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Abstract. This paper contributes to a theory of the behaviour of “finite-state”
systems that is generic in the system type. We propose that such systems are mod-
eled as coalgebras with a finitely generated carrier for an endofunctor on a locally
finitely presentable category. Their behaviour gives rise to a new fixpoint of the
coalgebraic type functor calledlocally finite fixpoint(LFF). We prove that if the
given endofunctor preserves monomorphisms then the LFF always exists and is a
subcoalgebra of the final coalgebra (unlike the rational fixpoint previously studied
by Adámek, Milius and Velebil). Moreover, we show that the LFF is characterized
by two universal properties: 1. as the final locally finitely generated coalgebra,
and 2. as the initial fg-iterative algebra. As instances of the LFF we first obtain the
known instances of the rational fixpoint, e.g. regular languages, rational streams
and formal power-series, regular trees etc. And we obtain a number of new exam-
ples, e.g. (realtime deterministic resp. non-deterministic) context-free languages,
constructivelyS-algebraic formal power-series (and any other instance of the gen-
eralized powerset construction by Silva, Bonchi, Bonsangue, and Rutten) and the
monad of Courcelle’s algebraic trees.

1 Introduction

Coalgebras capture many types of state based system within auniform and mathemati-
cally rich framework [39]. One outstanding feature of the general theory isfinal seman-
ticswhich gives a fully abstract account of system behaviour. For example, coalgebraic
modelling of deterministic automata (without a finiteness restriction on state sets) yields
the set of all formal languages as a final model, and restricting tofinite automata one
precisely obtains the regular languages [38]. This correspondence has been generalized
to locally finitely presentable categories [8, 20], wherefinitely presentableobjects play
the role of finite sets, leading to the notion ofrational fixpoint that provides final se-
mantics to all models with finitely presentable carrier [31]. It is known that the rational
fixpoint is fully abstract (identifies all behaviourally equivalent states) as long as finitely
presentable objects agree with finitely generated objects in the base category [12, Propo-
sition 3.12]. While this is the case in some categories (e.g.sets, posets, graphs, vector
spaces, commutative monoids), it is currently unknown in other base categories that
are used in the construction of system models, for example inidempotent semirings
(used in the treatment of context-free grammars [43]), in algebras for the stack monad
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(used for modelling configurations of stack machines [23]);or it even fails, for example
in the category of finitary monads on sets (used in the categorical study of algebraic
trees [7]), or Eilenberg-Moore categories for a monad in general (the target category of
generalized determinization [41], in which the above examples live). Coalgebras over a
category of Eilenberg-Moore algebras overSet in particular provide a paradigmatic set-
ting: automata that describe languages beyond the regular languages consist of a finite
state set, but their transitions produce side effects such as the manipulation of a stack.
These can be described by a monad, so that the (infinite) set ofsystem states (machine
states plus stack content) is described by a free algebra (for that monad) that is gener-
ated by the finite set of machine states. This is formalized bythe generalized powerset
construction [41] and interacts nicely with the coalgebraic framework we present.

Technically, the shortcoming of the rational fixpoint is dueto the fact that finitely
presentable objects are not closed under quotients, so thatthe rational fixpoint itself may
fail to be a subcoalgebra of the final coalgebra and so identifies too little behaviour. The
main conceptual contribution of this paper is the insight that also in cases where finitely
presentable and finitely generated do not agree, thelocally finite fixpointprovides a fully
abstract model of finitely generated behaviour. We give a construction of the locally
finite fixpoint, and support our claim both by general resultsand concrete examples:
we show that under mild assumptions, the locally finite fixpoint always exists, and is
indeed a subcoalgebra of the final coalgebra. Moreover, we give a characterization of
the locally finite fixpoint as the initial iterative algebra.We then instantiate our results
to several scenarios studied in the literature.

First, we show that the locally finite fixpoint is universal (and fully abstract) for
the class of systems produced by the generalized powerset construction overSet: every
determinized finite-state system induces a unique homomorphism to the locally finite
fixpoint, and the latter contains precisely the finite-statebehaviours.

Applied to the coalgebraic treatment of context-free languages, we show that the lo-
cally finite fixpoint yields precisely the context-free languages, and real-time determin-
istic context-free languages, respectively, when modelled using algebras for the stack
monad of [23]. For context-free languages weighted in a semiring S, or equivalently
for constructivelyS-algebraic power series [36], the locally finite fixpoint comprises
precisely those, by phrasing the results of Winter et al. [44] in terms of the generalized
powerset construction. Our last example shows the applicability of our results beyond
categories of Eilenberg-Moore algebras overSet, and we characterize the monad of
Courcelle’s algebraic trees over a signature [16, 7] as the locally finite fixpoint of an
associated functor (on a category of monads), solving an open problem of [7].

The work presented here is based on the third author’s masterthesis in [45]. Most
proofs are omitted; they can be found in the appendix.

2 Preliminaries and Notation

Locally finitely presentable categories.A filtered colimit is the colimit of a diagram
D → C whereD is filtered (every finite subdiagram has a cocone inD) anddirected
if D is additionally a poset.Finitary functorspreserve filtered (equivalently directed)
colimits. ObjectsC ∈ C arefinitely presentable(fp) if the hom-functorC(C,−) pre-



The Locally Finite Fixpoint and its Properties 3

serves filtered (equivalently directed) colimits, andfinitely generated(fg) if C(C,−)
preserves directed colimits of monos (i.e. colimits of directed diagrams where all con-
necting morphisms are monic). Clearly any fp object is fg, but not vice versa. Also, fg
objects are closed under strong epis (quotients) which fails for fp objects in general. A
cocomplete category islocally finitely presentable(lfp) if the full subcategoryCfp of
finitely presentable objects is essentially small, i.e. is up to isomorphism only a set, and
every objectC ∈ C is a filtered colimit of a diagram inCfp. We refer to [20, 8] for
further details.

It is well known that the categories of sets, posets and graphs are lfp with finitely
presentable objects precisely the finite sets, posets, graphs, respectively. The category of
vector spaces is lfp with finite-dimensional spaces being fp. Every finitary variety is lfp
(i.e. an equational class of algebras induced by finite-arity operations or equivalently the
Eilenberg-Moore category for a finitarySet-Monad, see Section 4.1 later). The finitely
generated objects are the finitely generated algebras, and finitely presentable objects are
algebras specified by finitely many generators and relations. This includes the categories
of groups, monoids, (idempotent) semirings, semi-modules, etc. Every lfp category has
mono/strong epi factorization [8, Proposition 1.16], i.e.everyf factors asf = m·e with
m mono (denoted by֌), e strong epi (denoted by։), and we call the domainIm(f)
of e the imageof f . Any strong epie has the diagonal fill-in property, i.e.m · g = h · e
with m mono ande strong epi gives a uniqued such thatm · d = h andg = d · e.

