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Abstract

Recurrent Neural Network (RNN) and one
of its specific architectures, Long Short-Term
Memory (LSTM), have been widely used for
sequence labeling. In this paper, we first
enhance LSTM-based sequence labeling to
explicitly model label dependencies. Then
we propose another enhancement to incorpo-
rate the global information spanning over the
whole input sequence. The latter proposed
method,encoder-labeler LSTM, first encodes
the whole input sequence into a fixed length
vector with the encoder LSTM, and then uses
this encoded vector as the initial state of an-
other LSTM for sequence labeling. Combin-
ing these methods, we can predict the label
sequence with considering label dependencies
and information of whole input sequence. In
the experiments of a slot filling task, which
is an essential component of natural language
understanding, with using the standard ATIS
corpus, we achieved the state-of-the-artF1-
score of 95.66%.

1 Introduction
Natural language understanding (NLU) is an es-
sential component of natural human computer in-
teraction and typically consists of identifying the
intent of the users (intent classification) and ex-
tracting the associated semantic slots (slot fill-
ing) (De Mori et al., 2008). We focus on the latter
slot filling task in this paper.

Slot filling can be framed as a sequential
labeling problem in which the most probable
semantic slot labels are estimated for each word
of the given word sequence. Slot filling is a
traditional task and tremendous efforts have
been done, especially since the 1980s when the

Defense Advanced Research Program Agency
(DARPA) Airline Travel Information System
(ATIS) projects started (Price, 1990). Following the
success of deep learning (Hinton et al., 2006;
Bengio, 2009), Recurrent Neural Network
(RNN) (Elman, 1990; Jordan, 1997) and one
of its specific architectures, Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997),
have been widely used since they can cap-
ture temporal dependencies (Yao et al., 2013;
Yao et al., 2014a; Mesnil et al., 2015). The
RNN/LSTM-based slot filling has been extended to
be combined with explicit modeling of label depen-
dencies (Yao et al., 2014b; Liu and Lane, 2015).

In this paper, we first enhance the LSTM-based
slot filling to explicitly model label dependencies
by feeding the output label of the previous time
step to the hidden state of the current time step, as
Mesnil et al. (2015) and Liu and Lane (2015) tried
with RNN. Then we further extend the LSTM-
based slot filling to consider sentence-level in-
formation. In the field of machine translation,
an encoder-decoder LSTM has been gaining at-
tention (Sutskever et al., 2014), where the encoder
LSTM encodes the global information spanning
over the whole input sentence in its last hidden
state. Inspired by this idea, we propose anencoder-
labeler LSTM that leverages the encoder LSTM for
slot filling. First, we encode the input sentence
into a fixed length vector by the encoder LSTM.
Then, we predict the slot label sequence by the la-
beler LSTM whose hidden state is initialized with
the encoded vector by the encoder LSTM. With this
encoder-labeler LSTM, we can predict the label se-
quence while taking the sentence-level information
into consideration. By combining explicit model-
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Figure 1: Neural network architectures for slot filling. Input sentence is “I need a ticket to Seattle”. “B-ToCity” is slot label for

specific meaning and “O”is slot label without specific meaning. “<B>” is beginning symbol for slot sequence.

ing of label dependencies and the proposed encoder-
labeler LSTM, slot filling with jointly considering
label dependencies and sentence-level information
becomes possible.

The main contributions of this paper are two-
folds: (1) Proposed an encoder-labeler LSTM to
leverage sentence-level information for natural lan-
guage understanding. (2) Achieved the state-of-the-
artF1-score of 95.66% in the slot filling task of the
standard ATIS corpus.

2 Proposed Method

We first revisit the LSTM for slot filling and enhance
this to explicitly model label dependencies. Then we
explain the proposed encoder-labeler LSTM.

2.1 LSTM for Slot Filling
LSTM is a specific RNN architecture and is easier
to train thanks to its internal memory cells and gates.
Figure 1(a) shows a typical LSTM for slot filling and
we call this aslabeler LSTM(W) where words are fed
to the LSTM (Yao et al., 2014a).

