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Riemann-Hilbert correspondence for unit F-crystals on
embeddable algebraic varieties

Sachio Ohkawa

Abstract

For a separated scheme X of finite type over a perfect field k of characteristic p > 0 which admits
an immersion into a proper smooth scheme over the truncated Witt ring W,,, we define the bounded
derived category of locally finitely generated unit F-crystals with finite Tor-dimension on X over
W, independently of the choice of the immersion. Then we prove the anti-equivalence of this
category with the bounded derived category of constructible étale sheaves of Z/p"Z-modules with
finite Tor dimension. We also discuss the relationship of t-structures on these derived categories
when n = 1. Our result is a generalization of the Riemann-Hilbert correspondence for unit F-
crystals due to Emerton-Kisin to the case of (possibly singular) embeddable algebraic varieties in
characteristic p > 0.
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1 Introduction

For a complex manifold X, Kashiwara [Kasl] and Mebkhout [Mel] independently established an anti-
equivalence, which is called the Riemann-Hilbert correspondence, between the triangulated category
DY (Dx) of Dx-modules with regular holonomic cohomologies and that D%(X,C) of sheaves of C-
vector spaces on X with constructible cohomologies. There is a significant property from the point of
view of relative cohomology theories that this anti-equivalence respects Grothendieck’s six operations
f's fis f*, fv, RHom and ® defined on DY (Dx) and D%(X,C).

In [EK], Emerton and Kisin studied a positive characteristic analogue of the Riemann-Hilbert
correspondence. Let k be a perfect field of characteristic p > 0. We denote by W,, := W, (k) the
ring of Witt vectors of length n. For a smooth scheme X over W,,, Emerton and Kisin defined the
sheaf Dp x of Ox-algebras by adjoining to Ox the differential operators of all orders on X and a
“local lift of Frobenius”. By using Dp x, they introduced the triangulated category Df’fgu(DR x) of
Dx-modules with Frobenius structures with locally finitely generated unit cohomologies and proved
the anti-equivalence

Df)fgu(,DF-,X)O — Dgtf(Xéta Z/an)

between the subcategory Df’fgu(D rx)° of Df’fgu (Dr,x) consisting of complexes of finite Tor dimension
over Ox and the triangulated category D2 (X4, Z/p"Z) of étale sheaves of Z/p"Z-modules with con-
structible cohomologies and of finite Tor dimension over Z/p™Z, which they call the Riemann-Hilbert
correspondence for unit F-crystals. They also introduced three of Grothendieck’s six operations, which
are the direct image f,, the inverse image f' and the tensor product ®* on Df’fgu(DR x), and proved
that their Riemann-Hilbert correspondence exchanges these to fi, f~1 and ®" on D? . (X¢t, Z/p"7Z).

Emerton and Kisin established the Riemann-Hilbert correspondence for unit F-crystals only for
smooth schemes X over W,,. Since the triangulated category Dgtf(Xét, Z/p"Z) depends only on the
mod p reduction of X, it is natural to expect that there exists a definition of the triangulated category
Df’fgu(D r,x)° and the Riemann-Hilbert correspondence depending only on the mod p reduction of X.
Also, there should be the Riemann-Hilbert correspondence for algebraic varieties over k& which are not
smoothly liftable to W,,. The purpose of this article is to generalize the Emerton-Kisin theory to the
case of W,,-embeddable algebraic varieties over k. Here we say a separated k-scheme X of finite type
is Wy,-embeddable if there exists a proper smooth W,-scheme P and an immersion X < P such that
the diagram

X—— P

]

Speck —— SpecWV,,

is commutative. A quasi projective variety over k is a typical example of W, -embeddable variety and
thus W,-embeddable varieties form a sufficiently wide class of algebraic varieties in some sense.

The first problem is to define a reasonable D-module category for W,,-embeddable algebraic varieties
over k. Our construction is based on Kashiwara’s theorem which roughly asserts that, for any closed
immersion X — P of smooth algebraic varieties, the category of D-modules on P supported on X
is naturally equivalent to the category of D-modules on X. Using the characteristic p > 0 analogue



of Kashiwara’s theorem due to Emerton-Kisin [EK, Proposition 15.5.3], we show that, when we are
given the diagram (LI), the full triangulated subcategory of Df’fgu(DR p)° consisting of complexes
supported on X does not depend on the choice of immersion X — P (Corollary L6l). We denote this
full subcategory by Df’fgu(X /Wp)°. Then we show the Riemann-Hilbert correspondence

Dl (X/W)° = Dby(Xew, Z/p" L)

for any W,-embeddable k-scheme X (Theorem[T2)). As in the case of [EK], we can naturally introduce
three of Grothendieck’s six operations, that is, direct and inverse images and tensor products. We then
prove that the Riemann-Hilbert correspondence respects these operations (Theorem [I4)). A striking
consequence of the Riemann-Hilbert correspondence over complex numbers is that one can introduce
an exotic t-structure on the topological side called the perverse t-structure, which corresponds to the
standard t-structure on the D-module side. For an algebraic variety X over k, Gabber introduced
in [Ga] the perverse t-structure on D%(Xg;,Z/pZ), which we call Gabber’s perverse t-structure. In
the case when X is smooth over k, Emerton and Kisin showed that the standard ¢-structure on the
D-module side corresponds to Gabber’s perverse t-structure. In this paper, we generalize it to the case
of k-embeddable k-schemes. In the complex situation, conversely, a t-structure on the D-module side
corresponding to the standard ¢-structure on the topological side is explicitly described by Kashiwara
in [Kas2]. In this paper, we construct the analogue of Kashiwara’s t-structure on fogu(X /k) and

discuss the relationship of it and the standard t-structure on D%(Xg;, Z/pZ).

The content of each section is as follows: In the second section, we recall several notions, terminolo-
gies and cohomological operations on D p-modules from [EK] which we often use in this paper. We
also recall the statement of the Riemann-Hilbert correspondence for unit F-crystals of Emerton-Kisin
(Theorem [23). In the third section, we define the local cohomology functor RI'; for Dp p-modules
and prove compatibilities with RI'z and other operations for Df p-modules, which are essential tools
to define and study the triangulated category Df’fgu (X/W,)° for any Wp-embeddable k-scheme X. In
subsection ], we introduce the category Df’fgu(X /Whp,)° for any W,-embeddable k-scheme X and in
subsection [£.2] we construct three of Grothendieck’s six operations on Df’fgu(X /Wp)°. Our arguments
in these subsections are heavily inspired by that of Caro in [Ca]. In subsection [43] we prove the
Riemann-Hilbert correspondence for unit F-crystals on W,,-embeddable k-schemes, which is our main
result. In the fifth section, we discuss several properties on Df’fgu(X /k) (in the case n = 1) related
to t-structures. In subsection [B.I] we introduce the standard ¢-structure on Df’fgu(X /k) depending on
the choice of the immersion X < P. We prove that the standard ¢-structure corresponds to Gabber’s
perverse t-structure via the Riemann-Hilbert correspondence. As a consequence, we know that the
definition of the standard ¢-structure is independent of the choice of X < P (Theorem[H]). In subsec-
tion 0.2, we define the abelian category puggu, x as the heart of the standard t-structure on Df’fgu (X/Ek),
and prove that the natural functor D°(ugg,x) — Df’fgu(X /k) is an equivalence of triangulated cat-
egories (Theorem [5.6]), which can be regarded as an analogue of Beilinson’s theorem. In subsection
(.3l depending on the choice of the immersion X < P, we introduce the constructible t-structure
on Df’fgu(X /k) by following the arguments in [Kas2] and prove that it corresponds to the standard
t-structure on the étale side via the Riemann-Hilbert correspondence. As a consequence, we see that

the constructible t-structure does not depend on the choice of X — P (Corollary 5.19]).



Conventions

Throughout this paper, we fix a prime number p and a base perfect field k of characteristic p. We
denote by W the ring of Witt vectors associated to k and by W,, the quotient ring W/(p)™ for any
natural number n. For a scheme X, we denote the structure sheaf of X by Ox. For a smooth
W,,-scheme X, the dimension of X is a continuous integer valued function on X defined by

dx : x € X — dimension of the component of X containing x.

For a morphism f : X — Y of smooth W,-scheme, we denote a function dx — dy o f by dx,y and
a function —dx,y by dy,x. For an abelian category C, we denote by D(C) the derived category of
C. For a scheme X and an Ox-algebra A, we denote by D(A) the derived category of left A-modules
and by Dqc(A) the full triangulated subcategory of D(A) consisting of complexes whose cohomology
sheaves are quasi-coherent as Ox-modules. For A-modules F and G, we denote by Hom 4(F,G) the
sheaf of A-linear homomorphism from F to G. We denote a complex by a single letter such as M and
by M™ the n-th term of M. For an object M in D(A), we denote by H*(M) the i-th cohomology of
M and by SuppM the support of M, which is defined as the closure of | J; SuppH*(M).

2 Preliminaries

In this section we recall the notion of locally finitely generated unit Dp x-modules introduced in [EK]
and the Riemann-Hilbert correspondence for unit F-crystals in [EK].

2.1 Locally finitely generated unit Df x-modules

For a smooth W, -scheme X, we denote by Dx the sheaf of differential operators of X over W,, defined
in [EGA4, §16]. For a morphism of smooth W,,-schemes f : X — Y and a left Dy-module M,
[*M = Ox ®-10, [~'M has a natural structure of left Dx-modules. When there exists a lifting
F : X — X of the absolute Frobenius on X @y, k, the left Dx-module structure on F*M is known to
be independent of the choice of the lifting ' up to canonical isomorphism by [EK, Proposition 13.2.1].
Since the lifting F' above always exists Zariski locally on X, we obtain a functor

F* : (left Dx-module) — (left Dx-module)

by glueing for any smooth W,,-scheme X. We set

DF,X = @(F*)TDX
r>0

Then Dr x naturally forms a sheaf of associative W,,-algebras such that the natural embedding Dx —
Dr x is a Wpy-algebra homomorphism by [EK, Cprpllary 13.3.5]. It is proved in [EK, Proposition
13.3.7] that giving a left Dp x-module M is equivalent to giving a Dx-module M together with a
morphism Y : F* M — M of left Dx-modules, which we call ¥ the structural morphism of M.
Next let us recall the notion of locally finitely generated unit Dp x-modules. We say that a
left D x-module M is unit if M is quasi-coherent as an Ox-module and the structural morphism
Ym 2 F*M — M is an isomorphism. We say that a D x-module M is locally finitely generated



unit if it is unit and Zariski locally on X, there exists a coherent Ox-submodule M C M such that
the natural morphism Dr x ®0, M — M is surjective. Then the locally finitely generated unit left
Dr x-modules form a thick subcategory of the category of quasi-coherent left Dp x-modules [EK,
Proposition 15.3.4]. We say that a locally finitely generated unit Dp x-module M is an F-crystal if
M is locally free of finite rank as an Ox-module.

Finally we introduce some notations on triangulated categories. We denote by D(Dr x) the derived
category of left Dp x-modules and by Dqc(Dr,x) (resp. Diggu(Pr,x)) the full triangulated subcategory
of D(Dp x ) consisting of those complexes whose cohomology sheaves are quasi-coherent as O x-modules
(resp. are locally finitely generated unit left Dp x-modules). If e is one of @), -, +, b, we denote by
D*(Dr,x) the full triangulated subcategories of D(Dp,x) consisting of those complexes satisfying the
appropriate boundedness condition. We use the notations D (Dr,x) and Dy, (Dr,x) in a similar
manner. We denote by Df’fgu(DR x)° the full triangulated subcategory of Df’fgu(DR x) consisting of
those complexes which are of finite Tor dimension as Ox-modules.

