

RΓX̄P
f !M

) ∼=
−→ RΓX̄P

f !M. Also by assumption, one

has RΓTQM = 0. Applying the functor RΓX̄P
f ! to this equality we have 0 = RΓX̄P

f !RΓTQM ∼=
RΓX̄P∩f−1(TQ)f

!M. Then we have RΓTPRΓX̄P
f !M∼= RΓTPRΓX̄P∩f−1(TQ)f

!M = 0.
There are natural adjunction morphisms

Ψ : f+RΓX̄P
f !N → N and Φ :M→ RΓX̄P

f !f+M.

By Proposition 4.3, Ψ is an isomorphism if and only if so is Ψ|V = j−12 Ψ. Now we can calculate as

j−12 f+RΓX̄P
f !N ∼= f|U+j

−1
1 RΓX̄P

f !N ∼= f|U+RΓXj
−1
1 f !N ∼= f|U+RΓXf

!
|Uj
−1
2 N .

Hence we see that j−12 Ψ : f|U+RΓXf
!
|Uj
−1
2 N → j−12 N is an isomorphism by Theorem 4.5. One can

prove that Φ is an isomorphism in a similar manner.

Definition 4.7. Let X be a Wn-embeddable scheme. Let us take an immersion X →֒ P into a proper
smooth Wn-scheme. We define the triangulated category Db

lfgu(X/Wn)
◦ by CP,X. This definition is

independent of the choice of embedding X →֒ P up to natural equivalence by Corollary 4.6.

4.2 Cohomological operations on Db
lfgu(X/Wn)

◦

Let f : X → Y be a morphism of Wn-embeddable schemes. Let us first define a functor

f ! : Db
lfgu(Y/Wn)

◦ → Db
lfgu(X/Wn)

◦.

One can always obtain the following commutative diagram:

X

f

��

� � i1 / P

g

��
Y
� � i2 / Q.

(4.8)

Here P and Q are proper smooth Wn-schemes, i1 and i2 are immersions and g is a proper smooth
morphism of Wn-schemes.
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Lemma 4.8. Let f : X → Y be a morphism of Wn-embeddable schemes. Suppose that we are given
the diagram 4.8 and denote by X̄ the closure of X in P . Then the functor RΓX̄g

! restricts to a functor

RΓX̄ ◦ g
! : CQ,Y → CP,X .

Proof. Let TQ be a closed subset of Q such that Ȳ \ TQ = Y , where Ȳ denotes the closure of Y
in Q. Let T be a closed subset of P such that X̄ \ T = X , where X̄ denotes the closure of X in
P . We set TP := T ∩ f−1(TQ). Then TP is a closed subset of P such that X̄ \ TP = X . We

have CQ,Y = CQ,Ȳ ,TQ
and CP,X = CP,X̄,TP

. For any M ∈ CQ,Ȳ ,TQ
, one has RΓX̄

(

RΓX̄g
!M

) ∼=
−→

RΓX̄g
!M. Since M ∈ CQ,Ȳ ,TQ

, one has RΓTQM = 0. Applying RΓX̄g
! to this equality, one has 0 =

RΓX̄g
!RΓTQM∼= RΓX̄∩f−1(TQ)g

!M. Now, by definition of TP , we can calculate as RΓTP

(

RΓX̄g
!M

)

∼=

RΓX̄∩T∩f−1(TQ)g
!M∼= RΓT

(

RΓX̄∩f−1(TQ)g
!M

)

= 0.

Next let us prove that the definition of RΓX̄ ◦ g
! does not depend on the choice of (4.8). Let

f : X → Y be a morphism of Wn-embeddable schemes. Suppose that we are given the following
commutative diagram:

X

��

� p

 ❆
❆

❆

❆

❆

❆

❆

❆

� u

(◗◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

Y � p

 ❆
❆

❆

❆

❆

❆

❆

❆

� u

(PP
P

P

P

P

P

P

P

P

P

P

P

P

P

P1
h2 //

g1

��

P2

g2

��
Q1

h1

// Q2.

(4.9)

Here P1, P2, Q1 and Q2 are proper smooth Wn-schemes and g1, g2, h1 and h2 are proper smooth
morphisms over Wn and all slanting allows are immersions. Let us denote by X̄Pi (resp. ȲQi) the
closure of X (resp. Y ) in Pi (resp. Qi) if i ∈ {1, 2}. Then we have the following functors:

CP1,X CP2,X

RΓX̄P1
◦h!

2

oo

CQ1,Y

RΓX̄P1
◦g!1

OO

CQ2,Y .
RΓȲQ1

◦h!
1

oo

RΓX̄P2
◦g!2

OO

This diagram is commutative up to natural isomorphism since we have

RΓX̄P1
◦ h!2 ◦ RΓX̄P2

◦ g!2 ∼= RΓX̄P1
RΓh−1

2 (X̄P2)
h!2g

!
2
∼= RΓX̄P1

◦ h!2g
!
2

and
RΓX̄P1

◦ g!1 ◦ RΓȲQ1
◦ h!1 ∼= RΓX̄P1

RΓf−1(ȲQ1)
g!1h

!
1
∼= RΓX̄P1

◦ h!2g
!
2.

For a morphism f : X → Y of Wn-embeddable schemes, we take a diagram as in (4.8) and define
the inverse image functor

f ! : Db
lfgu(Y/Wn)

◦ → Db
lfgu(X/Wn)

◦
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by f ! := RΓX̄ ◦ g
!. The above argument shows that this definition is independent of the choice of

diagram (4.8) up to natural isomorphism.
Next let us define the direct image functor f+ : Db

lfgu(X/Wn)
◦ → Db

lfgu(Y/Wn)
◦.

Lemma 4.9. Let f : X → Y be a morphism of Wn-embeddable schemes. Suppose that we are given a
diagram as in (4.8). Then the functor g+ restricts to a functor

g+ : CP,X → CQ,Y .

Proof. Take an open subset V of Q such that i2 : Y →֒ Q factors as a closed immersion Y →֒ V and
the open immersion j2 : V →֒ Q. There exists an open subset U of g−1(V ) such that the immersion
X →֒ g−1(V ) factors as a closed immersion X →֒ U and the open immersion U →֒ g−1(V ). We
denote by j1 the open immersion U →֒ P . Let M be an object in CP,X . Then, by Proposition 4.3,
there exists N ∈ CU,X satisfying Rj1∗N ∼= M. We have g+M ∼= g+Rj1∗N ∼= Rj2∗g|U+N . In the
course of the proof of Theorem 4.5, we saw that g|U+N is in CV,Y . By Proposition 4.3, we know that
g+M∼= Rj2∗g|U+N is in CQ,Y .

