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Abstract. This paper contributes to a theory of the behaviour of “fisitate”
systems that is generic in the system type. We propose tblasystems are mod-
eled as coalgebras with a finitely generated carrier for dofeimctor on a locally
finitely presentable category. Their behaviour gives risa hew fixpoint of the
coalgebraic type functor callddcally finite fixpoint(LFF). We prove that if the
given endofunctor preserves monomorphisms then the LF&yalexists and is a
subcoalgebra of the final coalgebra (unlike the rationabfiixppreviously studied
by Adamek, Milius and Velebil). Moreover, we show that tHefLis characterized
by two universal properties: 1. as the final locally finitelgngrated coalgebra,
and 2. as the initial fg-iterative algebra. As instance$efltFF we first obtain the
known instances of the rational fixpoint, e.g. regular laaggs, rational streams
and formal power-series, regular trees etc. And we obtaimaber of new exam-
ples, e.g. (realtime deterministic resp. non-deternig)isontext-free languages,
constructivelyS-algebraic formal power-series (and any other instanckeefien-
eralized powerset construction by Silva, Bonchi, Bonsangad Rutten) and the
monad of Courcelle’s algebraic trees.

1 Introduction

Coalgebras capture many types of state based system witimificam and mathemati-
cally rich framework [39]. One outstanding feature of the@ml theory idinal seman-
ticswhich gives a fully abstract account of system behaviourgxample, coalgebraic
modelling of deterministic automata (without a finitenesstriction on state sets) yields
the set of all formal languages as a final model, and restgdb finite automata one
precisely obtains the regular languages [38]. This coomedpnce has been generalized
to locally finitely presentable categories [8, 20], whiniely presentablebjects play
the role of finite sets, leading to the notionrational fixpointthat provides final se-
mantics to all models with finitely presentable carrier [3ijs known that the rational
fixpoint is fully abstract (identifies all behaviourally egalent states) as long as finitely
presentable objects agree with finitely generated objetkeibase category [12, Propo-
sition 3.12]. While this is the case in some categories &tg, posets, graphs, vector
spaces, commutative monoids), it is currently unknown imeobase categories that
are used in the construction of system models, for exampidempotent semirings
(used in the treatment of context-free grammars [43]), gebtas for the stack monad
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(used for modelling configurations of stack machines [23])t even fails, for example
in the category of finitary monads on sets (used in the caitgjmstudy of algebraic
trees [7]), or Eilenberg-Moore categories for a monad inegein(the target category of
generalized determinization [41], in which the above exiasfive). Coalgebras over a
category of Eilenberg-Moore algebras ofet in particular provide a paradigmatic set-
ting: automata that describe languages beyond the reguigubges consist of a finite
state set, but their transitions produce side effects ss¢heamanipulation of a stack.
These can be described by a monad, so that the (infinite) sgstéfm states (machine
states plus stack content) is described by a free algebr#hdbmonad) that is gener-
ated by the finite set of machine states. This is formalizethbygeneralized powerset
construction [41] and interacts nicely with the coalgebfeamework we present.

Technically, the shortcoming of the rational fixpoint is doehe fact that finitely
presentable objects are not closed under quotients, sththattional fixpoint itself may
fail to be a subcoalgebra of the final coalgebra and so idestifio little behaviour. The
main conceptual contribution of this paper is the insight #iso in cases where finitely
presentable and finitely generated do not agredottadly finite fixpointprovides a fully
abstract model of finitely generated behaviour. We give astantion of the locally
finite fixpoint, and support our claim both by general resaltsl concrete examples:
we show that under mild assumptions, the locally finite fixp@ilways exists, and is
indeed a subcoalgebra of the final coalgebra. Moreover, weaicharacterization of
the locally finite fixpoint as the initial iterative algebi/e then instantiate our results
to several scenarios studied in the literature.

First, we show that the locally finite fixpoint is universah¢afully abstract) for
the class of systems produced by the generalized powensgtragotion ovebet: every
determinized finite-state system induces a unique homdmimrpto the locally finite
fixpoint, and the latter contains precisely the finite-stathaviours.

Applied to the coalgebraic treatment of context-free laaggs, we show that the lo-
cally finite fixpoint yields precisely the context-free larages, and real-time determin-
istic context-free languages, respectively, when modellsing algebras for the stack
monad of [23]. For context-free languages weighted in a S5, or equivalently
for constructivelyS-algebraic power series [36], the locally finite fixpoint qomses
precisely those, by phrasing the results of Winter et al} {d4erms of the generalized
powerset construction. Our last example shows the apjilityats§ our results beyond
categories of Eilenberg-Moore algebras o$et, and we characterize the monad of
Courcelle’s algebraic trees over a signature [16, 7] asdbally finite fixpoint of an
associated functor (on a category of monads), solving an ppgblem of [7].

The work presented here is based on the third author’s mthstsis in [45]. Most
proofs are omitted; they can be found in the appendix.

2 Preliminaries and Notation

Locally finitely presentable categoriesA filtered colimitis the colimit of a diagram
D — C whereD is filtered (every finite subdiagram has a cocon®jnanddirected
if D is additionally a poseft-initary functorspreserve filtered (equivalently directed)
colimits. ObjectsC € C arefinitely presentabléfp) if the hom-functorC(C, —) pre-
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serves filtered (equivalently directed) colimits, dimttely generatedfg) if C(C, —)
preserves directed colimits of monos (i.e. colimits of dieel diagrams where all con-
necting morphisms are monic). Clearly any fp object is fd,rmt vice versa. Also, fg
objects are closed under strong epis (quotients) which failfp objects in general. A
cocomplete category imcally finitely presentablglfp) if the full subcategoryCy, of
finitely presentable objects is essentially small, i.e pigalisomorphism only a set, and
every objectC' € C is a filtered colimit of a diagram ids,. We refer to [20, 8] for
further details.

It is well known that the categories of sets, posets and graph Ifp with finitely
presentable objects precisely the finite sets, posetshgregspectively. The category of
vector spaces is Ifp with finite-dimensional spaces being¥ery finitary variety is Ifp
(i.e. an equational class of algebras induced by finitg-raperations or equivalently the
Eilenberg-Moore category for a finitaBet-Monad, see Section 4.1 later). The finitely
generated objects are the finitely generated algebras ratedyfipresentable objects are
algebras specified by finitely many generators and relatidris includes the categories
of groups, monoids, (idempotent) semirings, semi-modetes Every Ifp category has
mono/strong epi factorization [8, Proposition 1.16],&eeryf factors agf = m-e with
m mono (denoted by-), e strong epi (denoted by»), and we call the domailm( )
of e theimageof f. Any strong epk has the diagonal fill-in property,i.@.- g =h-e
with m mono ancd: strong epi gives a uniquésuch thatn - d = handg = d - e.

Coalgebras.If H : C — C is an endofunctorH-coalgebrasare pairs(C, c¢) with
c¢: C — HC,andC is thecarrier of (C,c). Homomorphismg : (C,¢) — (D,d)
are mapsf : C — D such thatHf - ¢ = d - f. This gives a category denoted
by CoalgH. If its final object exists then this findl-coalgebra v H, 7) represents a
canonical domain of behaviours éf-typed systems, and induces for egch c¢) a
unique homomorphism, denoted bY, giving semantics to the systefd, ¢). The fi-
nal coalgebra always exists providéds Ifp and H is finitary. The forgetful functor
CoalgH — C creates colimits and reflects monos and epis. A morplfigmCoalgH is
mono-carried(resp.epi-carried if the underlying morphism i€ is monic (resp. epic).
Strong epi/mono factorizations lift frorfi to CoalgH wheneverH preserves monos
yielding epi-carried/mono-carried factorizationsd#kected union of coalgebras the
colimit of a directed diagram i€oalg H where all connecting morphisms are mono-
carried.

The Rational Fixpoint. ForC Ifp and H : C — C finitary let Coalg, H denote the
full subcategory ofCoalgH of coalgebras with fp carrier, artbalg, H the full sub-
category ofCoalgH of coalgebras that arise as filtered colimits of coalgebrisis fp
carrier [31, Corollary 111.13]. The coalgebraswalgy, [/ are calledfp coalgebrasand
for C = Set those are precisely the locally finite coalgebras (i.e.¢lummlgebras where
every element is contained in a finite subcoalgebra). Thélfimaoalgebra exists and
is the colimit of the inclusiorCoalgg, H — CoalgH, and it is a fixpoint off (see [6])
called therational fixpointof H. Here are some examples: the rational fixpoint of a poly-
nomial set functor associated to a finitary signattiris the set of rational-trees [6],
i.e. finite and infiniteX’-trees having, up to isomorphism, finitely many subtreeg,onl
and one obtains rational weighted languages for NoethegariringsS for a functor
on the category of-modules [12], and rational-trees for a functor on the category of
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presheaves on finite sets [2] or for a related functor on nahsiets [34]. If the classes
of fp and fg objects coincide id, then the rational fixpoint is a subcoalgebra of the
final coalgebra [12, Theorem 3.12]. This is the case in they@leaamples, but not in
general, see [12, Example 3.15] for a concrete example whemational fixpoint does
not identify behaviourally equivalent states. Converselen if the classes differ, the
rational fixpoint can be a subcoalgebra, e.g. for any cohftactor.