2.2 Cohomological operations for left Dy x-modules

For a morphism f : X — Y of smooth Wy,-schemes, f*Dry = Ox Q;-10, f’leyy has a natural
structure of left D x-module by [EK, Corollary 14.2.2]. It also forms a right f~!Dp y-module via the
right multiplication on f_l’DF)y. So f*Dpy has a structure of (DRX, f_lDRy)—bimodule, which we
denote by Dp xy. For a Dpy-module M, we define a left D x-module f*M by Dr x vy @f-1p,,
f7'M. Note that f*M = Ox ®-10, [~ 'M as an Ox-module. We then define a functor

Lf* : D_('DFﬁy) — D_('DFﬁx)

to be the left derived functor of f*. One has Lf*M = Ox ®HJ:,10Y M as a complex of Ox-modules.
We also define a functor
f! : Di(Dpyy) — Di(Dpyx)

by f'M := Lf*Ml[dx,y]. For the definition of the shift functor (—)[dx/y] by the function dx/,y,
we refer the reader to [EK, §0]. The second inverse image functor is appropriate to formulate the
compatibility with the Riemann-Hilbert correspondence (see Theorem [Z3] (2) bellow). Let * be one of
qc or Ifgu and * one of o or (). Then the functor f' restricts to a functor

£ DY(Dpy)* = DY(Dpx)*

by [EK, Proposition 14.2.6 and Proposition 15.5.1].
Next let us define the direct image functor fy for D x-modules for a morphism f : X — Y of
smooth W, -schemes. First of all, we recall the definition of the direct image functor

2D (Dx) — D™ (Dy)

for Dx-modules. For a smooth W,-scheme Y, we denote by wy the canonical bundle of Y over W,.
Then Dy ®o, w;l has two natural left Dy-module structures. The first one is the tensor product
of left Dy-modules Dy and wy,' (cf. [B, 1.2.7.(b)]). On the other hand, using the right Dy-module
structure on Dy defined by the multiplication of Dy on the right, one has the second left Dy -module
structure on Dy ®o, wy - by [B, 1.2.7.(b)]. So Dy ®e, wy ' naturally forms a left (Dy, Dy )-bimodule.
For a morphism f : X — Y of smooth W,-schemes, by pulling Dy ®o, w;l back with respect to the



second Dy -module structure, one has left (f~'Dy, Dx)-module f} (Dy ®o, wy ). Here, in order to

avoid confusion we use the terminology fj instead of f*. By tensoring wx on the right, one obtains
an (f 1Dy, Dx)-bimodule
Dy.x = fi (Dy ®o, wy') ®ox wx-

On the other hand, by pulling Dy ®o, w{,l back with respect to the first Dy-module structure, one has
left (Dx, f~!Dy)-module fa (’Dy R0y w;l). By tensoring wy on the left, we obtain an (f 1Dy, Dx)-
bimodule

Dy x' :=wx ®ox fa (Dy @0y w;?l) .

Then there exists the natural isomorphism of (f~!Dy, Dx)-bimodules
Dycx — Dyx'.
For more details see [B, 3.4.1]. We define a functor f8: D~ (Dx) — D~ (Dy) by
ffM = Rf* (IDY<—X ®Eﬁx M) .

Let us go back to the situation of Dp x-modules. We define Dpy x by wx®o f* (D}{y R0y w;l).
Then Dry. x has a natural (f~'Dry, D x)-bimodule structure (see [EK, §14.3]). We remark that
Dry«x has finite Tor dimension as a right Dp x-module by [EK, Proposition 14.3.5] and, since Y is
a noetherian topological space, R f, has finite cohomological amplitude. We define a functor

er : D_('DFﬁx) — D_('DFﬁy)

by
fiM =Rf, (DF,YHX ®pr,x M) :

Let x be one of qc or Ifgu and * one of o or (). The functor fy restricts to a functor
f+:DYDrx)* — Di(Dry)*
by [EK, Proposition 14.3.9 and Proposition 15.5.1].

Remark 2.1. Let f : X — Y be a morphism f : X — Y of smooth W,,-schemes. The natural
inclusion of (Dy, Dy )-bimodules Dy — Dpy induces an inclusion of (f~!Dy,Dx)-bimodules ¢ :
Dy«x — Dry«—x. We then obtain morphisms in the derived category of (f ~1Dy, Dr,x)-bimodules

D1®D2HL(D1)D2
%

L
Dy« x ®p, Dr.x = Dy«x @py Drx Dryex.

For an object M in D~ (Dp x), applying the functor Rf.(— ®H{)F . M) to the composite of the above
morphisms, we obtain a Dy -linear morphism

M — fiM.

It is proved in [EK, §14.3.10] that the morphism f®AM — f, M is an isomorphism.



Let X be a smooth W,,-scheme. Let M and N be Dp x-modules with structural morphisms )
and ¥n. Then M ®0, N has a natural structure of left Dx-modules. We define the structural
morphism on M ®e, N to be the composite of Dx-linear morphisms

F* (M @0y N)=F*M @0, F*N 222 M@0, N.

Here the first isomorphism follows from [B, 2.3.1] and its proof. We thus obtain the Dp x-module
structure on M ®o, N and define a bi-functor

Di(Dpyx) X Di(Dpyx) — Di(Dpyx)
by (M, N) = M ®g  N. This functor restricts to a bi-functor

Dft(Dr.x) X Dt (Dr,x)° — Dl (Drx)
by [EK, Proposition 15.5.1].

Proposition 2.2. Let f : X —Y be a morphism of smooth W, -schemes. If M and N are objects in
D~ (Dpy), then there are natural isomorphisms

LM% LN S L (Meh, N)

and

M, f'Nldy/x] = f (M &, N).

Proof. The second isomorphism follows from the first one. Let P — M (resp. @ — N) be a resolution
of M (resp. N) by flat Dpy-modules. Note that P and Q are complexes of flat Oy-modules. So
PRoy Q = M®g, N gives aresolution of M®g N by flat Dpy-modules (cf. [Ha, Lemma 4.1]) and
f*P is a complex of flat Ox-modules. By the universal mapping property of the tensor product, one
has a natural Dp, x-linear morphism f*P Qo f*Q — f* (P Qo, Q). Evidently it is an isomorphism
as a morphism in D(Ox) and hence it is the desired isomorphism.

O

2.3 Riemann-Hilbert correspondence for unit F'-crystals

Let X be a smooth W,-scheme. We denote by DY(X¢,Z/p"Z) the bounded derived category of
complexes of Z/p"Z-modules on the étale site X¢. We let D, ;(Xet, Z/p"Z) denote the full triangulated
subcategory of Dgtf(Xét, Z/p"Z) consisting of complexes whose cohomology sheaves are constructible
and which have of finite Tor dimension over Z/p™Z.

For a morphism f : X — Y of smooth W,-schemes, the inverse image

F7h: D&y (Yer, Z/p"Z) = Diyy(Xer, Z/p"Z)
and the direct image with proper support
fi: Dey(Xew, L/p" L) = Dy (Yer, Z/p"Z)

are defined. For a review of constructions of these functors, we refer the reader to [EK, §8].



Let X be a smooth W,-scheme. We denote by mx : X¢ — X the natural morphism of sites,
where X means the Zariski site of X. Then Dr x,, := 7% Dp,x naturally forms a sheaf of associative
W,-algebras on X¢. By étale descent, we have an equivalence of triangulated categories (cf. [EK, §7
and 16.1.1])

7 : Dae(Drx) = Doe(Dr x..)

with quasi-inverse 7 x,. For an object M € Df’fgu(DRX)o, we set
Solx (M) = RHomyp,, (m% (M), Ox,,)[dx]

Then this correspondence defines a contravariant functor

Solx : Dip, (D x)° — Di(Xer, Z/p"Z)
by [EK, Proposition 16.1.7]. Conversely, for an object £ € D2 (X4, Z/p"Z), we set

Mx (£) = mx«RHomy ,n7 (L, Ox,,)[dx].
Then this correspondence defines a contravariant functor

My : D% (X4, Z/p"Z) — DT (Dp.x).

Now we may state one of the main results in [EK].

Theorem 2.3. Let X be a smooth W, -scheme. Then the functor Solx is an anti-equivalence of tri-
angulated categories between Dﬁ'gu(DF7 x)° and Db (Xs,Z/p"Z) with quasi-inverse Mx . Furthermore
Solx and Mx satisfy the following properties:

(1) If f : X — Y is a morphism of smooth W,,-schemes, then Solx and Mx interchange f' and
=

(2) Let f be a morphism of smooth W, -schemes such that f can be factored as f = go h, where g
18 an immersion of smooth W, -schemes and h is a proper smooth morphism of smooth W, -schemes.
Then Solx and Mx interchange fi and f.

(3) Solx and My interchange the functors ®H(‘9X and ®HZ‘/an up to shift. More precisely, for objects

M and N in Df’fgu(DFﬁx)o, there exists a canonical isomorphism

Solx (M) @5,z Solx (V) = Solx (M &, N) [dx].

Proof. See [EK, Proposition 16.1.10 and Corollary 16.2.6]. O

2.4 Remark in the case n =1

Let X be a smooth k-scheme and assume that n = 1 in this subsection. Let O x denote a sheaf of the
non-commutative polynomial ring Ox[F] in a formal variable F', which satisfies the relation Fa = a?F
for a € Ox. One can naturally regard Op x as a subring of Dp x. Giving an O x-module M is
equivalent to giving an Ox-module M with a structural morphism F*M — M, where F' denotes the
absolute Frobenius on X. We say an Op x-module M is unit if the structural morphism F*M — M
is an isomorphism and we say an Op x-module M is locally finitely generated unit if it is unit and



locally finitely generated as an Op x-module. Similar to the case of Dp x-modules, the locally finitely
generated unit O x-modules form a thick subcategory of the category of quasi-coherent O x-modules.
So one can consider the bounded derived category fogu((’)g x) of complexes of Op y-modules whose
cohomology sheaves are locally finitely generated unit. Similar to the case of D x-modules, one can
define the inverse and direct image functors for a morphism of smooth k-schemes (see [EK, §2 and
§3]) and the derived tensor product on Df’fgu(O r.x). Then Emerton and Kisin proved that the natural
functor

D{)fgu(,DF,X) - D{)fgu(OF7X)

induces an equivalence of triangulated categories with quasi inverse Dp, x ®H(9F’X (—), which is compat-

ible W]ith the functors f, f' and ®H(9X, where f is a morphism of smooth k-schemes [EK, Proposition
15.4.3].

Remark 2.4. In [EK], Emerton and Kisin firstly established the theory of Op x-modules for smooth
k-schemes. They proved many properties of D x-modules for smooth W,,-schemes including Theorem
by reducing them to the corresponding properties of OFf x g, r-modules.