Let us assume that we are given a diagram as in (4.9). Then we have a natural isomorphism of
functors h1 ◦ g1 ∼= h2 ◦ g2. For a morphism f : X → Y of Wn-embeddable schemes, we take a diagram
as in (4.8) and define the direct image functor

f+ : Db
lfgu(X/Wn)

◦ → Db
lfgu(Y/Wn)

◦

by f+ := g+.
Finally let us take an immersion i : X →֒ P into a proper smooth Wn-scheme and Z and T closed

subsets P such that X = Z \ T as a set. ForM and N ∈ CP,Z,T = CP,X we considerM⊗L
OP
N [−dP ]

in Db
lfgu(DF,P ). By Lemma 3.2, we have RΓZ

(

M⊗L
OP
N
)

∼= (RΓZM)⊗L
OP
N
∼=
−→M⊗L

OP
N . We also

have RΓT
(

M⊗L
OP
N
)

∼= (RΓTM)⊗L
OP
N = 0. HenceM⊗L

OP
N [−dP ] is an object in CP,Z,T . Assume

that we are given another immersion i′ : X →֒ Q into a proper smooth Wn-scheme and a proper

smooth Wn-morphism f : P → Q with f ◦ i = i′. There exists an equivalence RΓX̄f
! : CQ,X

∼=
−→ CP,X

by Theorem 4.5, where X̄ denotes the closure of X in P . For objectsM and N in CQ,X , applying the
functor RΓX̄f

! toM⊗L
OQ
N [−dQ], we compute that

RΓX̄f
!
(

M⊗L
OQ
N [−dQ]

)

∼= RΓX̄
(

f !M⊗L
OP

f !N
)

[−dP ]

by Proposition 2.2. On the other hand, there exist isomorphisms

RΓX̄f
!M⊗L

OP
RΓX̄f

!N [−dP ] ∼= RΓX̄
(

f !M⊗L
OP

RΓX̄f
!N

)

[−dP ] ∼= RΓX̄
(

f !M⊗L
OP

f !N
)

[−dP ]

by Lemma 3.2. Therefore we can define a bifunctor

(−)⊗L (−) : Db
lfgu(X/Wn)

◦ ×Db
lfgu(X/Wn)

◦ → Db
lfgu(X/Wn)

◦

to beM⊗L N :=M⊗L
OP
N [−dP ] for some immersion X →֒ P into a proper smooth Wn-scheme P .
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4.3 Riemann-Hilbert correspondence for unit F -crystals

Let X be a Wn-embeddable scheme with an immersion i from X into a proper smooth Wn-scheme P .
We define a functor SolX to be the composite of the functors

Db
lfgu(X/Wn)

◦ = CP,X ⊂ D
b
lfgu(DF,P )

SolP−−−→ Db
ctf(Pét,Z/p

nZ)
i−1

−−→ Db
ctf(Xét,Z/p

nZ),

where the first functor is the natural embedding.

Lemma 4.10. This definition is independent of the choice of embedding i : X →֒ P up to natural
isomorphism.

Proof. Let us first suppose that we are given an open immersion j : U →֒ P such that i factors as an

closed immersion i′ : X →֒ U and j. Then j−1 induces an equivalence CU,X,∅
∼=
−→ CP,X by Proposition

4.3. Let us consider a functor i′−1 ◦ SolU : CU,X,∅ → Db
ctf(Xét,Z/p

nZ). Then one has

i′−1SolUj
!M∼= i′−1j−1SolPM∼= i′−1SolPM

for any M ∈ CU,X,∅. Next let us suppose that we are given a closed immersion i′′ : X →֒ Q into a
smooth separated Wn-scheme Q and a proper smooth Wn-morphism U → Q with f ◦ i′ = i′′. Then

f+ induces an equivalence CU,X,∅
∼=
−→ CQ,X,∅ by Theorem 4.5. Note that, because SolU is compatible

with the inverse image functor by Theorem 2.3, we know that SolUM is supported on X for any
M∈ CU,X,∅. Then, forM∈ CU,X,∅, we can compute that

i′′−1SolQf+M∼= i′′−1f!SolUM∼= i′′−1f!i
′
!i
′−1SolUM∼= i′−1SolUM.

We can prove the lemma by combining two claims proved above.

Next let us define a functor MX : Db
ctf(Xét,Z/p

nZ) → Db
lfgu(X/Wn)

◦. We define MX to be the
composite of the functors

Db
ctf(Xét,Z/p

nZ)
i∗−→ Db

ctf(Pét,Z/p
nZ)

MP−−→ Db
lfgu(DF,P )

◦.

Lemma 4.11. The essential image of MX is contained in CP,X .

Proof. Let us take an open subscheme U of P such that i factors as a closed immersion i′ : X →֒ U
and an open immersion j : U →֒ P . Then by [EK, Corollary 16.2.8]MX is naturally isomorphic to the
composition

Db
ctf(Xét,Z/p

nZ)
i′∗−→ Db

ctf(Uét,Z/p
nZ)

MU−−→ Db
lfgu(DF,U )

◦ Rj∗
−−→ Db

lfgu(DF,P )
◦.

So we reduce to the case when X is closed in P by Proposition 4.3. Now since MP is compatible with
the inverse image functor by Theorem 2.3, F ∈ Db

ctf(Pét,Z/p
nZ) is supported on X if and only if so is

MP (F).

One can prove that this functor is independent of the choice of X →֒ P as in Lemma 4.10. By
Lemma 4.11, we obtain a functor

MX : Db
ctf(Xét,Z/p

nZ)→ Db
lfgu(X/Wn)

◦.

We now state our main result.
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Theorem 4.12. Let X be a Wn-embeddable k-scheme. Then SolX induces an equivalence of triangu-
lated categories

SolX : Db
lfgu(X/Wn)

◦ ∼=−→ Db
ctf(Xét,Z/p

nZ) (4.10)

with quasi-inverse MX .

In order to prove Theorem 4.12 we need the following lemma.

Lemma 4.13. Let X be a Wn-embeddable k-scheme with a closed immersion i from X into a smooth
Wn-scheme P . Let us denote by Db

ctf,X(Pét,Z/p
nZ) the full triangulated subcategory of Db

ctf(Pét,Z/p
nZ)

consisting of complexes supported on X. Then SolP : Db
lfgu(DF,P )

◦ → Db
ctf(Pét,Z/p

nZ) restricts an
equivalence

CP,X,∅
∼=
−→ Db

ctf,X(Pét,Z/p
nZ).

Proof. By Lemma 3.1, we can write as

CP,X,∅ =
{

M ∈ Db
lfgu(DF,P )

◦ | SuppM⊂ X
}

.

Denote by j the open immersion P \X →֒ P . For an objectM in CP,X,∅, the condition SuppM⊂ X
is equivalent to the condition j−1M = 0. Applying the functor SolP to j−1M = 0, by Theorem 2.3,
one has j−1 (SolPM) ∼= SolP\Xj

−1M = 0. Hence we know that SolP restricts to a functor

SolP : CP,X,∅ → Db
ctf,X(Pét,Z/p

nZ).

Similarly, MP restricts to a functor MP : Db
ctf,X(Pét,Z/p

nZ)→ CP,X,∅ and we are done.

Let us prove Theorem 4.12.

Proof. We may assume that there exists a proper smooth Wn-scheme P , an open subset U of P
together with a closed immersion i : X →֒ P . Then SolP is compatible with SolU and SolU induces an
equivalence of triangulated categories

CU,X,∅
∼=
−→ Db

ctf,X(Uét,Z/p
nZ)

with quasi-inverse MU by Lemma 4.13. Also, i−1 : Db
ctf,X(Pét,Z/p

nZ) → Db
ctf(Xét,Z/p

nZ) is an
equivalence of triangulated categories with quasi-inverse i∗. This finishes the proof.