Coalgebras.If H : C → C is an endofunctor,H-coalgebrasare pairs(C, c) with
c : C → HC, andC is thecarrier of (C, c). Homomorphismsf : (C, c) → (D, d)
are mapsf : C → D such thatHf · c = d · f . This gives a category denoted
by CoalgH . If its final object exists then this finalH-coalgebra(νH, τ) represents a
canonical domain of behaviours ofH-typed systems, and induces for each(C, c) a
unique homomorphism, denoted byc†, giving semantics to the system(C, c). The fi-
nal coalgebra always exists providedC is lfp andH is finitary. The forgetful functor
CoalgH → C creates colimits and reflects monos and epis. A morphismf in CoalgH is
mono-carried(resp.epi-carried) if the underlying morphism inC is monic (resp. epic).
Strong epi/mono factorizations lift fromC to CoalgH wheneverH preserves monos
yielding epi-carried/mono-carried factorizations. Adirected union of coalgebrasis the
colimit of a directed diagram inCoalgH where all connecting morphisms are mono-
carried.

The Rational Fixpoint. For C lfp andH : C → C finitary let CoalgfpH denote the
full subcategory ofCoalgH of coalgebras with fp carrier, andCoalglfpH the full sub-
category ofCoalgH of coalgebras that arise as filtered colimits of coalgebras with fp
carrier [31, Corollary III.13]. The coalgebras inCoalglfpH are calledlfp coalgebrasand
for C = Set those are precisely the locally finite coalgebras (i.e. those coalgebras where
every element is contained in a finite subcoalgebra). The final lfp coalgebra exists and
is the colimit of the inclusionCoalgfpH →֒ CoalgH , and it is a fixpoint ofH (see [6])
called therational fixpointof H . Here are some examples: the rational fixpoint of a poly-
nomial set functor associated to a finitary signatureΣ is the set of rationalΣ-trees [6],
i.e. finite and infiniteΣ-trees having, up to isomorphism, finitely many subtrees only,
and one obtains rational weighted languages for NoetheriansemiringsS for a functor
on the category ofS-modules [12], and rationalλ-trees for a functor on the category of
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presheaves on finite sets [2] or for a related functor on nominal sets [34]. If the classes
of fp and fg objects coincide inC, then the rational fixpoint is a subcoalgebra of the
final coalgebra [12, Theorem 3.12]. This is the case in the above examples, but not in
general, see [12, Example 3.15] for a concrete example wherethe rational fixpoint does
not identify behaviourally equivalent states. Conversely, even if the classes differ, the
rational fixpoint can be a subcoalgebra, e.g. for any constant functor.
Iterative Algebras. If H : C → C is an endofunctor, anH-algebra(A, a : HA →
A) is iterative if every flat equation morphisme : X → HX + A whereX is an
fp object has a uniquesolution, i.e. if there exists a uniquee† : X → A such that
e† = [a, idA] · (He† + idA) · e. The rational fixpoint is also characterized as the initial
iterative algebra [6] and is the starting point of the coalgebraic approach to Elgot’s
iterative theories [18] and to the iteration theories of Bloom andÉsik [11, 6, 3, 4].

3 The Locally Finite Fixpoint

The locally finite fixpoint can be characterized similarly tothe rational fixpoint, but with
respect to coalgebras with finitely generated (not finitely presentable) carrier. We show
that the locally finite fixpoint always exists, and is a subcoalgebra of the final coalgebra,
i.e. identifies all behaviourally equivalent states. As a consequence, the locally finite
fixpoint provides a fully abstract notion of finitely generated behaviour. From now on,
we rely on the following:

Assumption 3.1. Throughout the rest of the paper we assume thatC is an lfp category
and thatH : C → C is finitary and preserves monomorphisms.

As for the rational fixpoint, we denote the full subcategory of CoalgH comprising all
coalgebras with finitely generated carrier byCoalgfgH and have the following notion
of locally finitely generated coalgebra.

Definition 3.2. A coalgebraX
x
−→ HX is called locally finitely generated (lfg)if for

all f : S → X with S finitely generated, there exist a coalgebrap : P → HP in
CoalgfgH , a coalgebra morphismh : (P, p)→ (X, x) and somef ′ : S → P such that
h · f ′ = f . CoalglfgH ⊆ CoalgH denotes the full subcategory of lfg coalgebras.

Equivalently, one can characterize lfg coalgebras in termsof subobjects and subcoal-
gebras, making it a generalization of oflocal finitenessin Set, i.e. the property of a
coalgebra that every element is contained in a finite subcoalgebra.

Lemma 3.3. X x
−→ HX is an lfg coalgebra iff for all fg subobjectsS

f
X , there exist

a subcoalgebrah : (P, p) ֌ (X, x) and a monof ′ : S ֌ P with h · f ′ = f , i.e.S is
a subobject ofP .

Proof. (⇒) Given some monof : S ֌ X , factor the inducedh into some strong
epi-carried and mono-carried homomorphisms and use that fgobjects are closed under
strong epis. (⇐) Factorf : S → X into an epi and a monog : Im(f) ֌ X and use the
diagonal fill-in property forg. ⊓⊔
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Evidently all coalgebras with finitely generated carriers are lfg. Moreover, lfg coalge-
bras are precisely the filtered colimits of coalgebras fromCoalgfgH .

Proposition 3.4. Every filtered colimit of coalgebras fromCoalgfgH is lfg.

Proof (Sketch; for the full proof see the appendix).One first proves that directed unions
of coalgebras fromCoalgfgH are lfg. Now given a filtered colimitci : Xi → C where
Xi are coalgebras inCoalgfgH , one epi-mono factorizes every colimit injection:ci =
( Xi Ti C

ei mi ). Using the diagonalization of the factorization one sees that theTi

form a directed diagram of subobjects ofC. FurthermoreC is the directed union of the
Ti and therefore an lfg coalgebra as desired. ⊓⊔

Proposition 3.5. Every lfg coalgebra(X, x) is a directed colimit of its subcoalgebras
fromCoalgfgH .

Proof. Recall from [8, Proof I of Theorem 1.70] thatX is the colimit of the diagram of
all its finitely generated subobjects. Now the subdiagram given by all subcoalgebras of
X is cofinal. Indeed, this follows directly from the fact that(X, x) is an lfg coalgebra:
for every subobjectS ֌ X , S fg, we have a subcoalgebra of(X, x) in CoalgfgH
containingS. ⊓⊔

Corollary 3.6. The lfg coalgebras are precisely the filtered colimits, or equivalently
directed unions, of coalgebras with fg carrier.