3 Local cohomology functor

Let P be a smooth W,,-scheme. Let Z be a closed subset of P and jz the canonical open immersion
P\ Z < P. For a sheaf F of abelian groups on P, we set I'zF := Ker(F — jZ*jEl]:). If M is a left
Dr, p-module, then I'z M naturally forms a left Dp p-module. We have a left exact functor I'z from
the category of left Dp p-modules to itself. Then the local cohomology functor

Rl : DY (Dpp) — DT (Dpp)
is defined to be the right derived functor of I'z. By definition, we have a distinguished triangle
RTzM — M = Rjjz.j; M 5 (3.1)

for M € DT (Dp p). Note that Rjz. = jz4 and jgl = j'Z We can also define the local cohomology
functor
RT'z : DT (Op) — DT (Op)

on the level of Op-modules. Then the forgetful functor D' (Dp p) — DT (Op) commutes with RI'.
It is proved by Grothendieck that RI'z has finite cohomological amplitude.

Lemma 3.1. Let P be a smooth W, -scheme and Z a closed subset of P. Denote by jz the open
immersion P\ Z < P. Then the following conditions are equivalent for M € D(Op).

1. RTzM = M.
2. Rjz.j, M=0.
8. SuppM is contained in Z.

Proof. The equivalence of 1 and 2 follows from (B.I]). Assuming that SuppM C Z, one has jgl./\/l =0.
This shows 3 = 2. Finally 1 = 3 is evident. O



Lemma 3.2. Let P be a smooth Wy -scheme and Z a closed subset of P. There exists a natural
Op-linear isomorphism

RTz (M) @5, N = Rz (M @}, N) (3.2)

for any M € D= (Op) and N € D .(Op). Furthermore for any M € D~ (Dp) (resp. M € D™ (Dr,p))
and N € Dy .(Dp) (resp. N € Dy.(Dr.p)) (32) is a Dp-linear (resp. D, p-linear) isomorphism.

Proof. Note first that both sides are well-defined. Let us construct a natural morphism in the Lemma.
Let M be an object of D~ (Op) and N an object of D, (Op). One has RT'z (M)®¢, N — M@g, N.

Then since Rz (M)@H@PN is supported on Z, we have RT'; (R (M) ®I[(‘9P N) =N (M) ®1[(‘9P./\/
by LemmaBIl So RT'z (M) ®g, N — M ®g, N uniquely factors as

RI; (M) ®%, N = Rz (M@, N) - Mg, N

and we get the desired morphism. Note that if M is an object of D~ (Dp) (resp. D~ (Dp.p)) and N is
an object of D (Dp) (vesp. Dy .(Dr,p)) then ([B.2) is Dp-linear (resp. Dr, p-linear). Let us prove that
(2) is an isomorphism. It suffices to show that this is an isomorphism in D(Op). The assertion is
Zariski local on P and so we may assume that P is affine. Note that the source is a way-out left functor
in V. Also, since RI'z is finite cohomological amplitude, the target is also a way-out left functor in
N. Using the lemma on way-out functors (cf. [Ha, Chap I, Proposition 7.1]), we reduce to the case
where N is a single quasi-coherent O p-module. Furthermore since any quasi-coherent O p-module is a
quotient of a free Op-module (because P is affine), we may assume that A is a single free O p-module.
Now since RI'z commutes with infinite direct sums, we reduce the assertion to prove the case when
N = Op. Then both sides are equal to RI'; M and we are done. O

Proposition 3.3. Let P be a smooth Wy -scheme and Z a closed subset of P. The local cohomology
functor induces a functor

RT'z : Dfy(Dr,p)° = Dy (Drp)°.

Proof. Let us first show that, for any M € Df’fgu(’DF, p), RT'zM has locally finitely generated coho-
mology sheaves. Let jz denote the open immersion P\ Z < P. Then there exists a distinguished
triangle

RIzM — M = Rijz.j; M 55 .

Since M and Rjz.j, M are objects of Df’fgu(’DF,p) by [EK, Proposition 15.5.1], RT'z M is also an
object of D}y, (Dr.p) by [EK, Proposition 15.3.4]. Next we show that, for any M € Dy, (Dr,p)°,
RT'zM is of finite Tor dimension over Op. According to [Il1, I, Proposition 5.1], it is enough to show
that RTz (M) ®g, A is a bounded complex for any Op-module N. First of all, suppose that N is
a quasi-coherent Op-module. Then, by Lemma B.2, we have RT'z (M) ®H@P N S RTy, (/\/l ®H(9P N)
Since M is of finite Tor dimension, M ®H@P N is a bounded complex of O p-modules. So we know that
Rz (M) @, N is bounded since RI'z is finite cohomological amplitude. Now if N is an arbitrary
Op-module, then the stalks of RI'z (M) ®g,, N is uniformly bounded, hence so is R['z (M) @, N
because P is quasi-compact. O
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Lemma 3.4. Let f: P — Q be a morphism of smooth W, -schemes and Zg a closed subset of Q. We
denote by Zp the inverse image of Zg. Let us assume that Q) is separated over W,. There exists a
natural isomorphism

Lf* o RLz,(0q) = RT 7, (Op).

Proof. We begin with the case when f is flat. Let us take an injective resolution J of Og. Since f
is flat, f*Oq — f*J is an isomorphism. Let jz, (.resp jz,) denote the open immersion Q \ Zg — Q
(resp. P\ Zp < P). Since f is flat, there exist exact sequences of complexes of D p-modules

0— f*FZQj — f*j - f*]ZQ*jE(;j
and

0— 1—‘pr*'-j — f*j — jZP*jE;f*j'
Let us denote by f’ the restriction of f to P\ Zp. Then we define a Dp p-linear morphism a :
f*jZQ*jgéJ — jZP*jgi f*J to be the composite of morphisms

[ i2quizgd = jzpeizpl i2qvizg T = izenti70020wi 70T — jzeel"iz0T = izpsizpf* T,
where the first morphism and the third one are induced from the adjunction morphisms id — jz,« jg;

and jgé JZox Zid respectively. Since the diagram
T —— ["izgeizg T
g
f*T —>jzexizpnf*T,

is commutative, we obtain a Dp q-linear morphism b : Lf* o R['z,(0q) = f*T'z,(J) = Tz, f*T =
RT'z,.(f*Op). By flat base change theorem, we know that a is an isomorphism of Op-modules. Hence
b is an isomorphism.

Next we shall consider the case where f is a closed immersion ¢ : P < ). One has a natural
Dp, p-linear morphism Li*RI'z,O¢q — Li*Oqg = Op. As a complex of Op-modules, we can calculate
as

Li*RTz,0q = Op ® 10,1 " (R24(0q))
=y iT'RIy, ((i*Op) ®6, (’)Q)
~ 7RIy, (RTp(i.Op)) 2i 'Rl 2, (i.Op).

So Li*RI'z,Oq is supported on Zp and Li*RI'z,0q — Op uniquely factors as

Li*RT 2,0¢ % RT'2,,(Op) = Op.

Furthermore, because of the above calculation Li*RI'z,0q = i 'Rl 2, (i-Op), we know that b is an
isomorphism in D(Op). Hence b is isomorphism in D(Dp p).

Finally the general case follows from these two cases since we can decompose f as P — PxQ — Q,
where P — P x @ is the graph embedding and P x () — @ is the second projection. O
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Proposition 3.5. Let f : P — @Q be a morphism of smooth W,-schemes and Zq a closed subset of
Q. We denote by Zp the inverse image of Zg. Let us assume that Q) is separated over Wy,. Then, for
any M € Dy .(Dr,q), there exists a natural isomorphism

Lf* o Rl z, M =3 R[5, o Lf*M
and also a natural isomorphism
floRTzoM S5 RT 2, 0 f'M.

Proof. The second isomorphism follows by applying the shift operator to the first one. By using
Proposition 2.2] Lemma and Lemma [3.4] we obtain

LI RUzo(M) & Lf* (RUz,(0q) &k, M)
= LRI, (0g) @5, Lf*M
= RI2,.(0p) @5, Lf*M = RL 7, (Lf*M).

O

Next we show the compatibility of the local cohomology functor and the direct image. We begin
with the corresponding result for usual Dp-modules (without Frobenius structures).

Proposition 3.6. Let f : P — @Q be a morphism of smooth W,-schemes and Zq a closed subset of

Q. We denote by Zp the inverse image of Zg. Let M be an object in D*(Dp). Then there eists a
natural isomorphism of functors

RTz, o f (M) = fB oRIT 7, (M).
We need some lemmas.

Proposition 3.7. Let f : P — @Q be a morphism of smooth Wy -schemes. If M is an object in
D_.(Dq) and N is an object in D~ (f~'Dq), then there exists a natural isomorphism

M, REN SRS, (fM&F10, N).
m Di('DQ).

Proof. Note first that both sides are defined. Let us take an f.-acyclic resolution Z of N and a Dg-flat
resolution P of M. Then we have a natural Dg-linear morphism

M®H(5p Rf*N = P®Op f*I_>f* (f717) ®f710Q I)
- Rf(fP &0, T) =R (f‘lM 1o, N) :

It is enough to prove that this is an isomorphism in D(Og). Then this follows from [Ha, II, Proposition
5.6]. O
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Lemma 3.8. Let f: P — Q be a morphism of smooth W,,-schemes. For an object £ in D~ (Dg) and
an object F in D~ (Dp), there exists an isomorphism

(f*lg ®10g DQHP) ok, F 5 Do p b, (LI'EaY, F)

m Db(fil'DQ).

Proof. The proof is the same as that of the corresponding proposition for D-modules of higher level
proved in[Ca, Proposition 1.2.25]. O

Let us prove Proposition

Proof. Applying Proposition B.7] to the case with M = RI'z,(Oq) and N' = Dgp ®I[,5P M, we
obtain

Rl 24 (0q) ©b,, RY- (Docr ©, M) = Rf. (17! (RT24(00)) €10, (Pocr ©5, M)).

The left hand side is isomorphic to RT'z,, o f¥(M) by Lemma[Z2 On the other hand, by Lemma 38|

we have

1%

fﬁlRFZQ (OQ) ®I[f‘*10Q DQHP ®H'bp M (filRFZQ (OQ) ®].];*1@Q DQ‘*P) ®H'bp M

Doep @5, (Lf*RIz,(0g) @, M).

1%

Lemma and Proposition imply that

DQ<—P ®Hﬁp (RPZP (OP) ®H(5P M)
DQ<—P ®Hﬁp RFZP (M)

Doep @, (Lf'RIz,(0g) @5, M)

Lo fw

Therefore the right hand side of the first isomorphism is isomorphic to
Rf. (Dgep ©p, RTz,(M)) = f{ o RT7,(M).
O

Proposition 3.9. Let f : P — @Q be a morphism of smooth W,-schemes and Zq a closed subset of
Q. We denote by Zp the inverse image of Zg. Let M be an object in DY(Dr.p). Then there exists a

natural isomorphism
RT'z, o fy(M) = fr oRTz,(M).

m Db ('DF)Q)

Proof. Let us construct a natural transformation RI'z, o f1 — fy o R['z,. For an object M in
Db(’DF,p), the natural morphism RT'z, M — M induces a morphism RI'z,, f4RI" 7z, M — RI'z, f4+ M.
Since, by Remark 221l and Proposition B8, f4RIz, M = fBRT;, M = Rz, fM as a complex of
Dg-module, we know that f4RI'z, M is supported on Zg. Therefore we have a natural morphism

f+RT 2, M < Rz, f{RT 7, M — RT 5, f4 M.