Iterative Algebras. If H : C — C is an endofunctor, af/-algebra(4,a : HA —

A) is iterative if every flat equation morphisma : X — HX + A whereX is an

fp object has a uniqusolution i.e. if there exists a unique’ : X — A such that

el = [a,ida] - (He! 4 id4) - e. The rational fixpoint is also characterized as the initial
iterative algebra [6] and is the starting point of the coblg& approach to Elgot's
iterative theories [18] and to the iteration theories of@oandEsik [11, 6, 3, 4].

3 The Locally Finite Fixpoint

The locally finite fixpoint can be characterized similarlythe rational fixpoint, but with
respect to coalgebras with finitely generated (not finitegspntable) carrier. We show
that the locally finite fixpoint always exists, and is a subgebra of the final coalgebra,
i.e. identifies all behaviourally equivalent states. As asamuence, the locally finite
fixpoint provides a fully abstract notion of finitely genexdtbehaviour. From now on,
we rely on the following:

Assumption 3.1. Throughout the rest of the paper we assume ¢hiatan Ifp category
and thatH : C — C is finitary and preserves monomorphisms.

As for the rational fixpoint, we denote the full subcategofyoalgH comprising all
coalgebras with finitely generated carrier Gyalgg, [/ and have the following notion
of locally finitely generated coalgebra.

Definition 3.2. A coalgebraX = HX is calledlocally finitely generated (Ifgjf for
all f: S — X with S finitely generated, there exist a coalgelrta P — HP in
Coalge, H, a coalgebra morphism : (P, p) — (X, x) and somef’ : S — P such that
h- f" = f.Coalg;,H C CoalgH denotes the full subcategory of Ifg coalgebras.

Equivalently, one can characterize Ifg coalgebras in tevfrsubobjects and subcoal-
gebras, making it a generalization of lotcal finitenessn Set, i.e. the property of a
coalgebra that every element is contained in a finite sulgebah.

Lemma 3.3. X & HX is an Ifg coalgebra iff for all fg subobjecS>L>X, there exist
a subcoalgebra : (P,p) — (X,z)andamongf’ : S — Pwithh- f' = f,i.e.Sis
a subobject of.

Proof. (=) Given some mong : S »— X, factor the induced into some strong
epi-carried and mono-carried homomorphisms and use thaijégts are closed under
strong epis.€) Factorf : S — X into an epiand among: Im(f) — X and use the
diagonal fill-in property for. O
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Evidently all coalgebras with finitely generated carriems g. Moreover, Ifg coalge-
bras are precisely the filtered colimits of coalgebras f(aralgg, H.

Proposition 3.4. Every filtered colimit of coalgebras fro@oalgg, H is Ifg.

Proof (Sketch; for the full proof see the append@ae first proves that directed unions
of coalgebras fronCoalge, /1 are Ifg. Now given a filtered colimit; : X; — C where
X; are coalgebras iQoalgg, H, one epi-mono factorizes every colimit injection:=

( x; % 1™ ¢ ). Using the diagonalization of the factorization one seasttheT;
form a directed diagram of subobjects@f Furthermore” is the directed union of the
T; and therefore an Ifg coalgebra as desired. O

Proposition 3.5. Every Ifg coalgebrd X, z) is a directed colimit of its subcoalgebras
from Coalge, H.

Proof. Recall from [8, Proof | of Theorem 1.70] that is the colimit of the diagram of
all its finitely generated subobjects. Now the subdiagraramby all subcoalgebras of
X is cofinal. Indeed, this follows directly from the fact tHa, ) is an Ifg coalgebra:
for every subobject — X, S fg, we have a subcoalgebra oK, x) in Coalge,
containings. O

Corollary 3.6. The Ifg coalgebras are precisely the filtered colimits, ouigglently
directed unions, of coalgebras with fg carrier.

As a consequence, a coalgebra is finalaalg, I if there is a unique morphism from
every coalgebra with finitely generated carrier.

Proposition 3.7. An Ifg coalgebral. is final in Coalg,, H iff for every for every coalge-
bra X in Coalgg, H there exists a unique coalgebra morphism fréhto L.

The proof is analogous to [31, Theorem 3.14]; the full argot@an be found in the
Appendix. Cocompleteness 6fensures that the final Ifg coalgebra always exists.

Theorem 3.8. The categoryoalg, H has a final object, and the final Ifg coalgebra is
the colimit of the inclusioi€oalgg, H — Coalg, H.

Proof. By Corollary 3.6, the colimit of the inclusioQoalge, H — Coalg, H is the
same as the colimit of the entif@alg, /. And the latter is clearly the final object of
Coalg H. O

This theorem provides a construction of the final Ifg coaftgedwllecting precisely the
behaviours of the coalgebras with fg carriers. In the follgwve shall show that this
construction does indeed identify precisely behavioydjuivalent states, i.e. the final
Ifg coalgebra is always a subcoalgebra of the final coalgelust like fg objects are
closed under quotients — in contrast to fp objects — we havmias property of Ifg
coalgebras:

Lemma 3.9. Lfg coalgebras are closed under strong quotients, i.e. ¥@rg strong epi
carried coalgebra homomorphismi§ — Y, if X is Ifg then so is¥".
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The failure of this property for Ifp coalgebras is the reasdty the rational fixpoint
is not necessarily a subcoalgebra of the final coalgebrarapauricular the rational
fixpointin [12, Example 3.15] is an Ifp coalgebra for whicletbroperty fails.

Theorem 3.10. The final Ifg H-coalgebra is a subcoalgebra of the findlcoalgebra.

Proof. Let (L, ¢) be the final Ifg coalgebra. Consider the unique coalgebrghism
L — vH and take its factorization:

d (L, 0) S (I,i) —2— (vH,T) > with e strong epi inC.

N
< it

By Lemma 3.9,/ is an Ifg coalgebra and so by finality &f we have the coalgebra
morphismit such that ig, = if - e. It follows thate is monic and therefore an iso. O

In other words, the final IfgH-coalgebra collects precisely the finitely generated be-
haviours from the final/-coalgebra. We now show that the final Ifg coalgebra is a
fixpoint of H which hinges on the following:

Lemma 3.11. For any Ifg coalgebraC’ < HC, the coalgebrad C e HHC s Ifg.

Proof. Considerf : S — HC with S finitely generated. A€ is Ifp we know that
HC is the colimit of its fg subobjects, and sb: S — HC factors through some
subobjectin, : Q@ — HC with Q fg and f = in, - f'. On the other hand,C, c¢)

is Ifg, i.e. the directed union of its subcoalgebras fr@oalgg, H. Then, sinceH is
finitary and mono-preservingl C = H HC is also a directed union and the morphism

ing : Q — HC factors through somé/ P 12 {HHP with (P,p) € Coalgg, H via
in, : (P,p) — (C,c), i.e.Hin, - ¢ = in,. Finally, we can construct a coalgebra with fg
carrier

O+ P gp A gg+ P

and a coalgebra homomorphidiin, - [¢,p] : @ + P — HC. In the diagram

g f HC He HHC
THinp THHin,,
p o HP i HHP H(Hin, - [q,p])

%, ”J [\\] TH[q,p]

Q inl Q+P q;p. HP Hinr H(Q+P)

every part trivially commutes, sHin,, - [g, p] is the desired homomorphism. O

So with a proof in virtue to Lambek’s Lemma [28, Lemma 2.2], eain the desired
fixpoint:

Theorem 3.12. The carrier of the final Ifgi{ -coalgebra is a fixpoint of{ .

We denote the above fixpoint By H, ¢) and call it thelocally finite fixpoint(LFF)

of H. In particular, the LFF always exists under Assumption Brbyiding a finitary
corecursion principle.
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3.1 Iterative Algebras

Recall from [6, 31] that the rational fixpoint of a functéf has a universal property
both as a coalgebra and as an algebrdforf his situation is completely analogous for
the LFF. We already established its universal property asatégebra in Theorem 3.8.
Now we turn to study the LFF as an algebra fér

Definition 3.13. Anequation morphismin an objectA is a morphismX — HX + A,

whereX is a finitely generated object. H is the carrier of an algebrax : HA — A,

we call theC-morphismef : X — A a solutionof e if [a,ida] - Hel +id4 - e = ef.