As a consequence, a coalgebra is final inCoalglfgF if there is a unique morphism from
every coalgebra with finitely generated carrier.

Proposition 3.7. An lfg coalgebraL is final inCoalglfgH iff for every for every coalge-
braX in CoalgfgH there exists a unique coalgebra morphism fromX toL.

The proof is analogous to [31, Theorem 3.14]; the full argument can be found in the
Appendix. Cocompleteness ofC ensures that the final lfg coalgebra always exists.

Theorem 3.8. The categoryCoalglfgH has a final object, and the final lfg coalgebra is
the colimit of the inclusionCoalgfgH →֒ CoalglfgH .

Proof. By Corollary 3.6, the colimit of the inclusionCoalgfgH →֒ CoalglfgH is the
same as the colimit of the entireCoalglfgH . And the latter is clearly the final object of
CoalglfgH . ⊓⊔

This theorem provides a construction of the final lfg coalgebra collecting precisely the
behaviours of the coalgebras with fg carriers. In the following we shall show that this
construction does indeed identify precisely behaviourally equivalent states, i.e. the final
lfg coalgebra is always a subcoalgebra of the final coalgebra. Just like fg objects are
closed under quotients – in contrast to fp objects – we have a similar property of lfg
coalgebras:

Lemma 3.9. Lfg coalgebras are closed under strong quotients, i.e. for every strong epi
carried coalgebra homomorphismsX ։ Y , if X is lfg then so isY .
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The failure of this property for lfp coalgebras is the reasonwhy the rational fixpoint
is not necessarily a subcoalgebra of the final coalgebra and in particular the rational
fixpoint in [12, Example 3.15] is an lfp coalgebra for which the property fails.

Theorem 3.10. The final lfgH-coalgebra is a subcoalgebra of the finalH-coalgebra.

Proof. Let (L, ℓ) be the final lfg coalgebra. Consider the unique coalgebra morphism
L→ νH and take its factorization:

(L, ℓ) (I, i) (νH, τ)
e

id
m

i†
, with e strong epi inC.

By Lemma 3.9,I is an lfg coalgebra and so by finality ofL we have the coalgebra
morphismi† such that idL = i† · e. It follows thate is monic and therefore an iso. ⊓⊔

In other words, the final lfgH-coalgebra collects precisely the finitely generated be-
haviours from the finalH-coalgebra. We now show that the final lfg coalgebra is a
fixpoint ofH which hinges on the following:

Lemma 3.11. For any lfg coalgebraC
c
−→ HC, the coalgebraHC

Hc
−−→ HHC is lfg.

Proof. Considerf : S → HC with S finitely generated. AsC is lfp we know that
HC is the colimit of its fg subobjects, and sof : S → HC factors through some
subobjectinq : Q ֌ HC with Q fg and f = inq · f ′. On the other hand,(C, c)
is lfg, i.e. the directed union of its subcoalgebras fromCoalgfgH . Then, sinceH is

finitary and mono-preserving,HC
c
−→ HHC is also a directed union and the morphism

inq : Q → HC factors through someHP
Hp
−−→ HHP with (P, p) ∈ CoalgfgH via

inp : (P, p) ֌ (C, c), i.e.H inp · q = inq. Finally, we can construct a coalgebra with fg
carrier

Q+ P
[q,p]
−−−→ HP

Hinr
−−−→ H(Q+ P )

and a coalgebra homomorphismH inp · [q, p] : Q+ P → HC. In the diagram

S HC HHC

HP HHP

Q Q+ P HP H(Q+ P )

f

f ′

Hc

Hp

Hinp HHinp

in
q

q

inl [q, p]

[q, p]

Hinr

H[q, p]

H(Hinp · [q, p])

every part trivially commutes, soH inp · [q, p] is the desired homomorphism. ⊓⊔

So with a proof in virtue to Lambek’s Lemma [28, Lemma 2.2], weobtain the desired
fixpoint:

Theorem 3.12. The carrier of the final lfgH-coalgebra is a fixpoint ofH .

We denote the above fixpoint by(ϑH, ℓ) and call it thelocally finite fixpoint(LFF)
of H . In particular, the LFF always exists under Assumption 3.1,providing a finitary
corecursion principle.
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3.1 Iterative Algebras

Recall from [6, 31] that the rational fixpoint of a functorH has a universal property
both as a coalgebra and as an algebra forH . This situation is completely analogous for
the LFF. We already established its universal property as a coalgebra in Theorem 3.8.
Now we turn to study the LFF as an algebra forH .

Definition 3.13. Anequation morphisme in an objectA is a morphismX → HX+A,
whereX is a finitely generated object. IfA is the carrier of an algebraα : HA → A,
we call theC-morphisme† : X → A a solutionof e if [α, idA] · He† + idA · e = e†.
An H-algebraA is called fg-iterative if every equation morphism inA has a unique
solution.

Example 3.14 (see [30, Example 2.5 (iii)]).The finalH-coalgebra (considered as an
algebra forH) is fg-iterative. In fact, in this algebra even morphismsX → HX + νH
whereX is not necessarily an fg object have a unique solution.

Definition 3.15. For fg-iterative algebrasA andC, an equation morphisme : X →
HX + A and a morphismh : A → C of C define an equation morphismh • e in C

as X HX +A HX + C.
e HX + h We say thath preserves the solutione† of

e if h · e† = (h • e)†. The morphismh is calledsolution preservingif it preserves the
solution of any equation morphisme.

Similarly to [6], the algebra homomorphisms are precisely the solution preserving mor-
phisms between iterative algebras, the proof is also very similar.

Proposition 3.16. The locally finite fixpoint is fg-iterative.

Proof (Sketch).One can transforme : X → HX+ϑH into an lfg coalgebra onX+ϑH .
Then one shows that there is a one-to-one correspondence between homomorphisms
into ϑH and solutions ofe in the algebraℓ−1 : H(ϑH)→ ϑH by diagram chasing.

⊓⊔

Theorem 3.17. For an fg-iterative algebraα : HA → A and an lfg coalgebrae :
X → HX there is a uniqueC-morphismue : X → A such thatue = α ·Hue · e.

Corollary 3.18. The locally finite fixpoint is the initial fg-iterative algebra.

3.2 Relation to the Rational Fixpoint

There are examples, where the rational fixpoint is not a subcoalgebra of the final coal-
gebra. In categories, where fp and fg objects coincide, the rational fixpoint and the LFF
coincide as well (cf. the respective colimit-constructionin Section 2 and Theorem 3.8).
In this section we will see, under slightly stronger assumptions, that fg-carried coalge-
bras are quotients of fp-carried coalgebras, and in particular the locally finite fixpoint is
a quotient of the rational fixpoint: namely its image in the final coalgebra.
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Assumption 3.19. In addition to Assumption 3.1, assume that in the base category C,
every finitely presentable object is a strong quotient of a finitely presentable strong epi
projective object and that the endofunctorH also preserves strong epis.