Theorem 4.14. Let f : X → Y be a morphism of Wn-embeddable schemes. Then there exist natural
isomorphisms of functors

SolY ◦ f+
∼=
−→ f! ◦ SolX : Db

lfgu(X/Wn)→ Db
ctf(Yét,Z/p

nZ),

SolX ◦ f
! ∼=−→ f−1 ◦ SolY : Db

lfgu(Y/Wn)→ Db
ctf(Xét,Z/p

nZ)

and a functorial isomorphism

SolX(M)⊗L
Z/pnZ SolX(N )

∼=
−→ SolX

(

M⊗L N
)

for objects M and N in Db
lfgu(X/Wn).
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Proof. We may assume that there exists a commutative diagram

X

f

��

� � i1 / P

g

��
Y
� � i2 / Q

such that P and Q are smooth separated Wn-schemes, i1 and that i2 are closed immersions and g is
the composite of an immersion and a proper smooth morphism. Also, we can replace the categories
Db

lfgu(X/Wn) and D
b
lfgu(Y/Wn) in the statement by the categories CP,X,∅ and CQ,Y,∅ respectively. For

any objectM in CP,X,∅, SolP (M) is supported on X . So we can compute that

SolY ◦ f+ := i−12 SolQg+ ∼= i−12 g!SolP ∼= i−12 g!i1∗i
−1
1 SolP ∼= f! ◦ SolX .

Let us prove the second isomorphism. Recall that f ! := RΓXg
! : CQ,Y,∅ → CP,X,∅. We define a

natural transformation SolX ◦ f ! → f−1 ◦ SolY to be the composite of natural transformations

SolX ◦ f
! := i−11 SolP ◦

(

RΓXg
!
)

→ i−11 SolP g
! ∼= i−11 g−1SolQ ∼= f−1 ◦ SolY .

Let us prove that it is an isomorphism. The usual dévissage argument reduces the proof to the case
n = 1. Let us first suppose that X is smooth over k. Then using [EK, Corollary 15.5.4] and Theorem
2.3, we obtain isomorphisms

SolX ◦ f
! ∼= i−11 SolP ◦

(

RΓXg
!
)

∼= i−11 SolP ◦
(

i1+i
!
1g

!
)

∼= i−11 i1∗i
−1
1 g−1SolQ

∼= f−1i−12 SolQ ∼= f−1 ◦ SolY .

In general case, we shall prove by the induction on the dimension d of X . Let X0 be a d-dimensional
smooth open subscheme of X such that H := X \ X0 is of dimension < d. Let a denote the open
immersion P \H →֒ P andM an object in CQ,Y,∅. We have a distinguished triangle in Db

c(Pét,Z/pZ)

SolPRΓXa+a
!g!M→ SolPRΓXg

!M→ SolPRΓHg
!M

+
−→ . (4.11)

Let us denote by b the immersion X \H →֒ P \H →֒ P and by iH a closed immersion H →֒ P . For
any F ∈ Db

c(Pét,Z/pZ), there exists a distinguished triangle in Db
c(Pét,Z/pZ)

b!b
−1F → F → iH!i

−1
H F

+
−→ . (4.12)

Applying (4.12) to F = g−1SolQM, one has a distinguished triangle

b!b
−1g−1SolQM→ g−1SolQM→ iH!i

−1
H g−1SolQM

+
−→ . (4.13)

There are natural morphisms

ψ : SolPRΓXa+a
!g!M→ SolPa+a

!g!M→ a!a
−1g−1SolQM→ b!b

−1g−1SolQM

and
φ : SolPRΓHg

!M→ SolP g
!M→ g−1SolQM→ iH!i

−1
H g−1SolQM.
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Hence we obtain a morphism of distinguished triangle from (4.11) to (4.13). Let us see that ψ is an
isomorphism. We can calculate as

SolPRΓXa+a
!g!M ∼= SolPa+RΓX\Ha

!g!M

∼= a!SolP\HRΓX\Ha
!g!M.

So SolPRΓXa+a
!g!M and b!b

−1g−1SolQM are supported on X \ H . Hence ψ is an isomorphism
if and only if so is b−1ψ. Now since we can calculate as b−1SolPRΓXa+a

!g!M ∼= SolX\Hf
!
|X\HM

and b−1b!b
−1g−1SolQM ∼= f−1|X\HSolYM, we know that b−1ψ : SolX\Hf

!
|X\HM → f−1|X\HSolYM is

an isomorphism by the smooth case. On the other hand, since SolPRΓHg
!M and iH!i

−1
H g−1SolQM

are supported on H , φ is an isomorphism if and only if so is i−1H φ. Let us denote by f|H the com-

posite of morphisms H →֒ X
f
−→ Y . Applying i−1H to SolPRΓHg

!M and iH!i
−1
H g−1SolQM, one has

i−1H SolPRΓHg
!M∼= SolHf

!
|HM and i−1H iH!i

−1
H g−1SolQM∼= f−1H SolHM respectively. So the induction

hypothesis implies that i−1H φ : SolHf
!
|HM→ f−1H SolHM is an isomorphism and hence φ is an isomor-

phism. Thus SolPRΓXg
!M → g−1SolQM is an isomorphism. Applying the functor i−11 to this, we

obtain the desired isomorphism SolXf
!
∼=
−→ f−1SolY .

Finally let us prove the last isomorphism. Let i : X →֒ P be a closed immersion into a smooth
Wn-scheme andM and N objects of Db

lfgu(X/Wn) = CP,X,∅. There exists a natural isomorphism

SolPM⊗
L
Z/pnZ SolPN

∼=
−→ SolP

(

M⊗L
OP
N
)

[dP ]

by Theorem 2.3. Recall that M ⊗L N is defined to be M ⊗L
OP
N [−dP ]. Applying the functor

SolX := i−1SolP to it, one has

SolX
(

M⊗L N
)

∼= i−1SolP
(

M⊗L
OP
N [−dP ]

)

∼= i−1SolP
(

M⊗L
OP
N
)

[dP ]

∼= i−1
(

SolPM⊗
L
Z/pnZ SolPN

)

∼= SolX(M)⊗L
Z/pnZ SolX(N ).

This finishes the proof.

5 t-structures on Db
lfgu(X/k)

In this section, we study several t-structures on Db
lfgu(X/k) for a k-embeddable k-scheme X . Note

that, for a smooth k-scheme P , one has Db
lfgu(DF,P )

◦ = Db
lfgu(DF,P ) and Db

lfgu(DF,P )
◦ is naturally

equivalent to Db
lfgu(OF,P ) (see the subsection 2.4).

5.1 The standard t-structure on Db
lfgu(X/k)

For a smooth k-scheme P , we set

D≤nlfgu(DF,P ) =
{

M∈ Db
lfgu(DF,P ) |H

k(M) = 0 for k > n
}

and

D≥nlfgu(DF,P ) =
{

M∈ Db
lfgu(DF,P ) |H

k(M) = 0 for k < n
}

.