Again by Proposition we conclude that it is an isomorphism. O
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4 Riemann-Hilbert correspondence for unit F'-crystals
4.1 Category Dj, (X/W,)°

Definition 4.1. Let P be a smooth Wy, -scheme and let Z and T be closed subsets of P. We define
the category Cp,z,1 to be the full triangulated subcategory of Df’fgu (Dp.p)° consisting of complezes M
satisfying

RCzM = M and R[pM = 0. (4.1)

Lemma 4.2. Let P be a smooth separated W,,-scheme. Let Z, Z', T and T’ be closed subsets of P
satisfying Z\T = Z'\T'. Then we have the equality

Cpzr =Cpz 1.

Proof. First we prove the equality in the case Z = Z’. One has ZNT = ZNT’. Then an isomorphism
RI'zM =, M induces
R M < R zor M = R 2w M — R/ M.

Next we consider the case T'=T’. We have to show that RI'z M =, M if and only if RI"z: M =M
under the assumption R['p M = 0. For a closed subset C' of P, let us denote by jc the canonical open

immersion P\C < P. Then the condition RT' z M = Mis equivalent to the condition Rjz*jglj\/l =0.
One always has R['7Rjz.j, "M = Rjz.j,'R['7M = 0 by Proposition and Proposition By
the distinguished triangle

. . S P +
RUTRj 7457 ' M = Rjzejz M = Rirajr 'Rizeiz M =,
we see that the condition Rjz*jglj\/l = 0 is equivalent to the condition RjT*jfleZ*jglM = 0. Let

us denote by j the open immersion (P\T)\ (Z\T)=(P\T)\(Z'\T) < P\ T and by j the open
immersion (P\T)\ (Z\ T) — P. We have the following cartesian diagram:

(P\T)\ (Z\T)—— P\ T

T

p\z—% __p
Applying the flat base change theorem to the complex jglM of Op\ z-modules, we obtain
1y - 1 ~ .og—1 ~ =1 1
JT RJZ*]Z M = Rj*] M =Jr RJZ’*]Z/ M

Therefore we know that Rjr.j; Riz.j,; M = 0 if and only if Rjr.jr Rjz.j, M = 0. The general
case follows from these two cases. O

Proposition 4.3. Let P be a smooth separated W, -scheme and X a locally closed subset of P. Let
j : U < P be an open immersion of smooth W, -schemes such that an immersion X — P factors as
a closed immersion X < U and the open immersion U < P. Let Z be a closed subset of P such that
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ZNU =X. WesetT := (P\U)NZ. Then the direct image functor Rj.(= j+) induces an equivalence
of triangulated categories
Rj«: Cux0 = Cpzr

with quasi-inverse 771 (= j').
Proof. Firstly we shall see that the functors Rj, and j~! are well-defined. Let M be an object in

Cu,x,p- By Proposition B.9, we have RI'z(Rj,M) = Rj,RT' znp M = Rj,RI'x M =N Rj.M. We also
have RI'7(Rj.M) = 0 as TNU = § and thus know that Rj, restricts to a functor Cy x 9 — Cp,z 7.

Conversely, let A" be an object in Cpzr. Applying the functor ;= to R[zN = A we obtain
RTxj~'N = j~IN. There exist natural adjunction morphisms (cf. [EK, Lemma 4.3.1])

IR M = M and N — Rj,j N

One has j~'Rj, M = M for any M € Cy xg. Let us prove that the adjunction morphism N —
Rj.j~*N is an isomorphism for any A € Cp z 1. One has a distinguished triangle

RTp\ N = N = Rj.j N T

We need to show that RI’ p\UN is quasi-isomorphic to zero. Let us consider a distinguished triangle

RTzRT p\ g N = R p\y N = Rijzai; 'RTpy N 25, (4.2)

where jz denotes the open immersion P\ Z < P. One has RT'zRT p\y ' = R['zA = 0. On the other
hand, we obtain
Rjz«jz REp\uN = RTp\pRjz.i ' N = 0.

So the assertion follows from (.2)). O

Recall that a W,,-embeddable k-scheme is a separated k-scheme X of finite type such that there
exists a proper smooth W,,-scheme P and an immersion X < P which fits in the following commutative
diagram:

X——P

Speck — SpecW,,.

Definition 4.4. Let X be a W,,-embeddable k-scheme with an immersion X — P into a proper smooth
Wy -scheme P. We define the category Cp x to be Cp z 1 for some closed subsets Z and T of P with
X =Z\T. This definition is well-defined by Lemma[{.3

Theorem 4.5. Let f : P — Q be a proper smooth morphism of smooth W, -schemes. We assume that
Q is separated over W,,. Suppose that we are given closed immersions i1 : X < P and iz : X — @Q
such that f oiy =1ia. Then fi induces an equivalence of categories

J+:Cprxp i Cq.x.0 (4.3)

with a quasi-inverse RTx o f'.
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Proof. Since the definition of the category Cp x ¢ depends only on the underlying topological space
of X by Lemma[42 we may assume that X is reduced. First of all, we note that the functors f; and
RI'yx o f' are well-defined. Indeed, for M € Cp x.p, by Proposition 3.9] we have

ROx f+M = fiRT ;1) M
& 4R x)ROx M
= £ RDyM
= M.

We also have RI'x (RFXf!N) =N R x f'N for any N € Co,x,0- Next let us construct a natural
transformation from f; to RI'x o f' and its inverse. By [EK, Corollary 14.5.15], there are canonical
adjunction morphisms

fof'N = N and M — fof'M. (4.4)
We thus obtain natural transformations of functors
fiRTx f'N = [ f'N = N (4.5)
and N
M — ROxM — RUx f' fL M. (4.6)

Let us prove that these morphisms are isomorphisms by the induction on n. We begin with the
case n = 1. Then P and @ are smooth k-schemes. Let us firstly consider the case when X is smooth
over k. Then [EK, Corollary 15.5.4 and Proposition 15.5.3] imply that

FeRDx f'N S fring i N S5 g itV S .

This shows that (£3]) is an isomorphism. In order to see that (A6 is an isomorphism, we claim that
the natural morphism iy M — i} f'f, M is an isomorphism. Indeed, since M € Cp x ¢ is supported
on X, there exists M’ € Df’fgu(’DF)X) such that i1y M’ = M by [EK, Corollary 15.5.4]. Then we
have iy M 22 i M' =2 M’ and @4 f' fy M =2 i f fringe M 22 dbia M 22 M’ hence we see the claim.
Applying the functor i1, to the isomorphism i} M = it f' fr M we see that Tx M — RUx f'f4 M is
an isomorphism by [EK, Proposition 15.5.3].

Next let us prove the case n = 1 for general X by the induction on the dimension d of X. If d = 0,
then X is étale over k and the assertion follows from the smooth case. Let Xy be a d-dimensional
smooth open subscheme of X such that H := X \ X is of dimension < d. Let us consider the following

diagram:
X\H—=P\ f~Y(H) =P

)

-

~

Q\H
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Let us consider the following morphism of distinguished triangles

RL -1y M M Rjlj'~' M

| l

RTx fYf4RT g1 iy M ——= RUx f' fy M —— RTx f f1 RjLj" M ——.

In the left term, we have RI"z—1 ()M & R -1 () RT x M = RT'y M and we also calculate
ROx f'f+RT p-1 (M 2 RO x f' fLRT po1 gy RTp M 2 Ry f' fLRT y M

by Proposition 3.9 and Proposition Hence the induction hypothesis implies that the left vertical
arrow is an isomorphism. Similarly, by the smooth case, one can see that the right vertical arrow is
an isomorphism. As a consequence, we see that M — RI'x f'f, M is an isomorphism. Next let us
consider the following morphism of distinguished triangles

F+RUx f' R g N —— 1R x f'Rj,j N —— f ROy f'Rjj N —

| ! |

RC N N Rj.j N

In the left term, we have f{RIxf'R['y N = f, Ry f'RTyN by Proposition Hence the left
vertical arrow is an isomorphism by the induction hypothesis. In the right term, we can calculate as

F+ROx fRj, (J7IN) =2 fyRT xRy " (7IN) 2 fLRIRD o\ g f" (57'N) 2 R fL R x\ g f” (57N

by Proposition 3.9l So the right vertical arrow is an isomorphism by the smooth case and hence the
middle arrow is also an isomorphism. This finishes the proof in the case n = 1. Now let us consider a
distinguished triangle

M@ g L)L — M = M QF 1y Z)p" 2

Then the induction hypothesis, Lemma and [EK, Proposition 14.8.1] reduce us to the case n = 1
and we are done.

O

Corollary 4.6. Let f : P — Q be a proper smooth morphism of smooth W-schemes. We assume
that Q is separated over W,,. Suppose that we are given immersions i1 : X < P and io : X — Q such
that f oiy = is. Then fy induces an equivalence of categories

fr:Cpx = Cox (4.7)

with a quasi-inverse RI'g , o f'. Here Xp denotes the closure of X in P.
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Proof. Let us prove that f, restricts to a functor Cpx — Cgp,x. Let V be an open subset of P
such that 79 factors as a closed immersion X < V and the open immersion js : V — . Denote
by U the open subset f~1(V) of Q. Then i; factors as a closed immersion X — U and the open
immersion j; : U < P. For an object M in Cpx, by Proposition 3] there exists M’ € Cy x
satisfying Rj1. M’ = M. We have fL M = fiRj1.M' = Rjo. fly4 M. In the course of the proof of
Theorem B3, we saw that fjy4 M’ is in Cy,x. Hence we know that fy M = Rja. fly M’ is in Cq x
by Proposition .3

Next let us prove that RI'g of! restricts to a functor Cg,x — Cp x. Let T( be a closed subset of @
such that Xo\Tg = X in @, where X denotes the closure of X in ). We denote by X p the the closure
of X in P. Let T be a closed subset of P such that Xp\T = X and we set Tp := T N f~1(Tg). Then
Tp is a closed subset of P such that Xp\Tp = X and we have Cp x = Cpxp.re a0d CQx =Cq x4, 10
For an object M in C %, 1,, one has RI'x, (RFXPf!M) =N RI‘XPf!./\/l. Also by assumption, one
has RI'r, M = 0. Applying the functor RI‘XPf! to this equality we have 0 = RI‘XPf!RI‘TQM =
RT 5,71 (1) f' M. Then we have RT'1,RT g, f'M = RT1,RT g p-1 (1) f'M = 0.

There are natural adjunction morphisms

U fROg, f'N = N and @ : M — RDg f'fL M.
By Proposition @3] ¥ is an isomorphism if and only if so is ¥y = jy . Now we can calculate as
Jy ' FeRT 0, N = flo gy 'RU g, f'N = fig ROy N 2 fiu R x flyda '
Hence we see that j, 10 : f‘U+RFXf|!Uj{1N — jo "N is an isomorphism by Theorem One can

prove that ® is an isomorphism in a similar manner.
O

Definition 4.7. Let X be a W, -embeddable scheme. Let us take an immersion X — P into a proper
smooth W, -scheme. We define the triangulated category Df’fgu(X/Wn)O by Cp x. This definition is
independent of the choice of embedding X — P up to natural equivalence by Corollary [{-6

4.2 Cohomological operations on Df, (X/W,)°

Let f: X — Y be a morphism of W,,-embeddable schemes. Let us first define a functor
' Diggu(Y/Wa)® = Dl (X/Wo)°.

One can always obtain the following commutative diagram:

X&,p

1) »

y 2 _ Q.