Slot filling is a sequential labeling task to map a
sequence ofT words xT1 to a sequence ofT slot
labelsyT1 . Each wordxt is represented with aV
dimensional one-hot-vector whereV is the vocabu-
lary size and is transferred tode dimensional con-
tinuous space by the word embedding matrixE ∈
R
de×V asExt. Instead of simply feedingExt into

the LSTM,Context Window is a widely used tech-
nique to jointly considerk preceding and succeeding
words asExt+k

t−k
∈ R

de(2k+1). The LSTM has the
architecture based on Jozefowicz et al. (2015) that
does not have peephole connections and yields the
hidden state sequencehT1 . For each time stept, the
posterior probabilities for each slot label are calcu-
lated by the softmax layer over the hidden stateht.
The word embedding matrixE, LSTM parameters,
and softmax layer parameters are estimated to mini-
mize the negative log likelihood over the correct la-

bel sequences with Back-Propagation Through Time
(BPTT) (Williams and Peng, 1990).

2.2 Explicit Modeling of Label Dependency
A shortcoming of the labeler LSTM(W) is that
it does not consider label dependencies. To ex-
plicitly model label dependencies, we introduce a
new architecture,labeler LSTM (W+L), as shown
in Figure 1(b), where the output label of previ-
ous time step is fed to the hidden state of current
time step, jointly with words, as Mesnil et al. (2015)
and Liu and Lane (2015) tried with RNN. For model
training, one-hot-vector of ground truth label of pre-
vious time step is fed to the hidden state of cur-
rent time step and for evaluation, left-to-right beam
search is used.

2.3 Encoder-labeler LSTM for Slot Filling
We propose two types of the encoder-labeler LSTM
that uses the labeler LSTM(W) and the labeler
LSTM(W+L). Figure 1(d) shows theencoder-
labeler LSTM(W). The encoder LSTM, to the left
of the dotted line, reads through the input sentence
backward. Its last hidden state contains the en-
coded information of the input sentence. The la-
beler LSTM(W), to the right of the dotted line, is
the same with the labeler LSTM(W) explained in
Section 2.1,except that its hidden state is initialized
with the last hidden state of the encoder LSTM. The
labeler LSTM(W) predicts the slot label conditioned
on the encoded information by the encoder LSTM,
which means that slot filling is conducted with tak-
ing sentence-level information into consideration.
Figure 1(e) shows theencoder-labeler LSTM(W+L),
which uses the labeler LSTM(W+L) and predicts
the slot label considering sentence-level information
and label dependencies jointly.

Model training is basically the same as with the
baseline labeler LSTM(W), as shown in Section 2.1,
except that the error in the labeler LSTM is propa-
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Figure 2: Example of ATIS sentence and annotated slots.

gated to the encoder LSTM with BPTT.
This encoder-labeler LSTM is motivated by the

encoder-decoder LSTM that has been applied to ma-
chine translation (Sutskever et al., 2014), grapheme-
to-phoneme conversion (Yao and Zweig, 2015), and
so on. The difference is that the proposed encoder-
labeler LSTM accepts the same input sequence
twice while the usual encoder-decoder LSTM ac-
cepts the input sequence once in the encoder. Note
that the LSTMs for encoding and labeling are differ-
ent in the encoder-labeler LSTM, but the same word
embedding matrix is used both for the encoder and
labeler since the same input sequence is fed twice.

3 Experiments
We first explain the experimental setup. Then we re-
port the results to confirm the improvement by the
proposed encoder-labeler LSTM. Finally, we com-
pare our results with the published results while dis-
cussing the related works.

3.1 Experimental Setup
We used the ATIS corpus, which has
been widely used as the benchmark
for NLU (Price, 1990; Dahl et al., 1994;
Wang et al., 2006; Tur et al., 2010). Figure 2
shows an example sentence and its semantic slot la-
bels in In-Out-Begin (IOB) representation. The slot
filling task was to predict the slot label sequences
from input word sequences.

The performance was measured by theF1-score:
F1 = 2×Precision×Recall

P recision+Recall
, where precision is the ra-

tio of the correct labels in the system’s output and
recall is the ratio of the correct labels in the ground
truth of the evaluation data (van Rijsbergen, 1979).