24



Let X be a k-scheme of finite type. The middle perversity is the function p : X → Z defined by

p(x) = −dim{x}.

For x ∈ X , we denote by ix the canonical inclusion {x} →֒ X . We then set

pD≤0c (Xét,Z/pZ) =
{

F ∈ Db
c(Xét,Z/pZ) |H

k(i−1x F) = 0 for all x ∈ X and k > p(x)
}

and
pD≥0c (Xét,Z/pZ) =

{

F ∈ Db
c(Xét,Z/pZ) |H

k(i!xF) = 0 for all x ∈ X and k < p(x)
}

.

Gabber proved that
(

pD≤0c (Xét,Z/pZ),
pD≥0c (Xét,Z/pZ)

)

forms a t-structure on Db
c(Xét,Z/pZ) in

[Ga, Theorem 10.3]. Emerton and Kisin gave another proof of it in the case when X is smooth
over k based on the Riemann-Hilbert correspondence [EK, Theorem 11.5.4]: Indeed, they proved that

D≤0lfgu(X/k) (resp. D≥0lfgu(X/k)) is equivalent to pD≥0c (Xét,Z/pZ) (resp. pD≤0c (Xét,Z/pZ)) via SolX .
We shall generalize [EK, Theorem 11.5.4] to the case of k-embeddable k-schemes.

Definition 5.1. Let P be a smooth k-scheme with closed subsets Z and T of P . We set

C≤0P,Z,T =
{

M ∈ CP,Z,T |H
k(M) = 0 for k > 0

}

and

C≥0P,Z,T =
{

M ∈ CP,Z,T |H
k(M) = 0 for k < 0

}

.

Then
(

C≤0P,Z,T , C
≥0
P,Z,T

)

defines a a t-structure on CP,Z,T , which we call the standard t-structure on

CP,Z,T . For a k-embeddable k-scheme X with an immersion X →֒ P into a proper smooth k-scheme

P , we define the standard t-structure
(

C≤0P,X , C
≥0
P,X

)

on CP,X by

C≤0P,X = C≤0P,Z,T and C≥0P,X = C≥0P,Z,T

for some closed subsets Z and T of P with X = Z \ T . This definition is independent of the choice of
Z and T by Lemma 4.2.

Lemma 5.2. Let X be a k-embeddable k-scheme with an immersion X →֒ P into a smooth separated
Wn-scheme P . Let U be an open subscheme of P such that the immersion X →֒ P factors as a closed
immersion X →֒ U and the open immersion j : U →֒ X. Then the equivalence in Proposition 4.3

Rj∗ : CU,X,∅
∼=
−→ CP,X

is t-exact with respect to the standard t-structure.

Proof. Since Rj∗ is an equivalence of triangulated categories, it is enough to prove that Rj∗ and its
quasi-inverse j−1 are left t-exact (cf. [KS, Corollary 10.1.18]). These claims are evident.

We need the following lemma.

Lemma 5.3. Let P be a smooth Wn-scheme and i : X →֒ P a closed immersion. For • ∈ {≤
0,≥ 0}, we denote by Db

c,X(Pét,Z/pZ) (resp. pD•c,X(Pét,Z/pZ)) the full triangulated subcategory of

Db
c(Pét,Z/pZ) (resp. pD•c (Pét,Z/pZ)) consisting of complexes supported on X. Then the equivalence

i∗ : D
b
c(Xét,Z/pZ)

∼=
−→ Db

c,X(Pét,Z/pZ) restricts to an equivalence

pD•c (Xét,Z/pZ)
∼=
−→ pD•c,X(Pét,Z/pZ)

with quasi-inverse i−1.
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Proof. For an object L in pD≤0c (Xét,Z/pZ), one obviously has i∗L ∈ pD≤0c,X(Pét,Z/pZ). Let L be an

object of pD≥0c (Xét,Z/pZ) and x an element of X ⊂ P . There exists an open subscheme U ⊂ {x}
such that Hk

(

i!UL
)

= 0 for any k < p(x), where iU denotes the immersion U →֒ X . Let us denote by

i′U the immersion U →֒ X →֒ P . One has i′!U i∗L
∼= i!U i

!i∗L ∼= i!UL = 0. So we have Hk
(

i!xi∗L
)

= 0 for

any k < p(x). If x ∈ P \X , one has Hk
(

i!xi∗L
)

= 0 for any k. Hence we see i∗L ∈ pD≥0c,X(Pét,Z/pZ).

Conversely, for an object L in pD≤0c,X(Pét,Z/pZ), one obviously has i−1L ∈ pD≤0c (Xét,Z/pZ). Finally

let L be an object of pD≥0c,X(Pét,Z/pZ). Then, since L is supported on X , we have i!L
∼=
−→ i−1L and

hence we have i−1L ∈ pD≥0c (Xét,Z/pZ).

Corollary 5.4. Let X be a k-embeddable k-scheme with a closed immersion i : X →֒ P into a

smooth k-scheme P . Then SolX = i−1SolP : CP,X,∅
∼=
−→ Db

c(Xét,Z/pZ) sends
(

C≤0P,X,∅, C
≥0
P,X,∅

)

to
(

pD≤0c (Xét,Z/pZ),
pD≤0c (Xét,Z/pZ)

)

.

Proof. By Lemma 4.13, SolP restricts to an equivalence of triangulated categories

CP,X,∅
∼=
−→ Db

c,X(Pét,Z/pZ).

We know that SolP sends C≤0P,X,∅ to
pD≥0c,X(Pét,Z/pZ) and C

≥0
P,X,∅ to

pD≤0c,X(Pét,Z/pZ) by [EK, Theorem

11.5.4]. By Lemma 5.3, we see that i−1 sends pD•c,X(Pét,Z/pZ) to
pD•c (Xét,Z/pZ) if • ∈ {≤ 0,≥ 0}.

This finishes the proof.

By Lemma 5.2 and Corollary 5.4, one has the following theorem.

Theorem 5.5. Let X be a k-embeddable k-scheme with an immersion X →֒ P into a proper smooth
k-scheme P . We set

D≤0lfgu(X/k) = C
≤0
P,X and D≥0lfgu(X/k) = C

≥0
P,X .

Then the t-structure
(

D≤0lfgu(X/k), D
≥0
lfgu(X/k)

)

is independent of the choice of X →֒ P , which we

call the standard t-structure on Db
lfgu(X/k). Furthermore,

(

D≤0lfgu(X/k), D
≥0
lfgu(X/k)

)

corresponds to

Gabber’s perverse t-structure via SolX .

5.2 Beilinson’s theorem

In this subsection, we prove an analogue of Beilinson’s theorem (Theorem 5.6), which is a generalization
of [EK, Corollary 17.2.5] to the case of k-embeddable k-schemes. In the rest of this subsection, we
fix a k-embeddable k-scheme X , an immersion ĩ : X →֒ P̃ into a proper smooth k-scheme and an
open subscheme P of P̃ such that ĩ factors as a closed immersion i : X →֒ P and the open immersion
P →֒ P̃ . Denote by µu (resp. µlfgu) the category of unit DF,P -modules (resp. locally finitely generated
unit DF,P -modules). We also denote by µu,X (resp. µlfgu,X) the full subcategory of µu (resp. µlfgu)
consisting of objects supported on X . Note that µlfgu,X is the heart of the standard t-structure on

Db
lfgu(X/k) = CP̃ ,X = CP,X,∅ and hence it is independent of the choice of X →֒ P̃ and P by Theorem

5.5. The following theorem is the main theorem in this subsection.
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Theorem 5.6. The natural functor

Db(µlfgu,X)→ Db
lfgu(X/k)

is an equivalence of triangulated categories.