The condition that every fg object is the strong quotient of astrong epi projective often
is phrased ashaving enough strong epi projectives[14]. This assumption is apparently
very strong but still is met in many situations:

Example 3.20. – In categories in which all (strong) epis are split, every object is pro-
jective and any endofunctor preserves epis, e.g. inSet orVecK .

– In the category of finitary endofunctorsFunf(Set), all polynomial functors are pro-
jective. The finitely presentable functors are quotients ofpolynomial functorsHΣ ,
whereΣ is a finite signature.

– In the Eilenberg-Moore categorySetT for a finitary monadT , strong epis are sur-
jectiveT -algebra homomorphisms, and thus preserved by any endofunctor. InSetT ,
every free algebraTX is projective; this is easy to see using the projectivity ofX
in Set. Every finitely generated object ofSetT is a strong quotient of some free
algebraTX with X finite. For more precise definitions, see Section 4.1 later.

Proposition 3.21. Every coalgebra inCoalgfgH is a strong quotient of a coalgebra
with finitely presentable carrier.

Theorem 3.22.ϑH is the image of the rational fixpoint̺H in the final coalgebra.

Proof. Consider the factorization(̺H, r)
e
։ (B, b)

m
֌ (νH, τ). Since̺H is the

colimit of all fp carriedH-coalgebras it is an lfg coalgebra by Proposition 3.4 us-
ing that fp objects are also fg. Hence, by Lemma 3.9 the coalgebraB is lfg, too. By
Proposition 3.7 it now suffices to show that from every(X, x) ∈ CoalgfgH there exists
a unique coalgebra morphism into(B, b). Given(X, x) in CoalgfgH , it is the quotient
q : (P, p) ։ (X, x) of an fp-carried coalgebra by Proposition 3.21. Hence, we ob-
tain a unique coalgebra morphismp† : (P, p) → (̺H, r). By finality of νH , we have
m ·e ·p† = x† ·q (with x† : (X, x)→ (νH, τ)). So the diagonal fill-in property induces
a homomorphism(X, x)→ (B, b), being the only homomorphism(X, x)→ (B, b) by
the finality ofνH and becausem is monic. ⊓⊔

4 Instances of the Locally Finite Fixpoint

We will now present a number of instances of the LFF. First note, that all the known
instances of the rational fixpoint (see e.g. [6, 31, 12] are also instances of the locally
finite fixpoint, because in all those cases the fp and fg objects coincide. For example, the
class of regular languages is the rational fixpoint of2× (−)Σ onSet. In this section, we
will study further instances of the LFF that are most likely not instances of the rational
fixpoint and which – to the best of our knowledge – have not beencharacterized by a
universal property yet:

1. Behaviours of finite-state machines with side-effects asconsidered by the general-
ized powerset construction (cf. Section 4.1),particularly the following.
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(a) Deterministic and ordinary context-free languages obtained as the behaviours
of deterministic and non-deterministic stack-machines, respectively.

(b) ConstructivelyS-algebraic formal power series, i.e. the “context-free” subclass
of weighted languages with weights from a semiringS, yielded from weighted
context-free grammars.

2. The monad of Courcelle’s algebraic trees.

4.1 Generalized Powerset Construction

The determinization of a non-deterministic automaton using the powerset construction
is an instance of a more general framework, described by Silva, Bonchi, Bonsangue,
and Rutten [41] based on an observation by Bartels [10] (see also Jacobs [26]). In
that generalized powerset construction, an automaton with side-effects is turned into
an ordinary automaton by internalizing the side-effects inthe states. The LFF interacts
well with this construction, because it precisely capturesthe behaviours of finite-state
automata with side effects. The notion of side-effect is formalized by a monad, which
induces the category, in which the LFF is considered.

In the following we assume that readers are familiar with monads and Eilenberg-
Moore algebras (see e.g. [29] for an introduction). For a monadT on C we denote by
CT the category of Eilenberg-Moore algebras. Recall from [8, Corollary 2.75] that ifC
is lfp (in most of our examplesC is Set) andT is finitary thenCT is lfp, too, and for
every fp objectX the free Eilenberg-Moore algebraTX is fp in CT . In all the examples
we consider below, the classes of fp and fg objects either provably differ or it is still
unknown whether these classes coincide.
Example 4.1.In Sections 4.4 and 4.5 we are going to make use of Moggi’s exception
monad transformer (see e.g. [15]). Let us recall that for a fixed objectE, the finitary
functor (−) + E together with the unitηX = inl : X → X + E and multiplication
µX = idX + [idE , idE ] : X + E + E → X + E form a finitary monad, theexception
monad. Its algebras areE-pointed objects, i.e. objectsX , together with a morphism
E → X , and homomorphisms are morphisms preserving the pointing.So the induced
Eilenberg-Moore category is just the slice categoryC(−)+E ∼= E/C.

Now, given any monadT we obtain a new monadT (−+E) with obvious unit and
multiplication. An Eilenberg-Moore algebra forT (− + E) consists of an Eilenberg-
Moore algebra forT and anE-pointing, and homomorphisms areT -algebra homomor-
phisms preserving the pointing [25].

Now an automaton with side-effects is modelled as anHT -coalgebra, whereT is a
finitary monad onC providing the type of side-effect. For example, forHX = 2×XΣ,
whereΣ is an input alphabet,2 = {0, 1} andT the finite powerset monad onSet,
HT -coalgebras are non-deterministic automata. However, thecoalgebraic semantics
using the finalHT -coalgebra does not yield the usual language semantics of non-
deterministic automata. To obtain this one considers the final coalgebra of a lifting of
H to CT . Denote byU : CT → C the canonical forgetful functor.

Definition 4.2. For a functorH : C → C and a monadT : C → C, a lifting of H is a
functorHT : CT → CT such thatH · U = U ·HT .