An H-algebra A is calledfg-iterativeif every equation morphism id has a unique
solution.

Example 3.14 (see [30, Example 2.5 (iii))[)he final H-coalgebra (considered as an
algebra forH) is fg-iterative. In fact, in this algebra even morphistis—» HX + vH
whereX is not necessarily an fg object have a unique solution.

Definition 3.15. For fg-iterative algebrasd and C, an equation morphisra : X —
HX + A and a morphismh : A — C of C define an equation morphisie e in C

as x < s pgx+ ATX* Tl pxy o ¢ We say thah preserves the solutiosi of

eif h-ef = (h e e)T. The morphisnt is calledsolution preservingf it preserves the
solution of any equation morphise

Similarly to [6], the algebra homomorphisms are preciskéygolution preserving mor-
phisms between iterative algebras, the proof is also vemitai

Proposition 3.16. The locally finite fixpoint is fg-iterative.

Proof (Sketch)One cantransform: X — HX+9YH into an Ifg coalgebraoX +JH.
Then one shows that there is a one-to-one correspondengedrehomomorphisms
into Y H and solutions ot in the algebrd—! : H(JH) — Y H by diagram chasing.

O

Theorem 3.17. For an fg-iterative algebran : HA — A and an Ifg coalgebra :
X — HX thereis a uniqgu€-morphismu, : X — A such thatu, = o - Hu, - e.

Corollary 3.18. The locally finite fixpoint is the initial fg-iterative algeh

3.2 Relation to the Rational Fixpoint

There are examples, where the rational fixpoint is not a salgebra of the final coal-
gebra. In categories, where fp and fg objects coincide atierral fixpoint and the LFF
coincide as well (cf. the respective colimit-constructiniBection 2 and Theorem 3.8).
In this section we will see, under slightly stronger assuoms, that fg-carried coalge-
bras are quotients of fp-carried coalgebras, and in paatitiie locally finite fixpoint is
a quotient of the rational fixpoint: namely its image in theficoalgebra.
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Assumption 3.19. In addition to Assumption 3.1, assume that in the base catafjo
every finitely presentable object is a strong quotient of &dfin presentable strong epi
projective object and that the endofunctdralso preserves strong epis.

The condition that every fg object is the strong quotient sfrang epi projective often
is phrased abkaving enough strong epi projectiveisd]. This assumption is apparently
very strong but still is met in many situations:

Example 3.20. — In categories in which all (strong) epis are split, everyeabjs pro-
jective and any endofunctor preserves epis, e.§etror Vecy.

— In the category of finitary endofunctofans(Set), all polynomial functors are pro-
jective. The finitely presentable functors are quotientgafnomial functorsd 5,
whereX is a finite signature.

— In the Eilenberg-Moore categoBet” for a finitary monadl’, strong epis are sur-
jectiveT-algebra homomorphisms, and thus preserved by any endofumsSet?,
every free algebrd X is projective; this is easy to see using the projectivityXof
in Set. Every finitely generated object Skt” is a strong quotient of some free
algebral’ X with X finite. For more precise definitions, see Section 4.1 later.

Proposition 3.21. Every coalgebra inCoalg, / is a strong quotient of a coalgebra
with finitely presentable carrier.

Theorem 3.22. 9 H is the image of the rational fixpoiptH in the final coalgebra.

Proof. Consider the factorizatiofoH, r) 5 (B,b) N (vH,T). SincepH is the
colimit of all fp carried H-coalgebras it is an Ifg coalgebra by Proposition 3.4 us-
ing that fp objects are also fg. Hence, by Lemma 3.9 the cbadgB is Ifg, too. By
Proposition 3.7 it now suffices to show that from evel§; x) € Coalgg, H there exists

a unique coalgebra morphism int®, b). Given (X, z) in Coalgg, H, it is the quotient

q : (P,p) - (X,z) of an fp-carried coalgebra by Proposition 3.21. Hence, we ob
tain a unique coalgebra morphigr : (P,p) — (oH,r). By finality of vH, we have
m-e-pl =at-q(with2' : (X,2) — (vH,7)). So the diagonal fill-in property induces
a homomorphisniX, z) — (B, b), being the only homomorphistX, ) — (B, b) by

the finality ofv H and becauss: is monic. O

4 Instances of the Locally Finite Fixpoint

We will now present a number of instances of the LFF. Firsentitat all the known
instances of the rational fixpoint (see e.g. [6, 31, 12] ase @lstances of the locally
finite fixpoint, because in all those cases the fp and fg obmincide. For example, the
class of regular languages is the rational fixpoir af(—)* onSet. In this section, we
will study further instances of the LFF that are most likett mstances of the rational
fixpoint and which — to the best of our knowledge — have not lwmacterized by a
universal property yet:

1. Behaviours of finite-state machines with side-effectsassidered by the general-
ized powerset construction (cf. Section 4.1),particyldré following.
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(a) Deterministic and ordinary context-free languagesioled as the behaviours
of deterministic and non-deterministic stack-machinespectively.

(b) Constructivelys-algebraic formal power series, i.e. the “context-fredidass
of weighted languages with weights from a semirff\g/ielded from weighted
context-free grammars.

2. The monad of Courcelle’s algebraic trees.

4.1 Generalized Powerset Construction

The determinization of a non-deterministic automatongi$ite powerset construction
is an instance of a more general framework, described by SBenchi, Bonsangue,
and Rutten [41] based on an observation by Bartels [10] (e Jacobs [26]). In
that generalized powerset constructicen automaton with side-effects is turned into
an ordinary automaton by internalizing the side-effecthastates. The LFF interacts
well with this construction, because it precisely captuhesbehaviours of finite-state
automata with side effects. The notion of side-effect isrfalized by a monad, which
induces the category, in which the LFF is considered.

In the following we assume that readers are familiar with adsand Eilenberg-
Moore algebras (see e.g. [29] for an introduction). For a &addh on C we denote by
CT the category of Eilenberg-Moore algebras. Recall from [@dlary 2.75] that ifC
is Ifp (in most of our example§ is Set) andT is finitary thenC? is Ifp, too, and for
every fp objectX the free Eilenberg-Moore algebfaX is fp in C7. In all the examples
we consider below, the classes of fp and fg objects eithergtly differ or it is still
unknown whether these classes coincide.

Example 4.1.In Sections 4.4 and 4.5 we are going to make use of Moggi'spiare
monad transformer (see e.g. [15]). Let us recall that for edfisbjectF, the finitary
functor (—) + E together with the unifx = inl : X — X + E and multiplication
ux =idx + [idg,idg] : X + E+ E — X + E form a finitary monad, thexception
monad Its algebras ard’-pointed objects, i.e. object’¥, together with a morphism
E — X, and homomorphisms are morphisms preserving the poiriaghe induced
Eilenberg-Moore category is just the slice category** =~ E/C.

Now, given any monad’ we obtain a new mondfl(— + E) with obvious unit and
multiplication. An Eilenberg-Moore algebra f@f(— + E) consists of an Eilenberg-
Moore algebra fofi” and anE-pointing, and homomorphisms afealgebra homomor-
phisms preserving the pointing [25].

Now an automaton with side-effects is modelled astafi-coalgebra, wher& is a
finitary monad or€ providing the type of side-effect. For example, f61X = 2 x X*,
where X' is an input alphabe = {0,1} andT the finite powerset monad d$et,
H'T-coalgebras are non-deterministic automata. Howeverctiadgebraic semantics
using the finalHT-coalgebra does not yield the usual language semantics ref no
deterministic automata. To obtain this one considers tha &oalgebra of a lifting of
HtoC™. Denote by : CT — C the canonical forgetful functor.

Definition 4.2. For a functorH : C — C and amonad : C — C, alifting of H is a
functorH” : CT — CT suchthatd - U =U - HT.

If such a (not necessarily unique) lifting exists, the gatired powerset construc-
tion transforms andT-coalgebra into a”'-coalgebra orC”: For a coalgebra: :
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X — HTX, HTX carries an Eilenberg-Moore algebra, and one uses freelfiess o
the Eilenberg Moore algebrﬁX to obtain a canonical-algebra homomorphisat :
(TX,u?) — HT(TXﬂ uT). The coalgebraic language semantics (X, x) is then
given by X TX*—)I/HT i.e. by composing the unique coalgebra morphism in-
duced byz! with 1. This construction yields a funct@¥ : Coalg(HT) — CoalgH™
mapping coalgebra¥ < HTX to z! and homomorphismg to 7'f (see e.qg. [12,
Proof of Lemma 3.27] for a proof).