The proof of Theorem 5.6 is divided into two parts. First of all, we prove the following theorem.

Theorem 5.7. The natural functor

Db(µlfgu,X)→ Db
lfgu(X/k)

is essentially surjective and, for any objects M and N in Db(µlfgu,X) the map

HomDb(µlfgu,X)(M,N )→ HomDb
lfgu

(X/k)(M,N )

is surjective.

We need the following lemma.

Lemma 5.8. Let Ind-µlfgu,X be the full subcategory of µu,X consisting of objects which are direct limits
of objects in µlfgu,X . Then the natural functor

Db(µlfgu,X)→ Db
lfgu(Ind-µlfgu,X)

is an equivalence of triangulated categories.

Proof. For an object M in Db
lfgu(Ind-µlfgu,X), there exists a subcomplex M′ of M such that the

canonical inclusionM′ →M is a quasi-isomorphism and the terms ofM′ are locally finitely generated
unit. Since M is supported on X , so is M′. Hence Db(µlfgu,X) → Db

lfgu(Ind-µlfgu,X) is essentially
surjective. Let us prove the full faithfulness of the functor. Suppose that we are given a quasi-
isomorphism M → N in Kb(Ind-µlfgu,X) with N ∈ Kb(µlfgu,X), where we denote by Kb(µlfgu,X)
(resp. Kb(Ind-µlfgu,X)) the (bounded) homotopy category of µlfgu,X (resp. Ind-µlfgu,X). Then all
cohomology sheaves of M are locally finitely generated unit and so there exists a subcomplex M′

of M such that the canonical inclusion M′ → M is a quasi-isomorphism and the terms of M′ are
locally finitely generated unit. Hence, by [KS, Proposition 1.6.5], Db(µlfgu,X) → Db(Ind-µlfgu,X) is
fully faithful and the assertion follows.

Let us prove the Theorem 5.7.

Proof. The proof is a refinement of the proof of [EK, Corollary 17.1.2]. For a k-scheme Y of finite
type, we denote by CY the category of constructible étale sheaves of Z/pZ-modules on Yét. By using
the results in [De, p.94], we know that the natural functor Db(CY ) → Db

c(Yét,Z/pZ) is essentially
surjective and induces a surjection on Hom’s. Let E denote the residual complex of injective quasi-
coherent OPét

-modules resolving OPét
. It is proved in [EK, Proposition 17.1.1] that E naturally forms

a complex of unit DF,Pét
-modules and the terms of E are in Ind-µlfgu. Then, as in the proof of
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[EK, Corollary 17.1.2], MX may be computed as πP∗HomZ/pZ(−, E) ◦ i∗ and we have the following
commutative diagram of categories:

Db(CX)

i∗
��

// Db
c(Xét,Z/pZ)

i∗
��

Db(CP )

πP∗Hom
Z/pZ(−,E)

��

// Db
c(Pét,Z/pZ)

MP

��
Db

lfgu(Ind-µlfgu) // Db
lfgu(DF,P ).

The composite of the functors Db(CX) → Db
c(Xét,Z/pZ) → Db

c(Pét,Z/pZ) → Db
lfgu(DF,P ) induces a

functor Db(CX) → Db
lfgu(X/k) which is essentially surjective and induces a surjection on Hom’s by

Theorem 4.12. On the other hand, the essential image of the composite of the functors Db(CX) →
Db(CP ) → Db

lfgu(Ind-µlfgu) is contained in Db
lfgu(Ind-µlfgu,X) because for an object G in Db(CX), we

have the natural isomorphism

πP∗HomZ/pZ(i∗G, E) ∼= πP∗i∗HomZ/pZ(G, i
!E|X).

Hence we know that the functor Db
lfgu(Ind-µlfgu,X) → Db

lfgu(X/k) is essentially surjective. So, by
using Theorem 4.12 and Lemma 5.8, we see that the functor induces a surjection on Hom’s. Now the
assertion follows from Lemma 5.8.

In order to prove the full faithfulness of the functor Db(µlfgu,X) → Db
lfgu(X/k), we need some

preparation.

Lemma 5.9. The category µu,X has enough injectives.

Proof. For an objectM in µu,X , we can take an injectionM→ I into an injective object I in µu by
[EK, Corollary 15.1.6]. Applying ΓX to the injectionM→ I, one has an injectionM = ΓXM→ ΓXI.
Hence it is enough to prove that ΓXI is an injective object in µu,X . Suppose that we are given an
injection i : N ′ → N and a morphism f : N ′ → ΓXI in µu,X . Let us denote by g the natural morphism
ΓXI → I. Since I is an injective object, there exists a morphism h : N → I satisfying h ◦ i = g ◦ f .
Then one has ΓXh ◦ ΓX i = ΓXg ◦ ΓXf . Since ΓX i is equal to i : N ′ = ΓXN ′ → ΓXN = N and
ΓXg ◦ ΓXf : N ′ = ΓXN ′ → ΓXΓXI → ΓXI is equal to f , we know the equality ΓXh ◦ i = f . Hence
ΓXI is an injective object in µu,X .

For an object M in µu,X , there exists a unique maximal subobject L(M) of M which lies in
Ind-µlfgu by [EK, Lemma 17.2.1.(i)]. Then L(M) belongs to Ind-µlfgu,X and it is a unique maximal
subobject ofM which lies in Ind-µlfgu,X . By [EK, Lemma 17.2.1.(ii)], the correspondenceM 7→ L(M)
defines a left exact functor

L : µu,X → Ind-µlfgu,X

which is right adjoint to the natural functor µlfgu,X → µu,X . Since µu,X has enough injectives by
Lemma 5.9, we obtain the right derived functor

RL : D+(µu,X)→ D+(Ind-µlfgu,X).
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By using Theorem 5.7, one can prove the following lemma in the same way as [EK, Lemma 17.2.2].

Lemma 5.10. Objects in µlfgu,X are acyclic for RL.

Proof. For an objectM in µlfgu,X , one can choose an injective resolutionM→ I in µu,X by Lemma
5.9. For a natural number n ≥ 0, we denote by En the image of the differential In → In+1. In order
to prove thatM is RL-acyclic, it is enough to prove that the map L(Mn)→ L(En) is surjective. We

denote by I≤n the complex defined by
(

I≤n
)i

= Ii for i ≤ n and by
(

I≤n
)i

= 0 for i > n. Then one
has an (n+ 1)-extension

0→M→ I0 → I1 → · · · → In → En → 0

of En by M and denotes by c the class of this extension in Extn+1
µu,X

(In,M). For a locally finitely
generated unit DF,P -submodule F of En, we denote by cF the image of c under the map

Extn+1
µu,X

(En,M)→ Extn+1
µu,X

(F ,M) = HomDb(µu,X )(F [−n],M)→ HomDb
lfgu

(X/k)(F [−n],M).