If such a (not necessarily unique) lifting exists, the generalized powerset construc-
tion transforms anHT -coalgebra into aHT -coalgebra onCT : For a coalgebrax :
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X → HTX , HTX carries an Eilenberg-Moore algebra, and one uses freeness of
the Eilenberg-Moore algebraTX to obtain a canonicalT -algebra homomorphismx♯ :
(TX, µT ) → HT (TX, µT ). The coalgebraic language semanticsof (X, x) is then
given byX

ηX
−−→ TX

x♯†

−−→νHT , i.e. by composing the unique coalgebra morphism in-
duced byx♯ with ηX . This construction yields a functorT ′ : Coalg(HT )→ CoalgHT

mapping coalgebrasX
x
−→ HTX to x♯ and homomorphismsf to Tf (see e.g. [12,

Proof of Lemma 3.27] for a proof).
Now our aim is to show that the LFF ofHT characterizes precisely the coalgebraic

language semantics of all fp-carriedHT -coalgebras. As the right adjointU preserves
monos and is faithful, we know thatHT preserves monos, and asT is finitary, filtered
colimits inCT are created by the forgetful functor toC, and we therefore see thatHT is
finitary. Thus, by Theorem 3.8,ϑHT exists and is a subcoalgebra ofνHT . By [37] and
[10, Corollary 3.4.19], we know thatνHT is carried byνH equipped with a canonical
algebra structure.

Now let us turn to the desired characterization ofϑHT . Formally, the coalgebraic
language semantics of all fp-carriedHT -coalgebras is collected by forming the colimit

k : K → HK of the diagramCoalgfgHT
T ′

−→ CoalgHT U
−→ CoalgH. This coalgebra

K is not yet a subcoalgebra ofνH (for C = Set that means, not all behaviourally
equivalent states are identified inK), but taking its image inνH we obtain the LFF:

Proposition 4.3. The image(I, i) of the unique coalgebra morphismk† : K → νHT

is precisely the locally finite fixpoint of the liftingHT .

One can also directly take the union of all desired behaviours, forC = Set:

Theorem 4.4. The locally finite fixpoint of the liftingHT comprises precisely the im-
ages of determinizedHT -coalgebras:

ϑHT =
⋃

x:X→HTX
X finite

x♯†[TX ] =
⋃

x:X→HTX
X finite

x♯† · ηTX [X ] ⊆ νHT . (1)

This result suggests that the locally finite fixpoint is the right object to consider in order
to represent finite behaviour. We now instantiate the general theory with examples from
the literature to characterize several well-known notionsas LFF.

4.2 The Languages of Non-deterministic Automata

Let us start with a simple standard example. We already mentioned that non-determi-
nistic automata are coalgebras for the functorX 7→ 2 × Pf(X)Σ . Hence they areHT -
coalgebras forH = 2× (−)Σ andT = Pf the finite powerset monad onSet. The above
generalized powerset construction then instantiates as the usual powerset construction
that assigns to a given non-deterministic automaton its determinization.

Now note that the final coalgebra forH is carried by the setL = P(Σ∗) of all
formal languages overΣ with the coalgebra structure given byo : L → 2 with o(L) = 1
iff L contains the empty word andt : L → LΣ with t(L)(s) = {w | sw ∈ L} the left
language derivative. The functorH has a canonical liftingHT on the Eilenberg-Moore
category ofPf, viz. the category of join semi-lattices. The final coalgebraνHT is carried
by all formal languages with the join semi-lattice structure given by union and∅ and
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with the above coalgebra structure. Furthermore, the coalgebraic language semantics
of x : X → HTX assigns to every state of the non-deterministic automatonX the
language it accepts. Observe that join semi-lattices form aso-calledlocally finite variety,
i.e. the finitely presentable algebras are precisely the finite ones. Hence, Theorem 4.4
states that the LFF ofHT is precisely the subcoalgebra ofνHT formed by all languages
accepted by finite NFA, i.e. regular languages.

Note that in this example the LFF and the rational fixpoint coincide since both fp
and fg join semi-lattices are simply the finite ones. Similarcharacterizations of the
coalgebraic language semantics of finite coalgebras followfrom Theorem 4.4 in other
instances of the generalized powerset construction from [41] (cf. e.g. the treatment of
the behaviour of finite weighted automata in [12]).

We now turn to examples that, to the best of our knowledge, cannot be treated using
the rational fixpoint.

4.3 The Behaviour of Stack Machines

Push-down automata are finite state machines with infinitelymany configurations. It
is well-known that deterministic and non-deterministic pushdown automata recognize
different classes of context-free languages. We will characterize both as instances of the
locally finite fixpoint, using the results from [23] on stack machines, which can push or
readmultipleelements to or from the stack in a single transition, respectively.

That is, a transition of a stack machine in a certain state consists of reading an
input character, going to a successor state based on the stack’s topmost elements and
of modifying the topmost elements of the stack. These stack operations are captured by
the stack monad.

Definition 4.5 (Stack monad, [22, Proposition 5]).For a finite set of stack symbols
Γ , thestack monadis the submonadT of the store monad(− × Γ ∗)Γ

∗

for which the
elements〈r, t〉 ofTX ⊆ (X×Γ ∗)Γ

∗ ∼= XΓ∗

×(Γ ∗)Γ
∗

satisfy the following restriction:
there existsk depending onr, t such that for everyw ∈ Γ k andu ∈ Γ ∗, r(wu) = r(w)
andt(wu) = t(w)u.

Note that the parameterk gives a bound on how may of the topmost stack cells the
machine can access in one step.

Using the stack monad, stack machines areHT -coalgebras, whereH = B× (−)Σ

is the Moore automata functor for the finite input alphabetΣ and the setB of all pred-
icates mapping (initial) stack configurations to output values from 2, taking only the
topmostk elements into account:B = {p ∈ 2Γ

∗

| ∃k ∈ N0 : ∀w, u ∈ Γ ∗, |w| ≥ k :
p(wu) = p(w)} ⊆ 2Γ

∗

.
The final coalgebraνH is carried byBΣ∗

which is (modulo power laws) a set of pred-
icates, mapping stack configurations to formal languages. Goncharov et al. [23] show
thatH lifts to SetT and conclude that finite-stateHT -coalgebras match the intuition
of deterministicpushdown automata without spontaneous transitions. The languages
accepted by those automata are precisely thereal-time deterministic context-free lan-
guages; this notion goes back to Harrison and Havel [24]. We obtain the following,
with γ0 playing the role of an initial symbol on the stack:
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Theorem 4.6. The locally finite fixpoint ofHT is carried by the set of all mapsf ∈
BΣ∗

such that for any fixedγ0 ∈ Γ , {w ∈ Σ∗ | f(w)(γ0) = 1} is a real-time
deterministic context-free language.

Proof. By [23, Theorem 5.5], a languageL is a real-time deterministic context-free
language iff there exists somex : X → HTX , X finite, with its determinization
x♯ : TX → HTX and there exists ∈ X andγ0 ∈ Γ such thatf = x♯† · ηTX(s) ∈ BΣ∗

andf(w)(γ0) = 1 for all w ∈ Σ∗. The rest follows by (1). ⊓⊔

Just as for pushdown automata, the expressiveness of stack machines increases when
equipping them with non-determinism. Technically, this isdone by considering thenon-
deterministic stack monadT ′, i.e.T ′ denotes a submonad of the non-deterministic store
monadPf(−×Γ

∗)Γ
∗

, as described in [23, Section 6]. In the non-deterministic setting, a
similar property holds, namely that the determinizedHT ′-coalgebras with finite carrier
describe precisely the context-free languages [23, Theorem 6.5]. Combine this with (1):

Theorem 4.7. The locally finite fixpoint ofHT ′

is carried by the set of all mapsf ∈
BΣ∗

such that for any fixedγ0 ∈ Γ , {w ∈ Σ∗ | f(w)(γ0) = 1} is a context-free
language.