Here P and @ are proper smooth W, -schemes, i; and i, are immersions and ¢ is a proper smooth
morphism of W,-schemes.
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Lemma 4.8. Let f: X — Y be a morphism of Wy,-embeddable schemes. Suppose that we are given
the diagram[{.§ and denote by X the closure of X in P. Then the functor RT ¢ g restricts to a functor

RFX og! :Cny —>pr)(.

Proof. Let Tp be a closed subset of @ such that Y \ Tp = Y, where Y denotes the closure of Y
in Q. Let T be a closed subset of P such that X \ 7' = X, where X denotes the closure of X in
P. We set Tp := T N f~1(Ty). Then Tp is a closed subset of P such that X \ Tp = X. We
have Coy = Cqy 1, and Cpx = Cpx 1, For any M € Cqyy 1, one has RI'g (RFXg!M) =N
RT 3 g' M. Since M € Cq,v,1,, one has RI'r, M = 0. Applying RT ¢' to this equality, one has 0 =
Rl g g'RI', M = RI‘Xﬂffl(TQ)g!M. Now, by definition of Tp, we can calculate as RI'r, (RT xg' M) =

BT g1 )8 M = BT (D 13 ) ' M) = 0. 0
Next let us prove that the definition of RI'g o g! does not depend on the choice of (£S). Let

f X — Y be a morphism of Wy,-embeddable schemes. Suppose that we are given the following
commutative diagram:

X
|
Y Ph——P (4.9)
gr lgz
Q1 —— Q2.
1

Here Py, P, Q1 and @2 are proper smooth W,,-schemes and ¢1, g2, h1 and hg_are proper_smooth
morphisms over W, and all slanting allows are immersions. Let us denote by Xp, (resp. Yg,) the
closure of X (resp. Y) in P; (resp. @;) if ¢ € {1,2}. Then we have the following functors:

R, ohl

Chpx<=—Cpx
RTx,, og’lT TRFXP2 ogs

CQI;Y y CQz,Y'
RF?QI Oh'l

This diagram is commutative up to natural isomorphism since we have

Rl'g, o hj o Rlg,, © gy = Rl %p, RTy 1 (% )h!zg!z =RIk, o hiygh

Pa

and
Rl,, ©gioRly, ohi =Rlg, er,l(ym)g’lh!l =~ Rlg, ©hygs.

For a morphism f : X — Y of W,,-embeddable schemes, we take a diagram as in ([AL8]) and define

the inverse image functor
! o o
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by f' := RI'g o ¢'. The above argument shows that this definition is independent of the choice of
diagram (@8] up to natural isomorphism.

Next let us define the direct image functor f, : fogu(X JWy)° — Db

Ifgu (Y/W’ﬂ)o :

Lemma 4.9. Let f : X — Y be a morphism of W, -embeddable schemes. Suppose that we are given a
diagram as in [{{-8). Then the functor g4 restricts to a functor

gy CP,X — Cny.

Proof. Take an open subset V of @ such that i3 : Y — @ factors as a closed immersion Y < V and
the open immersion jp : V < Q. There exists an open subset U of g~1(V) such that the immersion
X < g~ Y(V) factors as a closed immersion X < U and the open immersion U < ¢g~}(V). We
denote by j; the open immersion U < P. Let M be an object in Cp x. Then, by Proposition [£.3]
there exists N' € Cy,x satisfying Rj1.N = M. We have g4y M = g, Rj1.N = Rjo.gyiN. In the
course of the proof of Theorem 5] we saw that g;y 4N is in Cy,y. By Proposition B3] we know that
g+ M = Rj2*g\U+N is in Cq,y. o

Let us assume that we are given a diagram as in ([@9). Then we have a natural isomorphism of
functors hy o g1 = hg o0 go. For a morphism f: X — Y of W,,-embeddable schemes, we take a diagram
as in ([A8]) and define the direct image functor

f+ : Df)fgu(X/Wn)o - Df)fgu(Y/Wn)o

by f+ =g+
Finally let us take an immersion ¢ : X < P into a proper smooth W,,-scheme and Z and T closed
subsets P such that X = Z\ T as a set. For M and N € Cp z 1 = Cp x we consider M ®I[(‘9P N|[—dp]

in Dfy..(Dr,p). By Lemma B2}, we have Rz (M ©g, N) = (R[CzM)®p, N =M ®6, N. We also

have RT'r (M ®H(9P N) >~ (RT'r M) ®H@P/\/ = 0. Hence M ®H@P N[—dp] is an object in Cp z 1. Assume
that we are given another immersion i’ : X < (@ into a proper smooth W,-scheme and a proper
smooth W,-morphism f : P — @Q with foi =4’. There exists an equivalence RT ¢ f* - Cox — Cpx
by Theorem .5 where X denotes the closure of X in P. For objects M and N in Cg, x, applying the
functor RT' ¢ f' to M ®H@Q N[—dg], we compute that

RTx f! (M &b, N[-do]) = RTx (fM @b, fIN) [~dp]
by Proposition On the other hand, there exist isomorphisms
RIg f'M @@, R f'N[-dp] 2Rk (fM @, R 5 f'N) [-dp] 2RI (M ®g, f'N)[—dp]
by Lemma Therefore we can define a bifunctor
(=) ®" (=) * Digga(X/Wn)° X Ditg(X/W)® = Dl (X/Won)°

to be M @" N := M ®p,, N[—dp] for some immersion X < P into a proper smooth W,,-scheme P.
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4.3 Riemann-Hilbert correspondence for unit F-crystals
Let X be a W,,-embeddable scheme with an immersion i from X into a proper smooth W,,-scheme P.
We define a functor Solx to be the composite of the functors
o Sol . n
Dfigu(X/Wn) = CP,X - D{)fgu(DFJj) & Dgtt’(Pétu Z/p Z) — Dgtf(XéhZ/p Z)7
where the first functor is the natural embedding.

Lemma 4.10. This definition is independent of the choice of embedding i : X — P up to natural
isomorphism.

Proof. Let us first suppose that we are given an open immersion j : U < P such that i factors as an

closed immersion i’ : X <+ U and j. Then j~! induces an equivalence Cux.p ¢ p,x by Proposition
Let us consider a functor i'~* o Soly : Cyp.x.g — D%;(Xet, Z/p"Z). Then one has

' 1Solyj' M = i'~1j1S0lp M = i’ "1Sol p M

for any M € Cy x 9. Next let us suppose that we are given a closed immersion i : X — @ into a
smooth separated W,,-scheme ) and a proper smooth W,,-morphism U — @ with f o4’ = ¢". Then

f+ induces an equivalence Cy x ¢ = Co,x,p by Theorem Note that, because Soly is compatible
with the inverse image functor by Theorem 23] we know that Soly M is supported on X for any
M € Cy x 9. Then, for M € Cy x ¢, we can compute that

i""1Solg f+ M 223" fiSoly M ="~ fiili’ = Soly M = i~ Soly M.
We can prove the lemma by combining two claims proved above. O

Next let us define a functor Mx : D (Xet, Z/p"Z) — D

ftgu (X/Wn)°. We define Mx to be the
composite of the functors

n . n M o
Dit(Xet, Z/p"Z) = Dlt(Pet, Z/p"Z) = Dito(Dr,p)°.
Lemma 4.11. The essential image of Mx is contained in Cp x.

Proof. Let us take an open subscheme U of P such that i factors as a closed immersion i’ : X «— U
and an open immersion j : U < P. Then by [EK, Corollary 16.2.8] Mx is naturally isomorphic to the
composition

n i n M o Rj« o
D(lztf(XéhZ/p Z) — Dgtf(Uét;Z/p Z) — Df)fgu(,DFﬁU) L) Df)fgu(,DFﬁp) :

So we reduce to the case when X is closed in P by Proposition 4.3l Now since Mp is compatible with
the inverse image functor by Theorem 23] F € Dgtf(Pét, Z/p"7Z) is supported on X if and only if so is
Mp(F). O

One can prove that this functor is independent of the choice of X — P as in Lemma [Z.10l By
Lemma [£11], we obtain a functor

Mx : Dgtf(Xéta Z/an) - D{)fgu(X/Wn)o'

‘We now state our main result.

21



Theorem 4.12. Let X be a Wy, -embeddable k-scheme. Then Solx induces an equivalence of triangu-
lated categories

Solx : Dl (X/Wy)® = Dhy(Xew, Z/p"Z) (4.10)
with quasi-inverse Mx .

In order to prove Theorem [£.12] we need the following lemma.

Lemma 4.13. Let X be a Wy, -embeddable k-scheme with a closed immersion i from X into a smooth
W, -scheme P. Let us denote by D(l:)tﬁX(Pét, Z/p"Z) the full triangulated subcategory of DY (Pet, Z/p"Z)
consisting of complexes supported on X. Then Solp : Djy, (Dr.p)° — D& (Pes, Z/p"Z) restricts an
equivalence

Cpx.0 = Dl x (Pet, Z/p"Z).
Proof. By Lemma [3.1] we can write as
CP,X,@ = {M S Dﬁ>gu(DF7P)O | SuppM C X} .

Denote by j the open immersion P\ X < P. For an object M in Cp x g, the condition SuppM C X
is equivalent to the condition j~*M = 0. Applying the functor Solp to 7'M = 0, by Theorem 2.3
one has j~* (SolpM) 22 Solp\ xj~'M = 0. Hence we know that Solp restricts to a functor

Solp : Cp.x,0 — Dl x(Per, Z/p"Z).
Similarly, Mp restricts to a functor Mp : Dgtfyx(Pét, Z/p"Z) — Cp x 9 and we are done. O

Let us prove Theorem (4.12]

Proof. We may assume that there exists a proper smooth W,-scheme P, an open subset U of P
together with a closed immersion i : X < P. Then Solp is compatible with Solyy and Soly induces an
equivalence of triangulated categories

CU,X,@ i Dgtt’,X(Uéta Z/P"Z)

with quasi-inverse My by Lemma ET3l Also, i~' : Dby (P, Z/p"Z) — DP(Xa, Z/p"Z) is an
equivalence of triangulated categories with quasi-inverse i,. This finishes the proof. O

Theorem 4.14. Let f: X — Y be a morphism of W,,-embeddable schemes. Then there exist natural
isomorphisms of functors

Soly o f+ = fioSolx : Dl (X/Wy) — Dby (Yer, Z/p" L),

Solx o f* =5 f~t o Soly : Dy (Y/Wy) — Dby(Xew, Z/p"Z)

and a functorial isomorphism
Solx (M) ®HZ“/an Solx (V) = Solx (M " N)

for objects M and N in Dfy, (X /W,,).
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Proof. We may assume that there exists a commutative diagram

X&,p

‘

Y2 _Q

such that P and @ are smooth separated W,,-schemes, i; and that is are closed immersions and g is
the composite of an immersion and a proper smooth morphism. Also, we can replace the categories
Df’fgu(X /W,,) and Df’fgu(Y/ W,,) in the statement by the categories Cp x g and Cg y g respectively. For
any object M in Cp x ¢, Solp(M) is supported on X. So we can compute that

Soly o fy =iy 'Solggy = iy giSolp = iy tgrir.iy 'Solp = fi o Solx.

Let us prove the second isomorphism. Recall that f' := RI'xg' : Covp — Cpx,p. We define a
natural transformation Soly o f' — f~' o Soly to be the composite of natural transformations

Soly o f':= il_lSolp o (fog!) — il_lSolpg! ~ il_lg_lSolQ =~ =10 Soly.