Then, by Theorem 5.7, there exists an (n+ 1)-extension in µlfgu,X which is sent to cF by the map

HomDb(µlfgu,X )(F [−n],M)→ HomDb
lfgu

(X/k)(F [−n],M).

Let us denote this (n+ 1)-extension by

0→M→N → F → 0,

where N is a complex of locally finitely generated DF,P -modules whose terms are supported on X and
are 0 outside [0, n] and such that Hi(N ) =M if i = 0, Hi(N ) = F if i = n and Hi(N ) = 0 otherwise.
Since I is a complex of injective objects in µu,X there exists a map of extensions

0 //M // I≤n // En // 0

0 //M //

id

OO

N //

φ

OO

F //

ψ

OO

0.

Let us consider the exact sequence

Homµu,X (F , In)→ Homµu,X (F , En)
δ
−→ Extn+1

µu,X
(F ,M)→ 0.

By construction of cF one has δ(ψ) = cF . If we denote by ψ′ the natural inclusion F → En, then

we also have δ(ψ′) = cF . Thus ψ − ψ′ lifts to a map ψ̃ − ψ′ : F → In. Let us also denote by

ψ̃ − ψ′ the composite of morphisms Nn → F
ψ̃−ψ′

−−−→ In. Then we have a locally finitely generated

OF,P -submodule
(

φn + ψ̃ − ψ′
)

(Nn) of In which surjects on ψ′(F). This finishes the proof.

Lemma 5.11. Let µL-ac,X denote the full subcategory of µu,X consisting of L-acyclic objects. Then
the natural functors Db(µlfgu,X)→ D+(µL-ac,X) and D+(µL-ac,X) → D+(µu,X) are fully faithful. As
a consequence, the natural functor

Db(µlfgu,X)→ Db(µu,X)

is fully faithful.
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Proof. The strategy of the proof is the same as that of [EK, Lemma 17.2.3] but we slightly modify
their proof. Let us suppose that we are given a quasi-isomorphism N → M in K+(µL-ac,X) with
M ∈ Kb(µlfgu,X). Then the adjunction morphism L(N )→ N is a quasi-isomorphism since the terms
of N and its cohomology sheaves are acyclic for L by Lemma 5.10. Now since the terms of L(N )
are in Ind-µlfgu,X and cohomology sheaves of it are in µlfgu,X , there exists a bounded subcomplex
L(N )′ of L(N ) such that L(N )′ → L(N ) is a quasi-isomorphism and L(N )′ belongs to Kb(µlfgu,X).
Hence the first functor is fully faithful by [KS, Proposition 1.6.5]. Next suppose that we are given a
quasi-isomorphism N → M in K+(µL-ac,X) with N ∈ K+(µu,X). Then, by Lemma 5.9, one has an
injective resolution I of M in K+(µu,X). So the full faithfulness of the second functor also follows
from [KS, Proposition 1.6.5].

Let us consider the following commutative diagram of categories:

Db(µlfgu,X)

��

// Db(µlfgu)

��
Db(µu,X)

��

// Db(µu)

��
Db

lfgu(X/k)
// Db

lfgu(DF,P ).

In order to prove the full faithfulness of the functor Db(µlfgu,X) → Db
lfgu(X/k), by Lemma 5.11 and

[EK, Corollary 17.2.4], it suffices to prove the following lemma.

Lemma 5.12. The natural functor Db(µu,X)→ Db(µu) is fully faithful.

In order to prove Lemma 5.12, we define a functor

R′ΓX : D+(µu)→ D+(µu,X)

to be the right derived functor of the left exact functor ΓX : µu → µu,X . Here we use the notation
R′ΓX instead of RΓX to avoid confusion. We have the following lemma.

Lemma 5.13. Objects in µu,X are acyclic for R′ΓX .

Proof. For an objectM in µu,X , take an injective resolutionM→ I. One has Hi(RΓXM) = 0 for
i > 0. Also, since In is an injective object in the category of OP -quasi-coherent DF,P -modules by [EK,
Cor. 15.1.6], one has Hi(RΓXIn) = 0 for i > 0. By considering the long exact sequence for RΓX , we
deduce that 0→M = ΓXM→ ΓXI is exact. HenceM is acyclic for R′ΓX .

Let us prove Lemma 5.12.

Proof. Let us denote by µΓX -ac the full subcategory of µu,X consisting of R′ΓX -acyclic objects. It
is enough to prove that the natural functors Db(µu,X) → D+(µΓX -ac) and D+(µΓX -ac) → D+(µu)
are fully faithful. Let us suppose that we are given a quasi-isomorphism N → M in K+(µΓX -ac)
with M ∈ Kb(µu,X). Then the natural morphism ΓXN → N is a quasi-isomorphism since the
terms of N and its cohomology sheaves are acyclic for R′ΓX by Lemma 5.13. Moreover, since ΓXN is
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cohomologically bounded, there exists a bounded subcomplex ΓXN ′ of ΓXN such that ΓXN ′ → ΓXN
is a quasi-isomorphism and ΓXN ′ belongs to Kb(µu,X). Hence, by [KS, Proposition 1.6.5], we know
that the first functor is fully faithful. For the second assertion, let us take a quasi-isomorphismN →M
in K+(µΓX -ac) with N ∈ K+(µu). ThenM is quasi-isomorphic to its injective resolution I in K+(µu).
Hence the second functor is fully faithful by [KS, Proposition 1.6.5].

By Theorem 5.7 and Lemma 5.12, we finish the proof of Theorem 5.6.

5.3 The constructible t-structure on Db
lfgu(X/k)

Let P be a smooth k-scheme. Let A be a sheaf of OP -algebra, which is quasi-coherent as a left OP -
module and left noetherian. Let us first recall a t-structure on Db

qc(A) introduced by Kashiwara in
[Kas2]. For more detail, we refer the reader to [Kas2, §3]. We define a support datum S = {Sn} by

S
n := {Z |Z is a closed subset of P of codimension ≥ n} .

Then S
n has the structure of an ordered set by the natural inclusion. For a sheaf F of A-modules, we

define ΓSn(F) := lim
−→
Z∈Sn

ΓZ(F). Then ΓSn defines a left exact functor from the category of A-modules

to itself and we obtain the right derived functor RΓSn : Db
qc(A)→ Db

qc(A). Let us set

SD≤kqc (A) =
{

M ∈ Db
qc(A) |RΓSn−kHn (M)

∼=
−→ Hn (M) for any n

}

and

SD≥kqc (A) =
{

M ∈ Db
qc(A) |RΓZM∈ D

≥n+k
qc (A) for any n and Z ∈ S

n
}

.

Kashiwara proved that
(

SD≤0qc (A),
SD≥0qc (A)

)

forms a t-structure on Db
qc(A). We call this t-structure

the constructible t-structure. In particular, we have a t-structure
(

SD≤0qc (OF,P ),
SD≥0qc (OF,P )

)

on

Db
qc(OF,P ). Moreover, we have the following theorem.