The ATIS corpus contains the training data of
4,978 sentences and evaluation data of 893 sen-
tences. The unique number of slot labels is 127 and
the vocabulary size is 572. In the following exper-
iments, we randomly selected 80% of the original
training data to train the model and used the remain-
ing 20% as the heldout data (Mesnil et al., 2015).
We reported theF1-score on the evaluation data with
hyper-parameters that achieved the bestF1-score on
the heldout data.

For training, we randomly initialized parame-
ters in accordance with the normalized initializa-
tion (Glorot and Bengio, 2010). We usedADAM
for learning rate control (Kingma and Ba, 2014) and

dropout for generalization with a dropout rate of
0.5 (Srivastava et al., 2014; Zaremba et al., 2014).

3.2 Improvement by Encoder-labeler LSTM
We conducted experiments to compare the labeler
LSTM(W) (Section 2.1), the labeler LSTM(W+L)
(Section 2.2), and the encoder-labeler LSTM (Sec-
tion 2.3). As for yet another baseline, we tried the
encoder-decoder LSTM as shown in Figure 1(c)1.

For all architectures, we set the initial learn-
ing rate to0.001 (Kingma and Ba, 2014) and the
dimension of word embeddings tode = 30.
We changed the number of hidden units in the
LSTM, dh ∈ {100, 200, 300}2, and the size of
the context window,k ∈ {0, 1, 2}3. We used
backward encoding for the encoder-decoder LSTM
and the encoder-labeler LSTM as suggested in
Sutskever et al. (2014). For the encoder-decoder
LSTM, labeler LSTM(W+L), and encoder-labeler
LSTM(W+L), we used the left-to-right beam search
decoder (Sutskever et al., 2014) with beam sizes of
1, 2, 4, and8 for evaluation where the bestF1-score
was reported. During100 training epochs, we re-
ported theF1-score on the evaluation data with the
epoch when theF1-score for the heldout data was
maximized. Table 1 shows the results.

By comparing labeler LSTM(W) and labeler
LSTM(W+L), we found improvement by explic-
itly modeling label dependencies. The pro-
posed encoder-labeler LSTM(W) and encoder-
labeler LSTM(W+L) both outperformed the labeler
LSTM(W) and labeler LSTM(W+L) by consider-
ing sentence-level information. It is noteworthy
that the sentence-level information used by the pro-
posed encoder-labeler LSTM(W+L) is effective on
top of the label dependencies modeled by the labeler
LSTM(W+L).

Contrary to expectations,F1-score by the
encoder-labeler LSTM(W+L) was worse than that
by the encoder-labeler LSTM(W). A possible rea-
son is that the model structure of the encoder-labeler
LSTM(W+L) is more complex than that of the
encoder-labeler LSTM(W) and optimization is more
difficult with the limited training data of ATIS.

1Length of the output label sequence is equal to that of the
input word sequence in a slot filling task. Therefore, ending
symbol for slot sequence is not necessary.

2When using deep architecture later in this section,dh was
tuned for each layer.

3In our preliminary experiments with using the labeler
LSTM(W), F1-scores deteriorated withk ≥ 3.



F1-score
(c) Encoder-decoder LSTM 80.11
(a) Labeler LSTM(W) 94.80
(d) Encoder-labeler LSTM(W) 95.29∗

(b) Labeler LSTM(W+L) 94.91
(e) Encoder-labeler LSTM(W+L) 95.19

Labeler Deep LSTM(W) 94.91
Encoder-labeler Deep LSTM(W) 95.47∗

Table 1: Experimental results on ATIS slot filling task. Left-

most column corresponds to Figure 1. Lines with bold fonts

use proposed encoder-labeler LSTM.F1-scores with∗ outper-

formed published bestF1-score of 95.25%. [%]

For the encoder-labeler LSTM(W) which was bet-
ter than the encoder-labeler LSTM(W+L), we tried
the deep architecture of 2 LSTM layers (Encoder-
labeler deep LSTM(W)). We also trained the corre-
spondinglabeler deep LSTM(W). As in Table 1, we
obtained improvement from 94.91% to 95.47% by
the proposed encoder-labeler deep LSTM(W).