Let us prove that it is an isomorphism. The usual dévissage argument reduces the proof to the case
n = 1. Let us first suppose that X is smooth over k. Then using [EK, Corollary 15.5.4] and Theorem
2.3 we obtain isomorphisms

i1 'Solp o (i14iyg') =iy tiriy g Solg
~  f71i;'Solg = f~! o Soly.

1%

Solx o f! = iflSolp o (RI‘Xg!)

2

In general case, we shall prove by the induction on the dimension d of X. Let Xy be a d-dimensional
smooth open subscheme of X such that H := X \ X is of dimension < d. Let a denote the open
immersion P\ H < P and M an object in Cg yy. We have a distinguished triangle in D?(Ps, Z/pZ)

SolpRT xaya'g'M — SolpRT yg' M — SolpRT y9' M -5 . (4.11)

Let us denote by b the immersion X \ H — P\ H — P and by iy a closed immersion H — P. For
any F € DY(Pe,Z/pZ), there exists a distinguished triangle in D?(Pe, Z/pZ)

bb 'F = F = imig' F 5. (4.12)
Applying I2) to F = g~ 'SolgM, one has a distinguished triangle
bib~ g™ Solg M — g™ SolgM — imnigtg  SolgM L . (4.13)
There are natural morphisms
¥ : SolpRI'xaya'g' M — Solpaya'g' M — aja='g~'Solg M — bib~' g~ Solg M

and
¢ : SolpRT g' M — Solpg' M — g *SolgM — imniy g Solg M.
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Hence we obtain a morphism of distinguished triangle from (£I1) to (@I3]). Let us see that ¢ is an
isomorphism. We can calculate as

SolpRI xaja'g'M = SOlPa-i-RFX\Ha!g!M
G[SOIP\HRF)(\H(I!Q!M.

1%

So SolpRI'xata'g'M and bib~tg~1SolgM are supported on X \ H. Hence ¢ is an isomorphism
if and only if so is b~'t. Now since we can calculate as b~ SolpRI xa a'g'M = SolX\HfI!X\HM

and b~ 1hb~tg~1SolgM = fl}l\Hde./\/l, we know that b1 : SolX\Hf|!X\HM — f‘}l\HSolyM is

an isomorphism by the smooth case. On the other hand, since SolpRI'z¢'M and z'H;i;{lg_lSOIQM
are supported on H, ¢ is an isomorphism if and only if so is il_f(b. Let us denote by fjz the com-

posite of morphisms H — X Ly, Applying i;ll to SolpRI' 7g'M and ngigllg’lsolQM, one has
i;IISOhDRFHg!M ~ SoleI!H/\/l and il}liH!il}lg*SolQM ~ fI}lSolH./\/l respectively. So the induction
hypothesis implies that iI_{1¢ : Soly fI!H./\/l — f glsolH./\/l is an isomorphism and hence ¢ is an isomor-
phism. Thus SolpRI' x¢g'M — g~ !SolgM is an isomorphism. Applying the functor ifl to this, we

obtain the desired isomorphism Solx f* =N f~'Soly.
Finally let us prove the last isomorphism. Let i : X < P be a closed immersion into a smooth

W,-scheme and M and N objects of Df’fgu(X /Whn) =Cp x,0- There exists a natural isomorphism

SOlpM ®%/pnz SOle i} SOIP (M ®H'ép N) [dp]

by Theorem Recall that M ®" A is defined to be M ®H@P N|[—dp]. Applying the functor
Soly :=4"1Solp to it, one has

Soly (M ®"N) =i 'Solp (M ®g, N[—dp])

1%

i'Solp (M @6, N) [dp]

i (Solp M &, SolpN)

Solx (M) ®3 /nz Solx (N).

This finishes the proof. O

12

1%

5 t-structures on Df, (X/k)

In this section, we study several ¢-structures on Df’fgu (X/k) for a k-embeddable k-scheme X. Note
that, for a smooth k-scheme P, one has Dﬁ»gu(DRp)o = Dﬁ»gu(DRp) and Dﬁ»gu(DRp)o is naturally
equivalent to Df’fgu(OR p) (see the subsection [Z7]).

5.1 The standard ¢-structure on Df, (X/k)

For a smooth k-scheme P, we set

DE;](DF,P) = {Me Df’fgu(DFﬁp) |H¥(M) =0 for k >n} and
Dl%gZ(IDFxP) = {M (S Df)fgu(’DF)p) |Hk(M) =0 for k< n} .
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Let X be a k-scheme of finite type. The middle perversity is the function p : X — Z defined by
p(z) = —dim{z}.
For z € X, we denote by i, the canonical inclusion {z} < X. We then set
PDSY(Xe, Z/pZ) = {F € DY( X, Z/pZ) |H (i ' F) =0 for allz € X and k > p(z)} and
PDZ0(Xet,Z/pZ) = {F € DY(Xa,Z/pZ)|H (i, F) =0 for allz € X and k < p(z)} .
Gabber proved that (PD5%(Xe,Z/pZ),PDZ°(Xe, Z/pZ)) forms a t-structure on DE(Xe, Z/pZ) in
[Ga, Theorem 10.3]. Emerton and Kisin gave another proof of it in the case when X is smooth

over k based on the Riemann-Hilbert correspondence [EK, Theorem 11.5.4]: Indeed, they proved that

Do (X/k) (vesp. Do (X/k)) is equivalent to PDZ%(Xe, Z/pZ) (vesp. PDE%(Xa,Z/pZ)) via Solx.

We shall generalize [EK, Theorem 11.5.4] to the case of k-embeddable k-schemes.
Definition 5.1. Let P be a smooth k-scheme with closed subsets Z and T of P. We set
C}%OZ,T = {MeCpzr|H (M) =0 fork>0} and
Ciyr = {MeCpzr|H (M) =0 fork<0}.

Then (C;OZT, %OZT) defines a a t-structure on Cpzr, which we call the standard t-structure on
Cpzr1. For a k-embeddable k-scheme X with an immersion X — P into a proper smooth k-scheme
P, we define the standard t-structure (C%g(,c%g() on Cpx by

ngg( = Clg,OZ,T and C%g( = C;OZ,T
for some closed subsets Z and T of P with X = Z\T. This definition is independent of the choice of
Z and T by Lemma[{.2

Lemma 5.2. Let X be a k-embeddable k-scheme with an immersion X — P into a smooth separated
W,,-scheme P. Let U be an open subscheme of P such that the immersion X — P factors as a closed
immersion X — U and the open immersion j : U < X. Then the equivalence in Proposition [{.3

Rj. : Cux0 — Cpx
is t-exact with respect to the standard t-structure.

Proof. Since Rj, is an equivalence of triangulated categories, it is enough to prove that Rj, and its
quasi-inverse j ! are left t-exact (cf. [KS, Corollary 10.1.18]). These claims are evident. O

We need the following lemma.

Lemma 5.3. Let P be a smooth W,,-scheme and i : X — P a closed immersion. For e € {<
0,> 0}, we denote by D? (P, Z/pZ) (resp. DS x(Pex,Z/pZ)) the full triangulated subcategory of
DY(Pe, Z/pZ) (resp. PD2(Pe, Z/pZ)) consisting of complexes supported on X. Then the equivalence
iy DY(Xer, Z/pZ) =5 D} x(Pst, Z/pZ) restricts to an equivalence

P D (Xe, Z/pZ) = P D? x (Par, Z/pL)

with quasi-inverse i1,
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Proof. For an object £ in PDS0(Xg, Z/pZ), one obviously has i, L € pD % (P, ZJpZ). Let L be an
object of PDZ%(X¢:, Z/pZ) and x an element of X C P. There exists an open subscheme U C {z}
such that H* (z'UE) = 0 for any k < p(x), where iy denotes the immersion U < X. Let us denote by
if; the immersion U — X < P. One has ifi.L = i},i'i, £ =i}, L = 0. So we have H* (i}i,£) = 0 for
any k < p(z). If z € P\ X, one has H* (ili.L) = 0 for any k. Hence we see i,L € ng%(Pét,Z/pZ).
Conversely, for an object £ in pD<O % (Pst, Z/pZ), one obviously has i 71 £ € PDS%(X4, Z/pZ). Finally
let £ be an object of pDCZ&( Py, Z/pZ). Then, since £ is supported on X, we have i'L Z,471L and
hence we have i ~1£ € PDZ%(Xey, Z/pZ). O
Corollary 5.4. Let X be a k-embeddable k-scheme with a closed immersion i : X — P into a
smooth k-scheme P. Then Solx = i~ 'Solp : Cpxg = DY(Xe, Z/pZ) sends (CPX@,C;?&@) to
(PDE°(Xer, 2/p2), P DE* (Xer, Z/pZ))

Proof. By Lemma [£13] Solp restricts to an equivalence of triangulated categories
Crx0 — D¢ x(Pau, Z/pL).

We know that Solp sends C X0 O pDC X(Pcc, Z/pZ) and C x.0 to pDC X(Pét, Z/pZ) by [EK, Theorem
11.5.4]. By Lemma [5.3] we see that i~ sends pD;)X(PCt,Z/pZ) to PDe (X, Z/pZ) if @ € {<0,> 0}.
This finishes the proof. O

By Lemma and Corollary 5.4l one has the following theorem.

Theorem 5.5. Let X be a k-embeddable k-scheme with an immersion X — P into a proper smooth
k-scheme P. We set

lfgu(X/k) Cﬁx and leg (X/k) = PX

Then the t-structure ( 1tgu(X/k) ligu(X/k)) is independent of the choice of X — P, which we
(X/k). Furthermore, ( 1fgu(X/k) 1fgu(X/k)) corresponds to

Gabber’s perverse t-structure via Solx .

call the standard t-structure on Dﬁgu

5.2 Beilinson’s theorem

In this subsection, we prove an analogue of Beilinson’s theorem (Theorem [5.6]), which is a generalization
of [EK, Corollary 17.2.5] to the case of k-embeddable k-schemes. In the rest of this subsection, we
fix a k-embeddable k-scheme X, an immersion i: X < Pinto a proper smooth k-scheme and an
open subscheme P of P such that i factors as a closed immersion i : X < P and the open immersion
P < P. Denote by ftu (resp. pufgu) the category of unit Dg p-modules (resp. locally finitely generated
unit Dp p-modules). We also denote by py, x (resp. fuggu,x) the full subcategory of p, (resp. figgu)
consisting of objects supported on X. Note that pig, x is the heart of the standard t-structure on

1fgu(X/k) Cp.x = Cpx,p and hence it is independent of the choice of X — P and P by Theorem
The followmg theorem is the main theorem in this subsection.
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Theorem 5.6. The natural functor
D*(puitgu,x) = Ditgn(X/k)
s an equivalence of triangulated categories.
The proof of Theorem is divided into two parts. First of all, we prove the following theorem.

Theorem 5.7. The natural functor
D*(piitgu,x) = Diggn(X/k)
is essentially surjective and, for any objects M and N in D®(puggu,x) the map
Hom po (.0 ) (ML N) — Hompy  (x/1) (M,N)

18 surjective.
We need the following lemma.

Lemma 5.8. Let Ind-ugeu, x be the full subcategory of p,, x consisting of objects which are direct limits
of objects in pgeu,x . Then the natural functor

D*(puggu,x) = Ditgu(Ind-prifgu, x)
s an equivalence of triangulated categories.