Theorem 5.14. Let P be a smooth separated k-scheme. We set

SD≤0lfgu(OF,P ) := SD≤0qc (OF,P ) ∩D
b
lfgu(OF,P ) and

SD≥0lfgu(OF,P ) := SD≥0qc (OF,P ) ∩D
b
lfgu(OF,P ).

Then
(

SD≤0lfgu(OF,P ),
SD≥0lfgu(OF,P )

)

defines a t-structure on Db
lfgu(OF,P ).

Proof. It suffices to show that for anyM ∈ Db
lfgu(OF,P ), there exists a distinguished triangle

M′ →M→M′′
+
−→

such thatM′ ∈ SD<0
lfgu(OF,P ) andM

′′ ∈ SD≥0lfgu(OF,P ). We show it by the induction on the codimen-
sion d of S := Supp(M). Let us consider a distinguish triangle

τ<dM→M→ τ≥dM
+
−→, (5.1)
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where τ denotes the truncation functor with respect to the standard t-structure. Evidently, one

has RΓSk+1

(

Hk
(

τ<dM
)) ∼=
−→ Hk

(

τ<dM
)

for any k ≥ d. For any k < d, one has S ∈ S
k+1 and

RΓSk+1

(

Hk
(

τ<dM
)) ∼=
−→ Hk

(

τ<dM
)

. Hence we have τ<dM ∈ SD<0
lfgu(OF,P ). By using [Kas2,

Lemma 2.1] with (5.1), we are reduced to the case where M is an object in D≥dlfgu(OF,P ). Let S0 be
a d-codimensional smooth open subscheme of S such that H := S \ S0 is of codimension > d. We set
U := X \H . Then we have a closed immersion i : S0 →֒ U and the open immersion j : U →֒ P . Since
M|U is supported on S0, by [EK, Corollary 5.11.3], there exists an object N ∈ Db

lfgu(OF,S0
) such that

i+N ∼=M|U . Note that, by [EK, Corollary 3.3.6], i+ is t-exact with respect to the standard t-structure.

So N belongs to D≥dlfgu(OF,S0
). Applying [EK, Proposition 6.9.6], by shrinking S0 if necessary, we may

assume that all cohomology sheaves of N are unit F -crystals. In particular, these are locally free
of finite rank. Then we claim that i+N belongs to SD≥0lfgu(OF,U ). In order to see this claim, by
the induction on the cohomological length of N , we may assume that N is a single unit F -crystal
supported on degree ≥ d. Then for any n-codimensional closed subset Z of U , we have RΓZ∩S0

(N ) ∼=
RΓZ∩S0

(OS0
)⊗N ∈ D≥nlfgu(OF,S0

). Then since i+ is left t-exact with respect to the standard t-structure,

we have RΓZi+N ∼= i+RΓZ∩S0
N ∈ D≥nlfgu(OF,U ) as desired. Because Rj∗ is left t-exact with respect to

the constructible t-structure by [Kas2, Lemma 3.7], one has Rj∗i+N∼=Rj∗j
−1M ∈ SD≥0lfgu(OF,P ). Let

us consider a distinguished triangle

RΓHM→M→ Rj∗j
−1M

+
−→ .

Since the codimension of Supp (RΓHM) is greater than d, then the induction proceeds by [Kas2,
Lemma 2.1].

Corollary 5.15. For a smooth separated k-scheme P with closed subsets Z and T of P , we set

SC≤0P,Z,T := SD≤0qc (OF,P ) ∩ CP,Z,T and

SC≥0P,Z,T := SD≥0qc (OF,P ) ∩ CP,Z,T .

Then
(

SC≤0P,Z,T ,
SC≥0P,Z,T

)

defines a t-structure on CP,Z,T , which we call the constructible t-structure

on CP,Z,T .

Proof. Denote by j the open immersion P \ T →֒ P . For an objectM ∈ CP,Z,T ⊂ Db
lfgu(OF,P ). there

exists a distinguished triangle

M′ →M→M′′
+
−→

such that M′ ∈ SD<0
lfgu(OF,P ) and M′′ ∈ SD≥0lfgu(OF,P ). Since RΓZ , Rj∗ and j−1 are t-exact with

respect to the constructible t-structure by [Kas2, Proposition 4.1, Proposition 4.2 and Lemma 3.7]
respectively, we have a desired distinguished triangle

Rj∗j
−1RΓZM

′ →M→ Rj∗j
−1RΓZM

′′ +
−→

such that Rj∗j
−1RΓZM′ ∈ SC<0

P,Z,T and Rj∗j
−1RΓZM′′ ∈ SC≥0P,Z,T . This finishes the proof.

For a k-embeddable k-scheme X with an immersion X →֒ P into a proper smooth k-scheme P , we
define by

SC≤0P,X := SC≤0P,Z,T and SC≥0P,X := SC≥0P,Z,T
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for some closed subsets Z and T of P satisfying X = Z \ T . Then this definition is independent of

the choice of Z and T by Lemma 4.2 and
(

SC≤0P,X ,
SC≥0P,X

)

defines a t-structure on CP,X , which we call

the constructible t-structure on CP,X . By [Kas2, Proposition 4.2 and Lemma 3.7], one immediately
obtains the following lemma.

Lemma 5.16. Let X be a k-embeddable k-scheme with an immersion X →֒ P into a proper smooth
k-scheme P . Let U be an open subscheme of P such that the immersion X →֒ P factors as a closed
immersion X →֒ U and the open immersion j : U →֒ X. Then the equivalence in Proposition 4.3

Rj∗ : CU,X,∅
∼=
−→ CP,X

is t-exact with respect to the constructible t-structure.

Theorem 5.17. Let X be a k-embeddable k-scheme with a closed immersion i into a smooth separated
k-scheme P . We set

D≤0c (Xét) =
{

F ∈ Db
c(Xét,Z/pZ) |H

k(F) = 0 for k > 0
}

and

D≥0c (Xét) =
{

F ∈ Db
c(Xét,Z/pZ) |H

k(F) = 0 for k < 0
}

.

Then the equivalence of triangulated categories

SolX = i−1SolP : CP,X,∅
∼=
−→ Db

c(Xét,Z/pZ)

sends
(

SC≤−dPP,X,∅ ,
SC≥−dPP,X,∅

)

to
(

D≤0c (Xét), D
≥0
c (Xét)

)

.

In order to prove Theorem 5.17 we need the following lemma.

Lemma 5.18. Let P be a smooth k-scheme of dimension dP and M a complex in Db
lfgu(OF,P ). The

following conditions are equivalent.

1. M ∈ SD≥−dPlfgu (OF,P ).

2. M is quasi-isomorphic to a bounded complex N of flat OP -modules such that Nn = 0 for any
n < −dP .

3. Hk
(

i!xM
)

= 0 for any k < 0 and any closed point x of P , where ix denotes the canonical closed
immersion {x} →֒ P .

Proof. The equivalence of 1 and 2 follows from [Kas2, Proposition 4.6]. Let us prove that the condition
2 implies the condition 3. Suppose thatM is quasi-isomorphic to a bounded complex N of flat OP -
modules such that Nn = 0 for any n < −dP . Let us denote by κ(x) the residue field at x. Then, as a
complex of κ(x)-modules, we can calculate as

i!xM
∼= κ(x)⊗L

i−1
x OX

i−1x M[−dP ]

= κ(x)⊗i−1
x OX

i−1x N [−dP ].