4.4 Context-Free Languages and ConstructivelyS-Algebraic Power Series

One generalizes from formal (resp. context-free) languages to weighted formal (resp.
context-free) languages by assigning to each word a weight from a fixed semiring. More
formally, a weighted language – a.k.a.formal power series– over an input alphabetX
is defined as a mapX∗ → S, whereS is a semiring. The set of all formal power series is
denoted byS〈〈X〉〉. Ordinary formal languages are formal power series over theboolean
semiringB = {0, 1}, i.e. mapsX∗ → {0, 1}.

An important class of formal power series is that ofconstructivelyS-algebraicfor-
mal power series. We show that this class arises precisely asthe LFF of the standard
functor for deterministic Moore automataH = S × (−)Σ , but on an Eilenberg-Moore
category of aSet monad. As a special case, constructivelyB-algebraic series are the
context-free weighted languages and are precisely the LFF of the automata functor in
the category of idempotent semirings.

The original definition of constructivelyS-algebraic formal power series goes back
to Fliess [19], see also [17]. Here, we use the equivalent coalgebraic characterization by
Winter et al. [44].

Let S〈X〉 ⊆ S〈〈X〉〉 the subset of those maps, that are0 for all but finitely many
w ∈ X∗. If S is commutative, thenS〈−〉 yields a finitary monad and thus alsoT =
S〈− + Σ〉 by Example 4.1. The algebras forS〈−〉 are associativeS-algebras (over
the commutative semiringS), i.e.S-modules together with a monoid structure that is
a module morphism in both arguments. The algebras forT areΣ-pointedS-algebras.
The following notions are special instances ofS-algebras.

Example 4.8.For S = B = {0, 1}, one obtains idempotent semirings asB-algebras,
for S = N semirings, and forS = Z ordinary rings.



The Locally Finite Fixpoint and its Properties 13

Winter et al. [44, Proposition 4] show that the finalH-coalgebra is carried byS〈〈Σ〉〉
and that constructivelyS-algebraic series are precisely those elements ofS〈〈Σ〉〉 that
arise as the behaviours of those coalgebrac : X → HS〈X〉 with finite X , after deter-
minizing them to somec♯ : S〈X〉 → HS〈X〉 (see [44, Theorem 23]).

However, this determinization is not directly an instance of the generalized powerset
construction. We shall show that the same behaviours can be obtained by using the stan-
dard generalized powerset construction with an appropriate lifting of H to T -algebras.
Having anS-algebra structure onA and aΣ-pointingj : Σ → A we need to define
anotherS-algebra structure andΣ-pointing onHA = S × AΣ . While theS-module
structure is just point-wise, we need to take care when multiplying two elements from
HA. To this end we first we define the operation[−,−] : S ×AΣ → A by

[o, δ] := i(o) +
∑

b∈Σ

(
j(b) · δ(b)

)
,

wherei : S → A is the canonical map withi(s) = s · 1 with 1 the neutral element of
the monoid onA. The idea is that[o, δ] acts like a state with outputo and derivationδ.
The multiplication onHA = S ×AΣ is then defined by

(o1, δ1) ∗ (o2, δ2) :=
(
o1 · o2, a 7→ δ1(a) · [o2, δ2] + i(o1) · δ2(a)

)
. (2)

TheΣ-pointing is the obvious:a 7→ (0, ̺a) where̺a(a) = 1 and̺a(b) = 0 for a 6= b.

Lemma 4.9. For anyw ∈ A in SetT and anyHT -coalgebra structurec : A→ HTA,
w and[c(w)] are behaviourally equivalent inSet.

Given a coalgebrac : X → HS〈X〉, Winter et al. [44, Proposition 14] determinizec to
someĉ = 〈ô, δ̂〉 : S〈X〉 → HS〈X〉 with the property that for anyv, w ∈ S〈X〉,

ô(v ∗w) = ô(v) · ô(w) and δ̂(v ∗w, a) = δ̂(v, a) ∗ w + ô(v) ∗ δ̂(w, a), (3)

and such that̂c is aS-module homomorphism. However, the generalized powerset con-
struction w.r.t.T yields a coalgebrac♯ : S〈X+Σ〉 → HS〈X+Σ〉. The above property,
together with Lemma 4.9 and (2) implies thatĉ andc♯ are essentially the same coalgebra
structures:

Lemma 4.10. In Set,u ∈ (S〈X〉, ĉ) andS〈inl〉(u) ∈ (S〈X+Σ〉, c♯) are behaviourally
equivalent.

It follows thatĉ† = c♯†·S〈inl〉 and thus their images inνH are identical. Hence, a formal
power series is constructivelyS-algebraic iff it is in the image of somec♯† · S〈inl〉, and
by (1), iff it is in the locally finite fixpoint ofHT .

+

z +

×

⋆ z

+

×

⋆ ×

⋆ z

...

Fig. 1. Solution of
ϕ(z) = z + ϕ(⋆× z)

4.5 Courcelle’s Algebraic Trees

For a fixed signatureΣ of so called givens, a recursive
program scheme(or rps, for short) contains mutually recur-
sive definitions of new operationsϕ1, . . . , ϕk (with respec-
tive aritiesn1, . . . , nk). The recursive definition ofϕi may in-
volve symbols fromΣ, operationsϕ1, . . . , ϕk andni variables
x1, . . . , xni

. The (uninterpreted) solution of an rps is obtained
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by unravelling these recursive definitions, producing a possibly
infiniteΣ-tree overx1, . . . , xni

for each operationϕi. Figure 1
shows an rps over the signatureΣ = {⋆/0,×/2,+/2} and its
solution. In general, analgebraicΣ-tree is aΣ-tree which is
definable by an rps overΣ (see Courcelle [16]). Generalizing from a signature to a
finitary endofunctorH : C → C on an lfp category, Adámek et al. [7] describe an rps
as a coalgebra for a functorHf onH/Mndf(C), in which objects are finitaryH-pointed
monads onC, i.e. finitary monadsM together with a natural transformationH → M .
They introduce thecontext-freemonadCH of H , which is anH-pointed monad that
is a subcoalgebra of the final coalgebra forHf and which is the monad of Courcelle’s
algebraicΣ-trees in the special case whereC = Set andH is a polynomial functor
associated to a signatureΣ. We will prove that this monad is the LFF ofHf, and thereby
we characterize it by a universal property – solving the openproblem in [7].