Proof. For an object M in Df)fgu(lnd—mfgm x), there exists a subcomplex M’ of M such that the
canonical inclusion M’ — M is a quasi-isomorphism and the terms of M’ are locally finitely generated
unit. Since M is supported on X, so is M’. Hence Db(/,blfgu) x) — fogu(lnd—ulfgu, x) is essentially
surjective. Let us prove the full faithfulness of the functor. Suppose that we are given a quasi-
isomorphism M — N in K°(Ind-puggu,x) with N € K°(fuifgu, x), where we denote by K°(fgu,x)
(resp. Kb(Ind—,ulfgqu)) the (bounded) homotopy category of pifgu,x (resp. Ind-puggy,x). Then all
cohomology sheaves of M are locally finitely generated unit and so there exists a subcomplex M’
of M such that the canonical inclusion M’ — M is a quasi-isomorphism and the terms of M’ are
locally finitely generated unit. Hence, by [KS, Proposition 1.6.5], Db(,ulfgu, x) — Db(Ind—,u]fgm x) is
fully faithful and the assertion follows. O

Let us prove the Theorem .7

Proof. The proof is a refinement of the proof of [EK, Corollary 17.1.2]. For a k-scheme Y of finite
type, we denote by €y the category of constructible étale sheaves of Z/pZ-modules on Y. By using
the results in [De, p.94], we know that the natural functor D®(€y) — D%(Ye,Z/pZ) is essentially
surjective and induces a surjection on Hom’s. Let E denote the residual complex of injective quasi-
coherent Op, -modules resolving Op,,. It is proved in [EK, Proposition 17.1.1] that E naturally forms
a complex of unit Dp p,,-modules and the terms of F are in Ind-fugyu. Then, as in the proof of
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[EK, Corollary 17.1.2], Mx may be computed as ﬂ'p*HOInZ/pZ(—, E) o i, and we have the following
commutative diagram of categories:

Db(Qx) Dg(Xé‘mZ/pZ)

D(¢p) ———— DY(Py,Z/pZ)

ﬂp*HomZ/pZ(,E)l lMp

Dfyy(Ind-usgn) — D}, (Dr p).

The composite of the functors D*(€x) — D%(Xg, Z/pZ) — D%(Ps, Z/pZ) — fogu
functor D(€x) — Df’fgu(X /k) which is essentially surjective and induces a surjection on Hom’s by
Theorem On the other hand, the essential image of the composite of the functors D°(€x) —
Db(€p) — fogu(lnd—mfgu) is contained in Df’fgu(lnd—mfguﬁx) because for an object G in Db(€x), we
have the natural isomorphism

(Dp,p) induces a

mp.Homy ) 7 (i.G, E) = np.i.Homy (G, i E|x).

Hence we know that the functor Df’fgu(lnd—,ulfgm x) — Df’fgu(X /k) is essentially surjective. So, by
using Theorem .12l and Lemma [5.8] we see that the functor induces a surjection on Hom’s. Now the

assertion follows from Lemma O

In order to prove the full faithfulness of the functor Db(mfgm x) — Db

ltgu(X/k), we need some
preparation.

Lemma 5.9. The category py, x has enough injectives.

Proof. For an object M in p, x, we can take an injection M — Z into an injective object Z in p, by
[EK, Corollary 15.1.6]. Applying I'x to the injection M — Z, one has an injection M =Tx M — T'xZ.
Hence it is enough to prove that I'xZ is an injective object in p, x. Suppose that we are given an
injection ¢ : N — N and a morphism f : N/ — I'xZ in py, x. Let us denote by g the natural morphism
I'xZ — Z. Since 7 is an injective object, there exists a morphism h : NV — T satisfying hoi = go f.
Then one has IyhoI'xi = I'xg o I'xf. Since I'xi is equal to i : N = Ix N’ — I'xN =N and
IFxgolxf: N =TxN' — I'xI'xZ — I'xZ is equal to f, we know the equality I'yh oi = f. Hence
I'xZ is an injective object in py, x. O

For an object M in p, x, there exists a unique maximal subobject L(M) of M which lies in
Ind-puggn by [EK, Lemma 17.2.1.(i)]. Then L(M) belongs to Ind-juge,, x and it is a unique maximal
subobject of M which lies in Ind-fugen, x. By [EK, Lemma 17.2.1.(ii)], the correspondence M — L(M)
defines a left exact functor

L : p,x — Ind-piggu, x

which is right adjoint to the natural functor pufeu,x — ftu,x. Since py, x has enough injectives by
Lemma [5.9] we obtain the right derived functor

RL : DY (py,x) = D (Ind-puiggu, x )
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By using Theorem [5.7] one can prove the following lemma in the same way as [EK, Lemma 17.2.2].
Lemma 5.10. Objects in pugeu,x are acyclic for RL.

Proof. For an object M in g, x, one can choose an injective resolution M — 7 in i, x by Lemma
For a natural number n > 0, we denote by £" the image of the differential Z" — Z"*1. In order
to prove that M is RL-acyclic, it is enough to prove that the map L(M™) — L(E") is surjective. We

denote by Z=" the complex defined by (IS")l =T’ for i < n and by (IS")Z =0 for ¢ > n. Then one
has an (n + 1)-extension
0-+M—=T 57— . 5T 5 E" =0

of £&" by M and denotes by ¢ the class of this extension in Ethi}( (Z™, M). For a locally finitely
generated unit D p-submodule F of £, we denote by c¢r the image of ¢ under the map

Ext™ ! (", M) — Extz:fi (F, M) = Homps(,, (F[-n], M) — HOlebfgu(X/k) (F[—n], M).

Hu, X
Then, by Theorem .7, there exists an (n + 1)-extension in puigu,x which is sent to ¢z by the map

Home( f[—n],./\/l) — Holebfgu(X/k)(f[—n],M).

Mfgu,x)(
Let us denote this (n + 1)-extension by
0->M—->N—=F—=0,

where A is a complex of locally finitely generated Dp, p-modules whose terms are supported on X and
are 0 outside [0,n] and such that H(N) = M if i = 0, HY(N) = F if i = n and HY(N) = 0 otherwise.
Since 7 is a complex of injective objects in j,, x there exists a map of extensions

0 M =n En 0
idT ch wT
0 M N F 0.

Let us consider the exact sequence

Homy,, , (F,Z") — Hom,,, , (F,€") % Ext'L (F, M) — 0.

By construction of c¢x one has d(¢) = cz. If we denote by ¥’ the natural inclusion F — £", then
we also have §(¢)') = cx. Thus ¢ — ¢’ lifts to a map ¢ — ¢’ : F — I™. Let us also denote by

1) — 1)’ the composite of morphisms N — F Y=Y 77 Then we have a locally finitely generated
Op,p-submodule (¢" + 9 — w’) (N™) of Z™ which surjects on v’(F). This finishes the proof.
O

Lemma 5.11. Let pif,_qc,x denote the full subcategory of p,x consisting of L-acyclic objects. Then
the natural functors Db(,ulfguﬁx) — DY (p-ae,x) and DT (pr-ae.x) — DV (ux) are fully faithful. As
a consequence, the natural functor

Db(ulfgu,X) — Db(ﬂu,X)
1s fully faithful.
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Proof. The strategy of the proof is the same as that of [EK, Lemma 17.2.3] but we slightly modify
their proof. Let us suppose that we are given a quasi-isomorphism N — M in KT (pr ac x) with
MeK b(/,Llfgm x). Then the adjunction morphism L(N) — N is a quasi-isomorphism since the terms
of N and its cohomology sheaves are acyclic for L by Lemma Now since the terms of L(N)
are in Ind-fugg,, x and cohomology sheaves of it are in puggu, x, there exists a bounded subcomplex
L(N)" of L(N) such that L(N) — L(N) is a quasi-isomorphism and L(N')’ belongs to K°(ttgu,x)-
Hence the first functor is fully faithful by [KS, Proposition 1.6.5]. Next suppose that we are given a
quasi-isomorphism N — M in KT (pf-ac,x) with N € KT (uy x). Then, by Lemma [5.9, one has an
injective resolution Z of M in Kt (uy x). So the full faithfulness of the second functor also follows
from [KS, Proposition 1.6.5]. O

Let us consider the following commutative diagram of categories:

Db(,ulfgu.,X) - Db(,ulfgu)

l l

Db(ﬂu,X) E—— Db(ﬂu)

| |

Dfigu(X/k) - th’gu(DFJD)'

In order to prove the full faithfulness of the functor D®(ugn x) — Dfr, (X/k), by Lemma [EIT] and

Ifgu
[EK, Corollary 17.2.4], it suffices to prove the following lemma.
Lemma 5.12. The natural functor D*(p,,x) — D®(p) is fully faithful.

In order to prove Lemma [5.12] we define a functor
R'Tx : D" () = D (i, x)

to be the right derived functor of the left exact functor I'x : py, — pu,x. Here we use the notation
R'T'x instead of RI'x to avoid confusion. We have the following lemma.

Lemma 5.13. Objects in uy x are acyclic for R'Tx.

Proof. For an object M in u, x, take an injective resolution M — Z. One has H*(R['x M) = 0 for
i > 0. Also, since Z" is an injective object in the category of Op-quasi-coherent Dy p-modules by [EK,
Cor. 15.1.6], one has HY(R['xZ") = 0 for i > 0. By considering the long exact sequence for RI x, we
deduce that 0 = M =T'x M — I'xT is exact. Hence M is acyclic for RTx. O

Let us prove Lemma [5.12

Proof. Let us denote by piry-ac the full subcategory of p, x consisting of R'T"x-acyclic objects. It
is enough to prove that the natural functors D®(jy x) — DT (ry-ac) and DT (uryac) — D (pu)
are fully faithful. Let us suppose that we are given a quasi-isomorphism N — M in KT (ury-ac)
with M € K b(um x). Then the natural morphism I'xN — N is a quasi-isomorphism since the
terms of A and its cohomology sheaves are acyclic for R'T'x by Lemma Moreover, since I'x N is
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cohomologically bounded, there exists a bounded subcomplex I'x N7 of I' y N such that Ty N/ — T'x N
is a quasi-isomorphism and T'x A belongs to K®(u, x). Hence, by [KS, Proposition 1.6.5], we know
that the first functor is fully faithful. For the second assertion, let us take a quasi-isomorphism N" — M
in K (pury-ac) with N' € Kt (uy). Then M is quasi-isomorphic to its injective resolution Z in K ().
Hence the second functor is fully faithful by [KS, Proposition 1.6.5].

O

By Theorem [5.7] and Lemma [5.12] we finish the proof of Theorem

5.3 The constructible t-structure on Dj (X/k)

Let P be a smooth k-scheme. Let A be a sheaf of Op-algebra, which is quasi-coherent as a left Op-
module and left noetherian. Let us first recall a t-structure on Dgc (A) introduced by Kashiwara in
[Kas2]. For more detail, we refer the reader to [Kas2, §3]. We define a support datum & = {&"} by

6" :={Z|Z is a closed subset of P of codimension > n}.

Then G&™ has the structure of an ordered set by the natural inclusion. For a sheaf F of A-modules, we

define I'gn (F) := lim T’ z(F). Then I'gn defines a left exact functor from the category of .A-modules
ZeGn

to itself and we obtain the right derived functor RT'gn : D% (A) — D}.(A). Let us set

eDFA) = {./\/l € Db.(A) | R[gn—rH" (M) = H" (M) for any n} and
eDZFA) = {MeD)(A)|RTzM € DI (A) for anyn and Z € &} .