We have the condition 3 from this description. Next we show the condition 3 implies the condition 1.
Suppose thatM satisfies the condition 3. We prove thatM belongs to SD≥−dPlfgu (OF,P ) by the induction
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on the codimension d of S := Supp(M). Let S0 be a d-codimensional smooth open subscheme of S
such that H := S \ S0 is of codimension > d. Then we have a closed immersion i : S0 →֒ U := P \H
and the open immersion j : U →֒ P . Since M|U is supported on U , by [EK, Corollary 5.11.3], there

exists N ∈ Db
lfgu(OF,S0

) such that i+N ∼=M|U . By shrinking S0 if necessary, we may assume that all
cohomology sheaves of N are unit F -crystals. We fix a closed point x ∈ S0 and denote by ix (resp.
i′x) the closed immersion {x} →֒ P (resp. {x} →֒ S0). By pulling back the isomorphism i+N ∼=M|U
to {x}, we have i′!xN

∼= i!xM. Let us take a flat resolution F → N as OS0
-modules. One has

κ(x)⊗ i′−1x F ∼= i!xM[dS0
].

By this description combined with the condition 3, we know N ∈ D
≥−dS0

lfgu (OF,S0
). By a similar

argument in the proof of Theorem 5.14, one has i+N ∈ SD≥−dPlfgu (OF,U ). Since Rj∗ is left t-exact with

respect to the constructible t-structure by [Kas2, Lemma 3.7], we have Rj∗i+N ∈ SD≥−dPlfgu (OF,P ).
Let us consider a distinguished triangle

i!xRΓHM→ i!xM→ i!xj+j
−1M

+
−→ .

By taking the long exact sequence, we see Hk
(

i!xRΓHM
)

= 0 for any k < 0. Hence the induction

hypothesis implies RΓHM ∈
SD≥−dPlfgu (OF,P ) and we obtainM∈ SD≥−dPlfgu (OF,P ).

Now we may start to prove Theorem 5.17.

Proof. First of all, we shall prove that the equivalence

SolP : Db
lfgu(OF,P )

∼=−→ Db
c(Pét,Z/pZ)

sends
(

SD≤−dPlfgu (OF,P ),SD
≥−dP
lfgu (OF,P )

)

to
(

D≤0c (Pét), D
≥0
c (Pét)

)

. Since SolP is an equivalence of

triangulated categories, it suffices to show that SD≥−dPlfgu (OF,P ) corresponds to D≤0c (Pét,Z/pZ) via

SolP (cf. [KS, Corollary 10.1.18]). Let us first suppose thatM is an object in SD≥−dPlfgu (OF,P ). Let x

be a point in P . Denote by {x} the closure of {x} in P . For an open subset U of {x}, we denote by
iU the canonical immersion U →֒ P . By Lemma 5.18, there exists an OP -flat resolution N ofM such
that Nn = 0 for any n < −dP . We then calculate

i!UM ∼= OU ⊗
L

i−1
U OP

i−1U M[dU/P ]

= OU ⊗i−1
U OP

i−1U N [dU/P ].

By this description, we have Hk
(

i!UM
)

= 0 for any k < −dU . By shrinking U if necessary, we may
assume that all cohomology sheaves of i!UM are unit F -crystals. Then, by [EK, Proposition 9.3.2],
i!UM is HomOF,Uét

(π∗U (−),OUét
)-acyclic. Hence we can calculate as

i−1U SolP (M) ∼= SolU
(

i!UM
)

= HomOF,Uét
(π∗U (i

!
UM),OUét

)[dU ].
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By this description, for any n > 0 the equality Hn
(

i−1U SolP (M)
)

= 0 holds. So we have SolP (M) ∈
D≤0c (Pét,Z/pZ). Conversely, suppose that we are given an object F in D≤0c (Pét,Z/pZ). By [De, p.94,
Lemma 4.7], we may assume that F is a bounded complex of constructible Z/pZ-modules. For any
closed point x, we can calculate as

i!xMP (F) ∼= M{x}
(

i−1x F
)

= RHomZ/pZ(i
−1
x F , κ(x))

= HomZ/pZ(i
−1
x F , κ(x)).

By this description, we see the condition 3 in Lemma 5.18 for MP (F) and thus MP (F) ∈
SD≥−dPlfgu (OF,P ).

Now let X be a k-embeddable k-scheme with a closed immersion i : X →֒ P . Let Db
c,X(Pét,Z/pZ)

denote the full triangulated subcategory of Db
c(Pét,Z/pZ) consisting of complexes supported on X .

By Lemma 4.13, SolP restricts to an equivalence of triangulated categories

SolP : CP,X,∅
∼=−→ Db

c,X(Pét,Z/pZ).

Then SC≥−dPP,X,∅ corresponds to D≤0c,X(Pét) := D≤0c (Pét)∩Db
c,X(Pét,Z/pZ) via SolP . Moreover, since the

equivalence

i−1 : Db
c,X(Pét,Z/pZ)

∼=
−→ Db

c(Xét,Z/pZ)

is t-exact with respect to the standard t-structure, we see that D≤0c,X(Pét) corresponds to D
≤0
c (Xét) via

i−1. As a consequence, we know thatM ∈ SC≥−dPP,X,∅ if and only if SolX(M) ∈ D≤0c (Xét).

Corollary 5.19. Let X be a k-embeddable k-scheme with an immersion from X into a proper smooth
k-scheme P . We set

SD≤0lfgu(X/k) :=
SC≤−dPP,X and SD≥0lfgu(X/k) :=

SC≥−dPP,X .

Then the t-structure
(

SD≤0lfgu(X/k),
SD≥0lfgu(X/k)

)

is independent of the choice of X →֒ P , which we

call the constructible t-structure on Db
lfgu(X/k). Moreover, the constructible t-structure corresponds to

the standard t-structure on Db
c(Xét,Z/pZ) via SolX .
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I, Théorie des Intersections et Théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol.
225. Springer-Verlag, Berlin-New York, (1971). xii+700 pp.

[Ga] O. Gabber, Notes on some t-structures, Geometric aspects of Dwork theory. Vol. I, II, Walter de
Gruyter GmbH & Co. KG, Berlin, (2004), 711-734.

[Ha] R. Hartshorne, Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck,
given at Harvard 1963/64. With an appendix by P. Deligne, Lecture Notes in Mathematics, No.
20 Springer-Verlag, Berlin-New York (1966) vii+423 pp.

[Kas1] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems. Publ. Res. Inst. Math.
Sci. 20 (1984), no. 2, 319-365.

[Kas2] M. Kashiwara, t-structures on the derived categories of holonomic D-modules and coherent
O-modules, Mosc. Math. J. 4 (2004), no. 4, 847-868, 981.

[KS] M. Kashiwara and P. Shapira, Sheaves on manifolds. With a chapter in French by Christian
Houzel, Grundlehren der Mathematischen Wissenschaften, 292. Springer-Verlag, Berlin, 1990.
x+512 pp.

[Me1] Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les DX -modules cohérents,
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