Now our aim is to show that the LFF &f” characterizes precisely the coalgebraic
language semantics of all fp-carriéfli’-coalgebras. As the right adjoibt preserves
monos and is faithful, we know th&” preserves monos, and Ass finitary, filtered
colimits inC™ are created by the forgetful functor@and we therefore see th&t is
finitary. Thus, by Theorem 3.8.H” exists and is a subcoalgebradi”. By [37] and
[10, Corollary 3.4.19], we know thatH T is carried byv H equipped with a canonical
algebra structure.

Now let us turn to the desired characterizationdéf”. Formally, the coalgebraic
language semantics of all fp-carriétll’-coalgebras is collected by forming the colimit

k: K — HK of the diagranCoalgg, HT EAN CoalgHT g, CoalgH. This coalgebra
K is not yet a subcoalgebra oftf (for C = Set that means, not all behaviourally
equivalent states are identified i), but taking its image i H we obtain the LFF:

Proposition 4.3. The imagg(/, ) of the unique coalgebra morphiski : K — vH”
is precisely the locally finite fixpoint of the lifting .

One can also directly take the union of all desired behasgidorC = Set:

Theorem 4.4. The locally finite fixpoint of the liftingZ” comprises precisely the im-
ages of determinizeH T-coalgebras:

H" = | 27 [1X] = ] 2% JCcvHT. (1)
v X HTX : X—>HTX
X finite X finite

This result suggests that the locally finite fixpoint is thghtiobject to consider in order
to represent finite behaviour. We now instantiate the géttezary with examples from
the literature to characterize several well-known notiasi& FF.

4.2 The Languages of Non-deterministic Automata

Let us start with a simple standard example. We already imeedi that non-determi-
nistic automata are coalgebras for the functor+ 2 x Px(X)*. Hence they aréi T-
coalgebras foff = 2 x (—)* andT = 7P the finite powerset monad &et. The above
generalized powerset construction then instantiateseagghal powerset construction
that assigns to a given non-deterministic automaton itsrdehization.

Now note that the final coalgebra féf is carried by the sef = P(X*) of all
formal languages oveX with the coalgebra structure given by £ — 2 with o(L) = 1
iff L contains the empty word and £ — £* with ¢(L)(s) = {w | sw € L} the left
language derivative. The functéf has a canonical liftindZ” on the Eilenberg-Moore
category ofP;, viz. the category of join semi-lattices. The final coalgekil ” is carried
by all formal languages with the join semi-lattice struetgiven by union ané and
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with the above coalgebra structure. Furthermore, the ebajc language semantics
of x : X — HTX assigns to every state of the non-deterministic automatahe
language it accepts. Observe that join semi-lattices fosorealledocally finite variety
i.e. the finitely presentable algebras are precisely theefomes. Hence, Theorem 4.4
states that the LFF aff " is precisely the subcoalgebraaff T formed by all languages
accepted by finite NFA, i.e. regular languages.

Note that in this example the LFF and the rational fixpoinhcade since both fp
and fg join semi-lattices are simply the finite ones. Simiharacterizations of the
coalgebraic language semantics of finite coalgebras fdilom Theorem 4.4 in other
instances of the generalized powerset construction frdth(ef. e.g. the treatment of
the behaviour of finite weighted automata in [12]).

We now turn to examples that, to the best of our knowledge)atde treated using
the rational fixpoint.

4.3 The Behaviour of Stack Machines

Push-down automata are finite state machines with infinitedyly configurations. It
is well-known that deterministic and non-deterministicpdown automata recognize
different classes of context-free languages. We will cttaréze both as instances of the
locally finite fixpoint, using the results from [23] on staclaohines, which can push or
readmultipleelements to or from the stack in a single transition, respelgt

That is, a transition of a stack machine in a certain statesistmof reading an
input character, going to a successor state based on tHesgiggmost elements and
of modifying the topmost elements of the stack. These stpekations are captured by
the stack monad.

Definition 4.5 (Stack monad, [22, Proposition 5])For a finite set of stack symbols
I', the stack monads the submonad’ of the store monad— x I'*)’" for which the
elementgr, t) of TX C (X x ') = XTI x (I'*)!" satisfy the following restriction:
there exists: depending om, ¢ such that for everyw € I'* andu € I'*, r(wu) = r(w)
andt(wu) = t(w)u.

Note that the parametér gives a bound on how may of the topmost stack cells the
machine can access in one step.

Using the stack monad, stack machinesHfe-coalgebras, wherel = B x (—)*
is the Moore automata functor for the finite input alphabednd the seB of all pred-
icates mapping (initial) stack configurations to outputueasl from 2, taking only the
topmostk elements into accoun8 = {p € 2! | 3k € Ny : Vw,u € I'*,|w| > k :
p(wu) = p(w)} C 27",
The final coalgebraH is carried byB>" which is (modulo power laws) a set of pred-
icates, mapping stack configurations to formal languagesc@arov et al. [23] show
that H lifts to Set” and conclude that finite-staféT-coalgebras match the intuition
of deterministicpushdown automata without spontaneous transitions. Tiguges
accepted by those automata are preciselyr¢la¢time deterministic context-free lan-
guages this notion goes back to Harrison and Havel [24]. We obthm following,
with ~o playing the role of an initial symbol on the stack:
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Theorem 4.6. The locally finite fixpoint off” is carried by the set of all mapg <
B*" such that for any fixedy € I', {w € 2* | f(w)(y) = 1} is a real-time
deterministic context-free language.

Proof. By [23, Theorem 5.5], a language is a real-time deterministic context-free
language iff there exists some : X — HTX, X finite, with its determinization
zf . TX — HTX and there exist € X andy, € I" such thatf = 2% . n%(s) € B¥"
andf(w)(yo) = 1forallw € X*. The rest follows by (1). O

Just as for pushdown automata, the expressiveness of stathkines increases when
equipping them with non-determinism. Technically, thiddme by considering thaon-
deterministic stack mondtl’, i.e. T’ denotes a submonad of the non-deterministic store
monadP;(— x I'*)T", as described in [23, Section 6]. In the non-determinigtitirsy, a
similar property holds, namely that the determiniZ&@’-coalgebras with finite carrier
describe precisely the context-free languages [23, Tine6r8]. Combine this with (1):

Theorem 4.7. The locally finite fixpoint of#Z" is carried by the set of all maps €
B*" such that for any fixedy € I', {w € X* | f(w)(y) = 1} is a context-free
language.

4.4 Context-Free Languages and Constructively-Algebraic Power Series

One generalizes from formal (resp. context-free) langsdgeaveighted formal (resp.
context-free) languages by assigning to each word a weigint & fixed semiring. More
formally, a weighted language — a.kfarmal power series- over an input alphabet

is defined as a mafi* — S, whereS is a semiring. The set of all formal power series is
denoted bys{ X ). Ordinary formal languages are formal power series ovebtiodean
semiringB = {0, 1}, i.e. mapsX* — {0, 1}.

An important class of formal power series is thatohstructivelyS-algebraicfor-
mal power series. We show that this class arises precisélyeasFF of the standard
functor for deterministic Moore automata = S x (—)*, but on an Eilenberg-Moore
category of aSet monad. As a special case, constructivBhalgebraic series are the
context-free weighted languages and are precisely the [fffrecautomata functor in
the category of idempotent semirings.

The original definition of constructivelg-algebraic formal power series goes back
to Fliess [19], see also [17]. Here, we use the equivalerdyebaaic characterization by
Winter et al. [44].

Let S(X) C S{X) the subset of those maps, that aréor all but finitely many
w € X*. If §is commutative, thet$(—) yields a finitary monad and thus al§o=
S(— + X) by Example 4.1. The algebras f6f—) are associativéS-algebras (over
the commutative semiring), i.e. S-modules together with a monoid structure that is
a module morphism in both arguments. The algebrag fare X'-pointedS-algebras.
The following notions are special instancesSeélgebras.

Example 4.8.For S = B = {0, 1}, one obtains idempotent semiringsslgebras,
for S = N semirings, and fof = Z ordinary rings.
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Winter et al. [44, Proposition 4] show that the fiffalcoalgebra is carried b (X"
and that constructivel3-algebraic series are precisely those elementS(oY) that
arise as the behaviours of those coalgebraX — H S(X) with finite X, after deter-
minizing them to some’ : S(X) — HS(X) (see [44, Theorem 23]).