Kashiwara proved that (®D5Y(A), °DZ?(A)) forms a t-structure on D} (A). We call this ¢-structure
the constructible ¢-structure. In particular, we have a ¢-structure (GDECO(OR p),GDECO((’)R p)) on
DSC(OF,P). Moreover, we have the following theorem.

Theorem 5.14. Let P be a smooth separated k-scheme. We set

CD5(Opp) = SDZ(Opp)N Dy, (Orp) and
CDg o (Orp) = ©DZ)(Opp)N Dy, (OF.p).

Then (GDl%gu(ORP)’ GDEESH(ORP)) defines a t-structure on Dﬁ»gu(Opr).

Proof. It suffices to show that for any M € Df)fgu(OF, p), there exists a distinguished triangle
M M- ML

such that M’ € 6Dﬁg(Ju((?FJa) and M" € GDI%&?H(ORP). We show it by the induction on the codimen-

sion d of S := Supp(M). Let us consider a distinguish triangle

FM s M s r2IM (5.1)

31



where 7 denotes the truncation functor with respect to the standard t-structure. Evidently, one
has RLgrr1 (HY (r<9M)) — H¥ (r<9M) for any k > d. For any k < d, one has S € &F and

Rl e+t (HY (<9 M)) =N (t<9M). Hence we have 7<IM € GDﬁgou(OF,p). By using [Kas2,

Lemma 2.1] with (&1I), we are reduced to the case where M is an object in Dl%gdu(OFﬁp). Let Sy be
a d-codimensional smooth open subscheme of S such that H := S\ Sy is of codimension > d. We set
U:= X\ H. Then we have a closed immersion i : Sy — U and the open immersion j : U < P. Since
My is supported on Sp, by [EK, Corollary 5.11.3], there exists an object N € fogu(OFyso) such that
it N = M)y. Note that, by [EK, Corollary 3.3.6], i is t-exact with respect to the standard t-structure.
So N belongs to Dl%gdu(O F.5,)- Applying [EK, Proposition 6.9.6], by shrinking Sy if necessary, we may
assume that all cohomology sheaves of A are unit F-crystals. In particular, these are locally free
of finite rank. Then we claim that iy A belongs to GDl%gOu((’)RU). In order to see this claim, by
the induction on the cohomological length of N, we may assume that A is a single unit F-crystal
supported on degree > d. Then for any n-codimensional closed subset Z of U, we have R zng,(N) =

RI zn5,(0s,)ON € DI%;](O F.5,). Then since i, is left t-exact with respect to the standard t-structure,

we have R zi4 N =2 i Rl zng, N € DI%;](OF,U) as desired. Because Ry, is left t-exact with respect to

the constructible t-structure by [Kas2, Lemma 3.7], one has Rj,i  N=Rj,j M € 6Dl%gOu(OF,p). Let
us consider a distinguished triangle

ROyM — M = Rj M L.

Since the codimension of Supp (RTyM) is greater than d, then the induction proceeds by [Kas2,
Lemma 2.1]. O

Corollary 5.15. For a smooth separated k-scheme P with closed subsets Z and T of P, we set
GCEOZ_’T = GDECO(OF_’P) ﬂCp_rzyT and

6C;OZ,T = GDciO(OF.,P)ﬂCP,Z,T-

Then (GCEOZT,GCEOZ T) defines a t-structure on Cp z 1, which we call the constructible t-structure
on CP,Z,T~

Proof. Denote by j the open immersion P\ T < P. For an object M € Cp z 1 C Dﬁ»gu(Opr). there
exists a distinguished triangle

MM M5

such that M’ € 6Dﬁg(Ju((?FJa) and M € GDEESH(ORP). Since RI'z, Rj, and j~! are t-exact with

respect to the constructible ¢-structure by [Kas2, Proposition 4.1, Proposition 4.2 and Lemma 3.7]
respectively, we have a desired distinguished triangle

Rj.j 'RTZzM' = M — Rj, i 'RTzM" 5
such that Rj,j 'Rz M’ € 6C§7%1T and Rj,j 'RTzM" € GcgﬁozyT. This finishes the proof. O

For a k-embeddable k-scheme X with an immersion X < P into a proper smooth k-scheme P, we
define by
&p<0 _ 6p<0 6,20 _ §p2>0
Cﬁ,x = CP,Z,T and CP,X = CP,Z,T
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for some closed subsets Z and T of P satisfying X = Z \ T. Then this definition is independent of
the choice of Z and T by Lemma [£2] and (GC%%(, GCE&) defines a t-structure on Cp,x, which we call

the constructible t-structure on Cp x. By [Kas2, Proposition 4.2 and Lemma 3.7], one immediately
obtains the following lemma.

Lemma 5.16. Let X be a k-embeddable k-scheme with an immersion X — P into a proper smooth
k-scheme P. Let U be an open subscheme of P such that the immersion X — P factors as a closed
immersion X — U and the open immersion j: U — X. Then the equivalence in Proposition [{.3

Rj. : Cux,0 — Cp,x

1s t-exact with respect to the constructible t-structure.

Theorem 5.17. Let X be a k-embeddable k-scheme with a closed immersion i into a smooth separated
k-scheme P. We set

D:%Xs) = {F € DY Xe,Z/pZ)|H*(F)=0 for k> 0} and

DZ%(Xg) = {F € D) Xew,Z/pZ)|H*(F) =0 for k <0}.

Then the equivalence of triangulated categories
Solx =i~ 'Solp : Cp.x.g — DY(Xer, Z/pZ)

sends (GC;}%’,GC;}%’> to (DE%(Xat), DZ%(Xet))-

In order to prove Theorem [5.17 we need the following lemma.

Lemma 5.18. Let P be a smooth k-scheme of dimension dp and M a complex in Df’fgu(OF,p). The
following conditions are equivalent.

1. Me GDl%g;dP(Opyp).

2. M is quasi-isomorphic to a bounded complex N of flat Op-modules such that N™ = 0 for any
n < —dp.

3. HF (z;j\/l) =0 for any k < 0 and any closed point x of P, where i, denotes the canonical closed
immersion {x} < P.

Proof. The equivalence of 1 and 2 follows from [Kas2, Proposition 4.6]. Let us prove that the condition
2 implies the condition 3. Suppose that M is quasi-isomorphic to a bounded complex N of flat Op-
modules such that N = 0 for any n < —dp. Let us denote by x(z) the residue field at x. Then, as a
complex of x(x)-modules, we can calculate as

ZIIM = Ii(x) ®E.J;10X i;lM[—dp]

= k(@) @10, iy N—dp].

We have the condition 3 from this description. Next we show the condition 3 implies the condition 1.

Suppose that M satisfies the condition 3. We prove that M belongs to GDl%g;dP (Op,p) by the induction
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on the codimension d of S := Supp(M). Let Sy be a d-codimensional smooth open subscheme of S
such that H := S\ Sy is of codimension > d. Then we have a closed immersion i : Sy — U := P\ H
and the open immersion j : U < P. Since M,y is supported on U, by [EK, Corollary 5.11.3], there
exists N € Df)fgu(OFﬁso) such that i, N = M,y. By shrinking Sy if necessary, we may assume that all
cohomology sheaves of A are unit F-crystals. We fix a closed point x € Sy and denote by i, (resp.
i%,) the closed immersion {z} < P (resp. {z} < Sp). By pulling back the isomorphism i, N = My
to {z}, we have i N = i, M. Let us take a flat resolution F — N as Og,-modules. One has

k(z) @iV F =it M[ds,].

By this description combined with the condition 3, we know N € Dﬁg;dso(OF,so)- By a similar
argument in the proof of Theorem [5.14] one has i, N € GDEg;dP (Opu). Since Ry, is left t-exact with

respect to the constructible ¢-structure by [Kas2, Lemma 3.7], we have Rj,i N € GDl%g;dP(OFﬁp).
Let us consider a distinguished triangle

PERTEM — it M — i i M

By taking the long exact sequence, we see H* (i!le" HM) = 0 for any k£ < 0. Hence the induction

hypothesis implies Ry M € GDl%g;dP (Op,p) and we obtain M € GDEg;dP (OF,p).

o
Now we may start to prove Theorem .17

Proof. First of all, we shall prove that the equivalence
Solp : D, (Or.p) = DY(Pey, Z/pZ)

sends (GDl%g;dP (OF7P),GDEg;dP(OF1p)) to (D5%(Ps), DZ%(Pst)). Since Solp is an equivalence of

triangulated categories, it suffices to show that GDEg;dP (O p) corresponds to DE0(Pey, Z/pZ) via

Solp (cf. [KS, Corollary 10.1.18]). Let us first suppose that M is an object in GDl%g;dP (Op.p). Let x

be a point in P. Denote by {z} the closure of {z} in P. For an open subset U of {x}, we denote by
iy the canonical immersion U — P. By Lemma [5.18) there exists an Op-flat resolution N of M such
that N™ = 0 for any n < —dp. We then calculate

igM = Ou ®IZ-L51@P iy M[dy,p]
= Oy ®i51(9p i&lN[dU/p].
By this description, we have H” (z'UM) = 0 for any k < —dy. By shrinking U if necessary, we may
assume that all cohomology sheaves of Z'U./\/l are unit F-crystals. Then, by [EK, Proposition 9.3.2],
it M s Homy, (rf (=), Ou,, )-acyclic. Hence we can calculate as
ig'Solp(M) = Soly (iyM)
= :[_IO—IH(QRUét (ﬂ-[*] (z‘UM)7 OULt)[dU:I
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By this description, for any n > 0 the equality H" (i7;"Solp(M)) = 0 holds. So we have Solp(M) €
DE%(Pg,7Z/pZ). Conversely, suppose that we are given an object F in D=0(Py, Z/pZ). By [De, p.94,
Lemma 4.7], we may assume that F is a bounded complex of constructible Z/pZ-modules. For any
closed point x, we can calculate as

itMp(F) = My, (i;'F)
= RHomy (i, ' F, k(x))
= Homy,; (i, ' F, 5(z)).

By this description, we see the condition 3 in Lemma[E.I8 for Mp(F) and thus Mp(F) € © DEg;dP (OF,p).

Now let X be a k-embeddable k-scheme with a closed immersion ¢ : X < P. Let Dé’) x (Pst, Z/pZ)
denote the full triangulated subcategory of DY(Ps,Z/pZ) consisting of complexes supported on X.
By Lemma T3] Solp restricts to an equivalence of triangulated categories

SOlp : CP,X,@ i Dgx(Pé‘mZ/pZ)'

Then Gcg}df corresponds to DCSS((P&) = DZ0(Py) N DS)X(P&, Z/pZ) via Solp. Moreover, since the

equivalence
i DY x(Pat, Z/pZ) = DY(Xe, Z/pZ)

is t-exact with respect to the standard ¢-structure, we see that ng((Pét) corresponds to D=0(X¢;) via

i~1. As a consequence, we know that M € GC}%;{%’)’ if and only if Solx (M) € DZ0(Xt).

O

Corollary 5.19. Let X be a k-embeddable k-scheme with an immersion from X into a proper smooth
k-scheme P. We set

CD5 (X /k) = SCE " and D),

Ifgu lfgu(X/k) = GCJ%,;(dP'

Then the t-structure (GDl%gOu(X/k), GDEESH(X/IC)) is independent of the choice of X — P, which we

call the constructible t-structure on Df’fgu(X /k). Moreover, the constructible t-structure corresponds to
the standard t-structure on D2(X¢, Z/pZ) via Solx.
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