The setting is again an instance of the generalized powersetconstruction, but this
time withFunf(C) as the base category in lieu ofSet. LetC be an lfp category in which
the coproduct injections are monic and consider a finitary, mono-preserving endofunc-
tor H : C → C. Denote byFunf(C) the category of finitary endofunctors onC. ThenH
induces an endofunctorH · (−)+ Id onFunf(C), denotedḢ and mapping an endofunc-
tor V to the functorX 7→ HVX +X . This functorḢ gets precomposed with a monad
onFunf(C) as we now explain.

Proposition 4.11 (Free monad, [5, 9]).For a finitary endofunctorH , freeH-algebras
ϕX : HFHX → FHX exist for allX ∈ C. FH itself is a finitary monad onC, more
specifically it is thefree monadonH .

For example, ifH is a polynomial functor associated to a signatureΣ, thenFHX
is the usual term algebra that contains all finiteΣ-trees over the set of generatorsX .
Proposition 4.11 implies thatH 7→ FH is the object assignment of a monad onFunf(C).
The Eilenberg-Moore category ofF (−) is easily seen to beMndf(C), the category of
finitary monads onC. Here, fp and fg objects differ, see [45, Section 5.4.1] for aproof.

Similarly as in the case of context-free languages, we will work with the monad
E(−) = FH+(−), so we getH-pointed finitary monads as theE(−)-algebras. This cat-
egory is equivalent to a slice category: the universal property induced byF (−) states,
that for any finitary monadB the natural transformationsH → B are in one-to-one cor-
respondence with monad morphismsFH → B; so the categoryH/Mndf(C) of finitary
H-pointed monads onC is isomorphic to the slice categoryFH/Mndf(C). This finishes
the description of the base category and we now lift the functor Ḣ to this category.

Consider anH-pointed monad(B, β : H → C) ∈ H/Mndf(C). By [21], the endo-
functorH ·B+Id carries a canonical monad structure. Furthermore, we have an obvious
pointinginl ·HηB : H → H ·B+ Id. By [33], this defines an endofunctor onH-pointed
monads,Hf : H/Mndf(C) → H/Mndf(C), which is a lifting of Ḣ . In order to verify
thatHf is finitary, we first need to know how filtered colimits look inH/Mndf(C).

Lemma 4.12. The forgetfulU : Mndf(C)→ Funf(C) creates filtered colimits.

Clearly, the canonical projection functorH/Mndf(C) → Mndf(C) creates filtered col-
imits, too. Therefore, filtered colimits in the slice category H/Mndf(C) are formed on
the level ofFunf(C), i.e. object-wise. The functoṙH is finitary onFunf(C) and thus also
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its lifting Hf is finitary. So all requirements from Assumption 3.1 are met:we have a
finitary endofunctorHf on the lfp categoryH/Mndf(C), and by [7, Corollary 2.20]Hf

preserves monos sinceH does. By Theorem 3.8,Hf has a locally finite fixpoint.

Remark 4.13.The finalHf-coalgebra is not of much interest, but that of a related functor.
Hf generalizes to a functorH : H/Mndc(C) → H/Mndc(C) onH-pointed countably
accessible3 monads. For any objectX ∈ C, the finitary endofunctorH(−) + X has a
final coalgebra; call the carrierTX . ThenT is a monad [1], is countably accessible [7]
and is the finalH -coalgebra [33].

Adámek et al. [7] characterize a (guarded) recursive program scheme as a natural trans-
formationV → H ·EV + Id with V fp (in Funf(C)), or equivalently, via the generalized
powerset construction w.r.t. the monadE(−) as anHf-coalgebra on the carrierEV (in
Mndf(C)). TheseHf-coalgebras on carriersEV whereV ∈ Funf(C) is fp form the full
subcategoryEQ ⊆ CoalgHf. They show two equivalent ways of constructing the monad
of Courcelle’s algebraic trees for the caseC = Set: as the image ofcolimEQ in the fi-
nal coalgebraT of Remark 4.13, and as the colimit ofEQ2, whereEQ2 is the closure of
EQ under strong quotients. We now provide a third characterization, and show that the
monad of Courcelle’s algebraic trees is the locally finite fixpoint of Hf.

To this end it suffices to show thatEQ2 is precisely the diagram ofHf-coalgebras
with an fg carrier. This is established with the help of the following two technical lem-
mas. We now assume thatC = Set.

Lemma 4.14. Hf maps strong epis to morphisms carried by strong epi natural transfor-
mations.

We have the following variation of Proposition 3.21:

Lemma 4.15. AnyHf-coalgebrab : (B, β) → Hf(B, β), with B fg, is the strong quo-
tient of a coalgebra fromEQ.

The proof of Lemma 4.15 makes use of Lemma 4.14 as well as the following properties:

– The fp objects inFunf(Set) are the quotients of polynomial functors.
– The polynomial functors are projective. That means that fora polynomial functorP

and any natural transformationn : K → L with surjective components we have the
following property: for everyf : P → L there existsf ′ : P → K with n · f ′ = f .

– Any fg object inH/Mndf(Set) is the quotient of someEV with V fp in Funf(Set)
and thus also of someEP with P a polynomial functor.

Note that the last property holds becauseH/Mndf(Set) is an Eilenberg-Moore cat-
egory andEV is the free Eilenberg-Moore algebra on the fp objectV . It follows
from Lemma 4.15 thatCoalgfgHf is the same category asEQ2; thus their colimits in
CoalgHf are isomorphic and we conclude:

Theorem 4.16. The locally finite fixpoint ofHf : HΣ/Mndf(Set)→ HΣ/Mndf(Set) is
the monad of Courcelle’s algebraic trees, sending a set to the algebraicΣ-trees over it.

3 A colimit is countably filteredif its diagram has for every countable subcategory a cocone.A
functor iscountably accessibleif it preserves countably filtered colimits.
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5 Conclusions and Future Work

We have introduced the locally finite fixpoint of a finitary mono-preserving endofunc-
tor on an lfp category. We proved that this fixpoint is characterized by two universal
properties: it is the final lfg coalgebra and the initial fg-iterative algebra for the given
endofunctor. And we have seen many instances where the LFF isthe domain of be-
haviour of finite-state and finite-equation systems. In particular all previously known
instances of the rational fixpoint are also instances of the LFF, and we have obtained a
number of interesting further instances not captured by therational fixpoint.