However, this determinization is not directly an instantihe generalized powerset
construction. We shall show that the same behaviours cabthéed by using the stan-
dard generalized powerset construction with an apprapliiéing of H to T-algebras.
Having anS-algebra structure oA and aX'-pointingj : > — A we need to define
anotherS-algebra structure and-pointing onHA = S x A*. While the S-module
structure is just point-wise, we need to take care when piyitig two elements from
H A. To this end we first we define the operatjen —] : S x A* — A by

[0, ] :=i(0) + Y _ (4(b) - (b)),
ey

wherei : S — A is the canonical map with(s) = s - 1 with 1 the neutral element of
the monoid onA. The idea is thajo, §] acts like a state with outputand derivatiory.
The multiplication onf A = S x A* is then defined by

(01,01) * (02,62) := (01 - 02,4+ 61(a) - [02,82] +i(01) - 52(‘1))- 2)
The X-pointing is the obvious: — (0, g,) Whereg,(a) = 1 andg,(b) = 0 for a # b.

Lemma 4.9. For anyw € A in Set” and anyH”-coalgebra structure: : A — HT A,
w and[c(w)] are behaviourally equivalent ifiet.

Given a coalgebra: X — HS(X), Winter et al. [44, Proposition 14] determiniz¢o
somet = (6,9) : S(X) — HS(X) with the property that for any, w € S(X),

o(vsxw) =o6(v)-o(w) and 6(vxw,a) =(v,a)*w+ 6(v) *d(w,a),  (3)

and such that is a.S-module homomorphism. However, the generalized powemset ¢
struction w.r.tT yields a coalgebré : S(X+X) — HS(X +X). The above property,
together with Lemma 4.9 and (2) implies tidz@ndc! are essentially the same coalgebra
structures:

Lemma 4.10. In Set, u € (S(X), ¢) andS{inl)(u) € (S{X+X), c!) are behaviourally
equivalent.

It follows thaté’ = ¢#t-S(inl) and thus their images inH are identical. Hence, a formal
power series is constructiveBralgebraic iff it is in the image of somé' - S(inl), and
by (1), iff itis in the locally finite fixpoint of H ™.

4.5 Courcelle’s Algebraic Trees

For a fixed signatureX of so called givens a recursive
program scheméor rps, for short) contains mutually recur- /+\
sive definitions of new operationg,, ..., ¢, (with respec- 2 /+\

tive aritiesny, ..., nk). The recursive definition op; may in- X +

volve s i ; i N 4N
ymbols from¥, operationsps, . . ., ¢ andn; variables £ % x

x1,...,2n,. The (uninterpreted) solution of an rps is obtained TR

/\
* Z
Fig. 1. Solution of
P

p(z) = 2+ plx x 2)
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by unravelling these recursive definitions, producing ssjig

infinite X-tree overry, . .., z,, for each operatiop;. Figure 1

shows an rps over the signatuke = {*/o, /2, +/2} and its

solution. In general, aalgebraic X-treeis a X-tree which is

definable by an rps over (see Courcelle [16]). Generalizing from a signature to a
finitary endofuncto : C — C on an Ifp category, Adamek et al. [7] describe an rps
as a coalgebra for a functef on H/Mnd;(C), in which objects are finitary/-pointed
monads ort, i.e. finitary monads\/ together with a natural transformatiéh — M.
They introduce theontext-freemonadC* of H, which is anH-pointed monad that
is a subcoalgebra of the final coalgebra f¢rand which is the monad of Courcelle’s
algebraicX-trees in the special case whete= Set and H is a polynomial functor
associated to a signatuke We will prove that this monad is the LFF @f, and thereby
we characterize it by a universal property — solving the gpeblem in [7].

The setting is again an instance of the generalized poweosestruction, but this
time with Fun¢(C) as the base category in lieu ét. LetC be an Ifp category in which
the coproduct injections are monic and consider a finitagpoapreserving endofunc-
tor H : C — C. Denote byFun;(C) the category of finitary endofunctors 6n ThenH
induces an endofunctdf - (—) + Id on Fun¢(C), denoted and mapping an endofunc-
tor V' to the functorX — HV X + X. This functorH gets precomposed with a monad
on Fun¢(C) as we now explain.

Proposition 4.11 (Free monad, [5, 9])For a finitary endofuncto#, free H-algebras
ox t HFHX — FHX existforallX € C. FH itself is a finitary monad o@, more
specifically it is thdree monadn H.

For example, ifH is a polynomial functor associated to a signatirethen FH X
is the usual term algebra that contains all finiferees over the set of generatoxs
Proposition 4.11 implies thdf — F is the object assignment of a monadram¢(C).
The Eilenberg-Moore category @t(~) is easily seen to bbind;(C), the category of
finitary monads or€. Here, fp and fg objects differ, see [45, Section 5.4.1] fpreof.

Similarly as in the case of context-free languages, we witkwvith the monad
E(-) = FH+() so we getH-pointed finitary monads as the(—)-algebras. This cat-
egory is equivalent to a slice category: the universal ptygaduced byF(—) states,
that for any finitary monad the natural transformatiorf$§ — B are in one-to-one cor-
respondence with monad morphisifi& — B; so the categoryl /Mnd;(C) of finitary
H-pointed monads o@ is isomorphic to the slice categofy’ /Mnd¢(C). This finishes
the description of the base category and we now lift the fomit to this category.

Consider ar-pointed monadB, 5 : H — C) € H/Mnd;(C). By [21], the endo-
functor H - B+1d carries a canonical monad structure. Furthermore, we dawbvious
pointinginl- Hn® : H — H-B+1d. By [33], this defines an endofunctor éf+pointed
monads 7 : H/Mndi(C) — H/Mnds(C), which is a lifting of . In order to verify
that # is finitary, we first need to know how filtered colimits look #/ Mnd;(C).

Lemma 4.12. The forgetfulV : Mnd;(C) — Fun¢(C) creates filtered colimits.

Clearly, the canonical projection functéf/Mnd;(C) — Mnd;(C) creates filtered col-
imits, too. Therefore, filtered colimits in the slice categdl//Mnd¢(C) are formed on
the level ofFun¢(C), i.e. object-wise. The functdt is finitary onFun¢(C) and thus also
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its lifting #£ is finitary. So all requirements from Assumption 3.1 are naet:have a
finitary endofunctor£ on the Ifp category? /Mnd;(C), and by [7, Corollary 2.20¥
preserves monos sindé does. By Theorem 3.84 has a locally finite fixpoint.

Remark 4.13.The final#£-coalgebrais not of much interest, but that of a relatedtiamc
7 generalizes to a functor : H/Mnd.(C) — H/Mnd.(C) on H-pointed countably
accessiblémonads. For any object < C, the finitary endofunctoff (—) + X has a
final coalgebra; call the carri@f X. ThenT is a monad [1], is countably accessible [7]
and is the finab/-coalgebra [33].

Adamek et al. [7] characterize a (guarded) recursive @nogscheme as a natural trans-
formationV — H - EY +1d with V fp (in Fun¢(C)), or equivalently, via the generalized
powerset construction w.r.t. the mon&d—) as an#-coalgebra on the carrigg" (in
Mnds(C)). These-coalgebras on carrieds" whereV € Fung(C) is fp form the full
subcategorgQ C Coalg#%. They show two equivalent ways of constructing the monad
of Courcelle’s algebraic trees for the cabe- Set: as the image ofolim EQ in the fi-
nal coalgebrd” of Remark 4.13, and as the colimit BR,, whereEQ); is the closure of
EQ under strong quotients. We now provide a third charactBomaand show that the
monad of Courcelle’s algebraic trees is the locally finitgdimt of 7.

To this end it suffices to show th&R), is precisely the diagram of¢-coalgebras
with an fg carrier. This is established with the help of thiofeing two technical lem-
mas. We now assume that= Set.

Lemma 4.14. # maps strong epis to morphisms carried by strong epi natuaaigfor-
mations.

We have the following variation of Proposition 3.21:

Lemma 4.15. Any #4-coalgebrab : (B, 8) — #(B, 3), with B fg, is the strong quo-
tient of a coalgebra fronkQ.

The proof of Lemma 4.15 makes use of Lemma 4.14 as well as Hoa/fog properties:

— The fp objects ifFuns(Set) are the quotients of polynomial functors.

— The polynomial functors are projective. That means thaafoolynomial functo”
and any natural transformatioen: X' — L with surjective components we have the
following property: for everyf : P — L there existy’ : P — K withn - f' = f.

— Any fg object in H/Mnds(Set) is the quotient of som&" with V' fp in Fun¢(Set)
and thus also of somE” with P a polynomial functor.