Lastly, F1-score by the encoder-decoder LSTM
was worse than that by the labeler LSTM(W). Since
the slot label is closely related with the input word,
the encoder-decoder LSTM was not an appropriate
approach for the slot filling task.

3.3 Comparison with Published Results
Table 2 summarizes the recently published results on
the ATIS slot filling task and compares them with the
results from the proposed methods.

Recent research has been focusing on RNN and
its extensions. Yao et al. (2013) used RNN and out-
performed methods that did not use neural networks,
such as SVM (Raymond and Riccardi, 2007) and
CRF (Deng et al., 2012). Mesnil et al. (2015) tried
bi-directional RNN, but reported degradation com-
paring with their single-directional RNN (94.98%).
Bi-directional RNN was not effective after using
context window in this task. Yao et al. (2014a)
introduced LSTM and deep LSTM and obtained
improvement over RNN. Peng and Yao (2015) pro-
posed RNN-EM that used an external memory archi-
tecture to improve the memory capability of RNN.

Many studies have been also conducted
to explicitly model the label dependencies.
Xu and Sarikaya (2013) proposed CNN-CRF that
explicitly models the dependencies of the output
from CNN. Mesnil et al. (2015) used hybrid RNN
that combined Elman-type and Jordan-type RNNs.
Liu and Lane (2015) used the output label for
the previous word to model label dependencies

F1-score
RNN (Yao et al., 2013) 94.11
CNN-CRF (Xu and Sarikaya, 2013) 94.35
Bi-directional RNN (Mesnil et al., 2015) 94.73
LSTM (Yao et al., 2014a) 94.85
RNN-SOP (Liu and Lane, 2015) 94.89
Hybrid RNN (Mesnil et al., 2015) 95.06
Deep LSTM (Yao et al., 2014a) 95.08
RNN-EM (Peng and Yao, 2015) 95.25
Encoder-labeler LSTM(W) 95.40
Encoder-labeler Deep LSTM(W) 95.66
Table 2: Comparison with published results on ATIS slot filling

task. [%]

(RNN-SOP).
By comparing with these methods, the main dif-

ference of our proposed encoder-labeler LSTM is
the use of encoder LSTM to leverage sentence-level
information. For our encoder-labeler LSTM(W) and
encoder-labeler deep LSTM(W), we further con-
ducted hyper-parameter search with a random search
strategy (Bergstra and Bengio, 2012). We tuned the
dimension of word embeddings,de ∈ {30, 50, 75},
number of hidden states in each layer,dh ∈
{100, 150, 200, 250, 300}, size of context window,
k ∈ {0, 1, 2}, and initial learning rate sampled from
uniform distribution in range[0.0001, 0.01]. To the
best of our knowledge, the previously published best
F1-score was 95.25%4 (Peng and Yao, 2015). Our
encoder-labeler LSTM(W) and encoder-labeler deep
LSTM(W) achieved 95.40% and 95.66%F1-score,
respectively, both outperforming the previously pub-
lishedF1-score as shown in Table 2.

Note some of the previous results used whole
training data for model training while others used
randomly selected 80% of data for model training
and the remaining 20% for hyper-parameter tuning.
Our results are based on the latter setup.

4 Conclusion
We enhanced the LSTM-based slot filling to model
label dependencies and proposed an encoder-labeler
LSTM to leverage sentence-level information. By
combining these methods, slot filling with jointly
considering label dependencies and sentence-level

4 There are other published results that achieved betterF1-
scores by using other information on top of word features.
Vukotic et al. (2015) achieved 96.16%F1-score by using the
named entity (NE) database when estimating word embeddings.
Yao et al. (2013) and Yao et al. (2014a) used NE features in ad-
dition to word features and obtained improvement with both the
RNN and LSTM.



information became possible. We obtained the state-
of-the-artF1-score in a slot filling task with using
the standard ATIS corpus. Our future work includes
evaluation on other data sets.
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