Note that the last property holds becau$¢Mnd¢(Set) is an Eilenberg-Moore cat-
egory andEV is the free Eilenberg-Moore algebra on the fp objectit follows
from Lemma 4.15 tha€oalgy, 7 is the same category &Q,; thus their colimits in
Coalg# are isomorphic and we conclude:

Theorem 4.16. The locally finite fixpoint off : Hs,/Mnd;(Set) — Hx/Mnd¢(Set) is
the monad of Courcelle’s algebraic trees, sending a seteatfebraic).-trees over it.

3 A colimit is countably filteredf its diagram has for every countable subcategory a cocane.
functor iscountably accessiblié it preserves countably filtered colimits.
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5 Conclusions and Future Work

We have introduced the locally finite fixpoint of a finitary nmepreserving endofunc-
tor on an Ifp category. We proved that this fixpoint is chagdeed by two universal
properties: it is the final Ifg coalgebra and the initial fgrative algebra for the given
endofunctor. And we have seen many instances where the L& idomain of be-
haviour of finite-state and finite-equation systems. Inipaldr all previously known
instances of the rational fixpoint are also instances of #i€ land we have obtained a
number of interesting further instances not captured bydtienal fixpoint.

On a more technical level, the LFF solves a problem that somstmakes the ra-
tional fixpoint hard to apply. The latter identifies behavilly equivalent states (i.e. is
a subcoalgebra of the final coalgebra) if the classes of ff@othjects coincide. This
condition, however, may be false or unknown (and sometinogstrivial to establish)
in a given Ifp category. But the LFF always identifies behavadly equivalent states.

There are a number of interesting topics for future work esning the LFF. First, it
should be interesting to obtain further instances of the = analyzing the behaviour
of tape machines [23] may perhaps lead to a description aftthigrsively enumerable
languages by the LFF. Second, syntactic descriptions dffffraare of interest. In works
such as [42, 40, 12, 35] Kleene type theorems and axiomatizadf the behaviour of
finite systems are studied. Completeness of an axiomatizétithen established by
proving that expressions modulo axioms form the rationgldirt. It is an interesting
guestion whether the theory of the LFF we presented here ma§ bhelp as a tool for
syntactic descriptions and axiomatizations of furthetesystypes.

As we have mentioned already the rational fixpoint is thetisgupoint for the
coalgebraic study of iterative and iteration theories. iikir path could be followed
based on the LFF and this should lead to new coalgebraiti@gafeecursion principles,
in particular in instances such as context-free languagesrstructivelyS-algebraic
formal power series.

Another approach to more powerful recursive definition giptes are abstract op-
erational rules (see [27] for an overview). It has been shtian certain rule formats
define operations on the rational fixpoint [13, 32], and ittidtdoe investigated whether
a similar theory can be developed based on the LFF.

Finally, in the special setting of Eilenberg-Moore catégsrone could base the
study of finite systems ofeefinitely generated algebras (rather than all fp or all fg al-
gebras). Does this give a third fixpoint capturing behavaffinite state systems with
side effects besides the rational fixpoint and the LFF? Andtvidhthen the relation
between the three fixpoints? Also the parallelism in thenezi development between
rational fixpoint and LFF indicates that there should be aegartheory that is para-
metric in a class of “finite objects” and that allows to obteésults about the rational
fixpoint, the LFF and other possible “finite behaviour dons&is instances.
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A Omitted Proofs and Results

Technical Lemmas for Proposition 3.4
We first show directed unions of fg-carried coalgebras aye If
Lemma A.1. Every directed union of coalgebras fraGoalgg, H is an Ifg coalgebra.

Proof. Let D : (I,<) — CoalgH, (D;,d;) := Di be a directed diagram of coalge-
bras fromCoalgg, H and of mono-carried morphisms. Name the colimit cocene
(D;,d;) — (A, a) in CoalgH. To check Definition 3.2, lef be a finitely generated
objectwithf : S — A in C. As colimits inCoalgH are created by the forgetful functor
U : CoalgH — C, and becaus# - D is a directed diagram of monos afdis an fg
object, we obtain some factorization as shown below:

/

x UCi

UDi = D,

S U(A,a) = A

Note that becausé creates the colimits, we know that the colimit injection 80D+ in
C is preciselyUc;. O

Next follow two easy technical lemmas on directed colimits.

Lemma A.2. For a directed diagramD : D — C of subobjectsn; : C; — C of

C, the colimit(d; : C; — colim D);cp is obtained by taking the (strong epi,mono)-
factorization of[ [ C; [-m—]» C.

Proof. Atfirst, the(m;);cp form a cocone, so we have a unigue colim D — C with

m - d; = my, andd; is monic. AsC is Ifp and bothd; andm; are monic, [8, Proposition

1.62 (ii)] gives us thatn is monic, too. The copair of a family of jointly strongly epic
family [d;] : [ [ C; — colim D is a strong epi and therefore we have the factorization:

[1C;

[mi]

[di] /

colim D O

C

Lemma A.3. Images of colimits irCoalg H are directed unions of images. More pre-
cisely, for a diagranD : D — CoalgH, given a colimit coconéc; : Di — C);ep and

a morphismf : C' — B, define4; asim(f - ¢;). Thenim(f) is the directed union of
the A; together with the induced monomorphisms:

€4

Ds A
“| T @
o
C —5— Im(f) — ™ . B
N o

f
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Proof. As colimitsinCoalgH are created by the forgetful functor: CoalgH — C, we
consider only the objects first. Take the (strong epi-cdmmno-carried)-factorizations
f-ci =m;-e; foreachi € D, andf = m - e. Then (4) wherel; is induced by the
strong epie;. Notice that bym - d; = m;, d; is a mono as well. For any morphism
g:Di— Djwegetamonoig : A; — A; by the strong epé;:

DZL»AZ

YX
QJ/ g /
Dj —» A, 2 Im(f)

By d; - g = d;, we know thay is a mono as well. The; also ensure that between each
pair of objectsA;, A; there is at most one morphism. With this relation to ihe we
also inherit the existence of upper boundsdin which can be summarized in: theg
form a directed diagram of monosdh i.e. a directed union iQoalgH.

To see thatm(f) is indeed its colimit, consider

11, Di ke

wl

1A al Im(f)

which commutes, because (4) did for evéry D. The copair of strong epis;] itself is
a strong epi and se- [¢;] and[d;] - [ ] e; as well. Sdd;] is a strong epi anfin;] factors
intom and[d;], and by Lemma A.2m(f), is the colimit.

[mi]

Proof of Proposition 3.4

Proof. Let ¢; : (X;,z;) — (X, z) be a colimit cocone of a filtered diagram with
(X, ;) from Coalgg, [ . Take the (strong epi,mono)-factorizations

ci = ( Xii»TzwLX )

to get the subcoalgebréd®;, ¢;) of (X,z). By Lemma A3 withf = idx : X — X,
Im(f) = X is the directed union of th&;. TheseT; are in Coalg;, H since strong
quotients of finitely generated objects are finitely geretafhis diagram of thd;
is a directed union with colimit X, z), both in B and in CoalgH, so according to
LemmaA.1,(X, ) is Ifg.
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Proof of Proposition 3.7

Proof. The direction from left to right is clear, &Soalgg, C Coalg,. For the other
one, let(S, s) be some Ifg coalgebra. By Proposition 3.5, it is the directeidn of all

its subcoalgebras with finitely generated carrier. For eatitoalgebran,, : (P,p) —

(S, s), there is a unique homomorphigi : (P, p) — (L, ¥). By the uniqueness off

it follows that L together with thep' is a cocone. Hence there is a unique morphism
Jlu : (S, s) — (L,¢) with u - in, = p' for each appropriatéP, p). For any other
morphisma : (S, s) — (L, ) the equatiort - in, = p! must hold as well, becaugé

is unique. As thén,, are jointly epic, one getg = u. O

Proof of Lemma 3.9

Proof. Consider some strong quotieqt: (X,z) — (Y,y) where(X,x) is Ifg. As

(X, z) is the directed colimit of its subcoalgebras with fg carnee have thatY, y) —
the codomain of the strong epi-carrigd- is the union of the images of these subcoal-
gebras by Lemma A.3. The images themselves have a finitegrgesd carrier — more
precisely the factorization iQoalgH exist becausél preserves monos, by factoriza-
tion. So(Y, y) is the union of these images and thus is Ifg. O

Technical Lemmas for Proposition 3.16

The first task is to show that is Ifg. So essentially for eacli : S — X + 9H
where f is fg we have to find a coalgebra through whi¢Hactors, as required by
Definition 3.2. Roughly this is done in two steps: firstly wenstruct the fg image of

in 9H, secondly the fg image ofin J H, for the unionP of these images, we construct
a coalgebra structure ok + P through whichf factors. In order to get this kind of
image factorization of ande from the property ofX being finitely generated)H has
to be expressed as a directed colimit of monos. This is dotietiwé following lemmas
before going into the detail of the proof of the theorem.

Lemma A.4. Let Coalg§g be the full subdiagram ofoalgg, consisting of those coal-
gebras(A4,a) wherea! : A — 9YH is a monomorphism. Then the forgetful functor
U’ Coalg§g — C is a directed diagram of monos and filtered.

Proof. At first, let us show that
for (4, a) in Coalg;, there exist§ A", a’) in Coalgg, with h: (A,a) — (A',d’). (5)

This follows directly from the (strong epi,mono) factotiien which lifts from C to
Coalgy,. Soal : A — 9H factors intoh : A — A’ anda’’ : A — UH. The
strong epih induces the structure : A’ — HA’ and proves that both anda’t are
coalgebra homomorphisms. For the existence of upper bowtdsh is required by
the directedness, observe that coproducts exis@ig,,, inducing upper bounds in
Coalgfcg by (5).

For any homomorphismsg % : (A1, a1) — (As, az) we haved) - g = ol = al - h.
As al is monic,g = h, i.e. there is at most one arrow in each hom selaflg;,, which
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means that/’ is essentially small, a poset, and thus directedaP\Ss amonoj is a
mono as well, s&@/’ is a directed diagram of monos. O

Lemma A.5. ¥ H is the colimit ofU” : Coalg, H — C.

Proof. As (5) proves, the inclusion functdr : Coalg§gH — Coalgg, H is a cofi-
nal subdiagramyH is the colimit of the forgetful functot/ : Coalge, H — C, so
colimU = colimUV = colim U’. O

Lemma A.6. Every equation morphism: X — H X + ¢H induces an Ifg coalgebra

e= (X +9oH 2" gx 4 om 25 gx 4+ HOH = H(X +9H)),

wherecan : HA + HB — H(A + B) is the canonical morphisiifinl, Hinr].

Proof. Consider the equation morphism X — HX +¢H. The functorH X +(—) is
finitary, soHX + YH = colim(Z — HX + UZ). By the previous lemmai X + 9H

is a directed diagram of monos. Hence the fact tkias finitely generated gives us a
factorization through &V, v : V. — HV') in Coalgg,:

X —— HX +9H
x} THX—&-@T (6)
HX +U(V,v)
——

=V
To prove the actual Ifg property, assume sofmeS — X +9H in vH, with S finitely
generated. Analogously tq f factors through som@V,w : W — HW) in Coalg§g:

s— o xivH

x TX+U;T

X +U(W,w)

Define(P,p) := (V,v) + (W, w) in Coalg, —we do not need that" is monic, so we
can stay inCoalgg,. Let us define a coalgebra structure ®nt- P and see thak + p
is a coalgebra homomorphism:

f le, inr] HX +¢ can
sy x4 oH HX +0H » HX + HOH > H(X + 0H)
« - - o
N + ISY m &
fo X n 0 ) ) +
< x b =
= < 5
X +inr eo + P [HX + inl,inr] HX +p can
X+W > X+P—> (HX+V)+P—>HX+P— HX + HP — H(X + P)

Let us check the commutativity of the bottom triangle andttiree squares.
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— The triangle commutes because of the finality) éf.

— For the right-hand componemt, (i) commutes trivially. For the left-hand compo-
nent, recall that = (HX + v') - eg by (6). Byv™ = p' - inl we get the desired
e=(HX +p'-inl) - eq.

— In the left component of (ii) are identities only. The rigltnaponent of (ii) com-
mutes because' : (P, p) — (VH,¢) is a coalgebra homomorphism.

— Recall thatan = [Hinl, Hinr], so the left component reducesitinl = Hinl. For
the right component, we have to verifjinr- Hp' = H(X +p') - Hinr. This holds
becauséTinr : H — H(X + —) is a natural transformation.

SoX +p': X + P — X +9H is indeed a coalgebra homomorphisk+ P is
finitely generated, hencE + ¢ H is an Ifg coalgebra. O

Proof of Proposition 3.16

Proof. We are able to adapt the proof that final coalgebras are fgtiite [30, Example
2.5 (iii)] as follows. Assume an equation morphismX — H X +9JH for Y H. Define
the equation morphismjust as in Lemma A.6:

e= (X +9H 2" gx 4 oH X BX 4 HOH S H(X +9H)).

Consider the unique morphiseh = [I,7] : (X +9YH, &) — (YH,¥) into the final Ifg
coalgebra. As the right-hand componentafssentially i, » must be the identity on
JH . Now consider the following diagram for ambitrary morphisms : X — J¢H:

X — s X +9H 0 gx ¢ H9H —S" s H(X + 9H)

ls 0] le +9H (ii) (&7, lH [s, VH]
g 15'191?/

ML{ g HOH +9H TN Hj’iH

~|IR

(7)
Note that the top right triangle ebn and H s always commutes, as well as the bottom
triangle. The square (i) commutes:

— For the left-hand componeif X, the square reduces to the equalify - HX =
HYH - Hs.
— For the right-hand componetit{, it reduces taHvH - £ = ¢ - Y H.

So all parts of (7) except (i) commute. Now consider the feiig list of equivalences:

s is a solution ofe in ¥ H.
< The square (i) commutes.
< The entire diagram (7) commutes.
& [s,7]: (X +9H,e) — (VH,{) is a coalgebra homomorphism.
& [s,r] = [l,r] = e
Reading this from bottom to top gives us the existence ofuatiswml s = [. Reading this

from top to bottom for another solution gives us thas = s by the uniqueness eff,
hence(VH, (1) is fg-iterative. O
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Technical Lemma for Theorem 3.17

Lemma A.7. For an fg-iterative algebrd A,« : HA — A) and a coalgebra : X —
HX from Coalgy, there is a uniqu€-morphismu, : X — A suchthatu, = a- Hu, -e.

X e A

el O @
Hue

HX —— HA

Proof. Consider the equation morphisim - ¢ : X — HX + A. For an arbitrary
morphisms : X — A, consider the following diagram:

X s A
J{e T[a, A]
HX — " s X+ AP S gAL A ol
L O Tinl
— HA

The lower part and the right-hand part always commute. Buthfie commutativity of
the whole diagram consider the following sequence of edgines:

sis a solution ofinl - e in A.
< The upper square commutes.
< s=|a,ida]-inl-Hs-e
& s=a-Hs-e
So by the existence and the unigueness of a solutianl oé in the fg-iterative algebra

A, we get the desired morphism : X — A with v, = o - Hu, - e and its uniqueness,
by reading the equivalences from top or from bottom respelsti O

Proof of Theorem 3.17

Proof. By Proposition 3.5¢ : X — H X is the union of the diagram of its subcoal-
gebrass : S — H S with § finitely generated. Denote the corresponding colimit injec
tions byins : (S, s) — (X, e). Each suchs induces a unique morphismy, : S — A
with

us = a - Hug - s. (8)

For any coalgebra homomorphism (R,r) — (S, s) in Coalgg, the diagram
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commutes, becaugeis a coalgebra homomorphism and because of the propetty. of
Sou, = us-h. In other words A together with the morphisms,; : S — A)s.5—msiig
form a cocone foD in C. This induces a unique morphism : X — A.

Foreachs : S — HS,in, : S — X is a coalgebra homomorphism. Furthermore,
we have isus = wu. - ing in C by the universal property oK. So every part except
possibly (ii) of the diagram

commutes, as indicated. In particular the outer squarersquenmutes which gives
a - Hu, - e-ing = ue - ing for every fg subcoalgebi@b, s) of (X, e).

As the colimit injectionsn, are jointly epic, (ii) commutes.

Conversely everg-morphismi, : X — A making (ii) commute, makes the bigger
square (i}-(if) commute and defines a family of morphisms- ins : S — A having
the property (8) each. So by the uniqueness ofithe S — A, we getus = 4, - ing.
Using again that thn, are jointly epic, reduces the equation

Ue * INg = Ug = Ue - INg

to the desired uniqueness®@f, namelyu, = .. O

Proof of Proposition 3.21

Proof. Take a coalgebréX, x) with finitely generated carrier, which is the strong quo-
tient of some fp objecK’ viag : X’ — X. By assumptionX' is the strong quotient
of a projective fp objecK” viaq' : X" — X'. As H preserves strong epis, the projec-
tivity of X" induces the coalgebra structuré

X" -y HX"
|
X’ HX'
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Proof of Proposition 4.3

Proof. Firstofall,(WHT,¢) is final for all (T X, z*), with X finite, so it is a competing
cocone for( K, k):

(TX,zt) —™ 5 (K, k) c (Ii) |

I
Lw m
Uzt J

(UYHT,Ul) —*— (vH,T)

Hence,w is induced making the triangle commute. A%, g) in CoalgngT is the
quotient of somg7 X, z*). And on the other hand, the' : (G, g) — (VHT,¢) are
jointly epic. Hence, thet! are jointly epic as well, and so tfiéz*f, too. Hence alsa is
epic, and — as we are Bet — even a strong epimorphism. In other wordgy H*, U¢)
is the (unique) image dfK, k) in (vH, 7). O

Proof of Theorem 4.4

Proof. Combining the previous Proposition 4.3 together with thenhea A.3 proves
the first equality. For the second equality, consider angnelgt € 7T'X and define a
new coalgebra oX + 1 by

Voy)=( x 41220 gpx HTN, gyrx 41) )

Clearly,[idry,t] : Y — X is aHT-coalgebra homomorphism, and ' - nL[Y].
(]

Definition of the Lifting of S x (—)* to S-algebras

The S{— + X')-algebra structure S-module structure, monoid structurg;pointing —
onS x A* can be defined using th&— + X)-structure ond as follows:

Structure  Connective i in A*

S-Module 0 0g a0,
(01,01) + (02,82) 01+ 02 a+— 01(a)+ d2(a)
s+ (01,01) s-01  ar>s-01(a)

Monoid 1 1g a— 0y

(01,(51)*(02,(52) 01 - 09 aHél(a) . [02,(52] —l—i(Ol) -(52(@)
Y-pointing b € X Os b—1a, a—04,b#a

The defined connectives only makes use of connectives$t¢(seen as &-algebra) and
from the S-algebraA, so H maps anyS(— + X')-algebra homomorphisttn: A — B
to again a homomorphistih : S x A¥ — S x B*. In total, we have a lifting
HT :Set” — Set” of H.
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Proof of Lemma 4.9

Proof. In other words, let us prove thé@ = {([c(w)],w) | w € A} is a bisimulation.
First, takec = (o0,4) in Set (not in Set”) and note that the following holds for any
b e X andv € A (whereg, : X — A with g,(b) = 1 andgy(a) = 0 for a # b):

c(§(0)) * c(v) = (0s, o) * c(v) = (0s, &) * (0(v),d(v))
= (05 - o(v),a = op(a) - [c(v)] +i(0s) - 6(v)(a))
= (Os, a— op(a) - [c(v)])

The following shows thar is a bisimulation:

= c(z(%?)) + bezzc(j(b)) xc(6(w) (D))

= (o(w),a > 04) + Z (0s,a + op(a) - [c(6(w)(b))])
ey

= (o(w),a — 04) + <0s, a > opla)- [0(5(W)(b))]>

= (o(w),;a = 04) + (0s,a = [¢(6(w)(a))])
= (o(w), a = [e(d(w)(a))])

This says that for any € A, o([¢(v)]) = o(v) and for alla € X

§([e(v)])(a) = [e(6(v)(a))] R 6(v)(a).

i.e. R is a bisimulation. O

Proof of Lemma 4.10
Proof (By induction on: w.r.t. the connectives ¢f-algebras) Putc! = (of, 6%).

— Base CaseFor anyz € X, z € S(X) andz € S(X + X) are behaviourally
equivalent by construction @fandc?.

— Step “S-Module-Structure™:The definition of¢ on S-Module connectives is point-
wise [44, Sect. 3], and thus identical to the definitionof

— Step “Monoid-Structure™:The neutral element is mapped byo (1, a — 0) [44,
Sect. 4], and this is identical to the definitioh
For polynomialsy, w € S(X) andv’,w’ € S(X + X), assume that ~ v/, w ~
w’ (with ~ denoting behavioural equivalence). We have

o(v*w) ® 6(v) - 6(w) 2 of(v') - o (w') @ of (v x w').
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Note that final homomorphis@i : S(X) — vH preserves multiplication by [44,
Prop 15] and the finat‘ as well, because it lives iiet” . So for anyz ~ =’ and
y~y,zy € S(X), o,y € TX, we have:

Mary) = (@) # & (y) "2 @) w1 y) = Hal 5y,
i.e. ~ is a congruence fox (and also for+). The hypothesiss ~ o' implies
5(v,a) ~ 6*(v',a). Fora € X,
5(U*wa)—6(va)*w+0() % 6(w, a)
K510, a) « w' + of (v) * 6% (w', a)
TS, a) % [of (w), 8 (w)] + 0 (v) # 6F (', )
@ S (W xw',a).

Sov*xw~ v xw. O

Proof of Lemma 4.12

Proof. Let D : D — Mnd¢(C), Di = (M;,n, u*) be afiltered diagram. Take its colimit
M = colim D with injectionsin; : M; — M in Fun¢(C) and define a monad unit by

in;

= (Id %5 M; ™5 M), foranyi € D.
Similarly, define the monad multiplicatign: MM — M as the unique natural trans-
formation with ‘
MiMi L> Mi
ing * iml lim foranyi € D.
MM -~ -5 M
The filteredness ab proves the independence of the choicé édr any other candidate
j € D choose an upper bound, ;, : M; — My, < M; : m; of M; andM;. Then
we have a commutative diagram

The left-hand triangles commute becausg;,, m;, are monad morphisms and the
right-hand triangles because; i, m; ; are connecting natural transformationsiof
and thein the colimit injections.
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Note that(M;M;);cp is a filtered diagram with colimifi/ M in Fun¢(C). Let us
check the monad laws:

— Unit laws: the diagrams

f

] I )

T]iMi ,Uzi' Mi'r]i M
Mj, e Z\4ZZ\4Z E— M7 Mi E— Mz'Mi E— Mi
i Def.
Natwrality | in, S Miing
of n M;n
ing M; M Decf)lpglon ing and ing M; M De(f)lfnglon ing
n'M . .
in; M in; M
Def.n
M MM M M—— MM — M
nM H Mn K

commute. As thén; are jointly epic,(M, n, 1) fulfills the unit laws.
— Associativity:

M

MMM M v

M;p® lM i lﬂ '

MM —2— M

The outside commutes, and by definitionyoélso all inner parts (except possibly
for the middle square). As thie; * in; * in; are jointly epic, the middle square
commutes as well.

By definition ofy andy, eachin; : M; — M is a monad morphism. In faa,andy are
the unique natural transformations making the diagramsh@ndefinition) commute,
i.e. are the unique monad structurehsuch thain; is a monad morphism.

To see thatM, n, ) is a colimiting cocone, consider another cocane M; — N
in Mnd¢(C). This induced a unique natural transformatien: M — N with n; =
m - in;. To see thain is also a monad morphism, use the jointly epicness ofrthe

m-n=m-in;-n' =n;-n' =",
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Consider the following diagram:

M, M;

m*ml ? lm
N

NN ‘2 5 N

The outside commutes, becaugds a monad morphism. The outer triangles commute
on the level ofFun¢(C) and the upper part commutes becaiusés a monad morphism.
Again, as then; x in; are jointly epic, the inner square commutes as well, hent®a
monad morphism. O

Proof of Lemma 4.14

Proof. Strong epis in slice categories are carried by strong epispsasider a strong
epiq : A — B in Mndi(Set). Consider the (strong epi,mono)-factorizations of the

components irffung:
q

( 1

M —uT "N

The factorization lifts further tdnd;(Set), i.e. we have factorized the monad morphism
g into an epie and a monon in Mnd¢(Set). As any strong epi is also extremal, we get
that m is an isomorphism. Hence has epic components. Aflet-functors preserve
(strong) epis, sdHqgx + Id is epic for any setX and so the natural transformation
Hq + 1d as well.

Proof of Lemma 4.15

Proof. (B, B) is the strong quotient of &#+V % - inl), which again is a quotient
of (FH+P & - inl), whereP a polynomial functor and therefore an epi-projective in
Fun¢(C).

(FHJ“PL/%-inI)L»(FH+V7I%'in|) = (BJ;B) "— #(B, B)

=:q

This corresponds to a natural transformaibory : P — HB + Id. As P is projective
and by Lemma 4.14£q is epic as a natural transformation, we get a natural tramsfo
tionp : P — HF+P 4 |d such that the diagram on the left below commutes:

p--P . gFH+P 1 |g (FH+P il _r H(FH+P & -inl)

_ lHq-i—ld — ql in-&-ld

HB+1d (B, ) ——>—— 2(B, B)
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It follows that the coalgebra is the strong quotient of the coalgelpawhich is a
coalgebra ireQ.



	A New Foundation for Finitary Corecursion