On a more technical level, the LFF solves a problem that sometimes makes the ra-
tional fixpoint hard to apply. The latter identifies behaviourally equivalent states (i.e. is
a subcoalgebra of the final coalgebra) if the classes of fp andfg objects coincide. This
condition, however, may be false or unknown (and sometimes non-trivial to establish)
in a given lfp category. But the LFF always identifies behaviourally equivalent states.

There are a number of interesting topics for future work concerning the LFF. First, it
should be interesting to obtain further instances of the LFF, e.g. analyzing the behaviour
of tape machines [23] may perhaps lead to a description of therecursively enumerable
languages by the LFF. Second, syntactic descriptions of theLFF are of interest. In works
such as [42, 40, 12, 35] Kleene type theorems and axiomatizations of the behaviour of
finite systems are studied. Completeness of an axiomatization is then established by
proving that expressions modulo axioms form the rational fixpoint. It is an interesting
question whether the theory of the LFF we presented here may be of help as a tool for
syntactic descriptions and axiomatizations of further system types.

As we have mentioned already the rational fixpoint is the starting point for the
coalgebraic study of iterative and iteration theories. A similar path could be followed
based on the LFF and this should lead to new coalgebraic iteration/recursion principles,
in particular in instances such as context-free languages or constructivelyS-algebraic
formal power series.

Another approach to more powerful recursive definition principles are abstract op-
erational rules (see [27] for an overview). It has been shownthat certain rule formats
define operations on the rational fixpoint [13, 32], and it should be investigated whether
a similar theory can be developed based on the LFF.

Finally, in the special setting of Eilenberg-Moore categories one could base the
study of finite systems onfreefinitely generated algebras (rather than all fp or all fg al-
gebras). Does this give a third fixpoint capturing behaviourof finite state systems with
side effects besides the rational fixpoint and the LFF? And what is then the relation
between the three fixpoints? Also the parallelism in the technical development between
rational fixpoint and LFF indicates that there should be a general theory that is para-
metric in a class of “finite objects” and that allows to obtainresults about the rational
fixpoint, the LFF and other possible “finite behaviour domains” as instances.
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21. Ghani, N., Lüth, C., Marchi, F.D.: Monads of coalgebras: Rational terms and term graphs.
Math. Structures Comput. Sci. 15, 433–451 (2005)

22. Goncharov, S.: Trace semantics via generic observations. In: Heckel, R., Milius, S. (eds.)
Algebra and Coalgebra in Computer Science (CALCO 2013). Lecture Notes Comput. Sci.,
vol. 8089, pp. 158–174. Springer (2013)

23. Goncharov, S., Milius, S., Silva, A.: Towards a coalgebraic Chomsky hierarchy. In: Diaz,
J., Lanese, I., Sangiorgi, D. (eds.) Proc. 8th IFIP TC 1/WG 2.2 International Conference on
Theoretical Computer Science (TCS’14). Lecture Notes Comput. Sci., vol. 8705, pp. 265–
280. Springer (2014)

24. Harrison, M.A., Havel, I.M.: Real-time strict deterministic languages. SIAM J. Comput. 1(4),
333–349 (1972)

25. Hyland, M., Plotkin, G., Power, J.: Combining effects: Sum and tensor. Theoret. Comput. Sci.
357(1–3), 70–99 (2006)



18 S. Milius, D. Pattinson and T. Wißmann

26. Jacobs, B.: A bialgebraic review of regular expressions, deterministic automata and lan-
guages. In: et al., K.F. (ed.) Goguen Festschrift. Lecture Notes Comput. Sci., vol. 4060,
pp. 375–404 (2006)

27. Klin, B.: Bialgebras for structural operational semantics: An introduction. Theoret. Com-
put. Sci. 412(38), 5043–5069 (2011)

28. Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103, 151–161 (1968)
29. MacLane, S.: Categories for the Working Mathematician.Graduate Texts in Mathematics,

Springer New York, 2nd edn. (1998)
30. Milius, S.: Completely iterative algebras and completely iterative monads. Inform. and Com-

put. 196, 1–41 (2005)
31. Milius, S.: A Sound and Complete Calculus for finite Stream Circuits. In: Proc. 25th Annual

Symposium on Logic in Computer Science (LICS’10). pp. 449–458 (2010)
32. Milius, S., Bonsangue, M.M., Myers, R.S., Rot, J.: Rational operation models. In: Mis-

love, M. (ed.) Proc. 29th conference on Mathematical Foundations of Programming Science
(MFPS XXIX). Electron. Notes Theor. Comput. Sci., vol. 298,pp. 257–282 (2013)

33. Milius, S., Moss, L.S.: The category theoretic solutionof recursive program schemes. Theo-
ret. Comput. Sci. 366, 3–59 (2006)

34. Milius, S., Wißmann, T.: Finitary corecursion for the infinitary lambda calculus. In: Proc.
6th Conference on Algebra and Coalgebra in Computer Science, CALCO 2015. Leibniz
International Proceedings in Informatics (2015)

35. Myers, R.: Rational coalgebraic machines in varieties:Languages, completeness and auto-
matic proofs. Ph.D. thesis, Imperial College London, Department of Computing (2011)

36. Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Handbook of
Weighted Automata, pp. 257–289. Springer (2009)

37. Plotkin, G., Turi, D.: Towards a mathematical operational semantics. In: Proc. 12th LICS
Conf. pp. 280–291. IEEE, Computer Society Press (1997)

38. Rutten, J.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D., de Si-
mone, R. (eds.) Proc. CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer (1998)

39. Rutten, J.: Universal Coalgebra: A theory of systems. Theor. Comp. Sci. 249(1), 3–80 (2000)
40. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Quantitative Kleene Coalgebras.

Inform. and Comput. 209(5), 822–849 (2011)
41. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing determinization

from automata to coalgebras. Logical Methods in Computer Science 9(1) (2013)
42. Silva, A., Bonsangue, M.M., Rutten, J.J.M.M.: Non-deterministic Kleene coalgebras.

Log. Methods Comput. Sci. 6(3:23), 39 pp. (2010)
43. Winter, J., Bonsangue, M., Rutten, J.: Coalgebraic Characterizations of Context-Free Lan-

guages. Log. Methods Comput. Sci. 9(3) (September 2013)
44. Winter, J., Bonsangue, M.M., Rutten, J.J.: Context-free coalgebras. J. Comput. System Sci.

81(5), 911 – 939 (2015)
45. Wißmann, T.: The Locally Finite Fixpoint and its properties. Master’s the-

sis, Friedrich-Alexander Universität Erlangen-Nürnberg (April 2015), available at
http://thorsten-wissmann.de/theses/ma-wissmann.pdf

http://thorsten-wissmann.de/theses/ma-wissmann.pdf


The Locally Finite Fixpoint and its Properties 19

A Omitted Proofs and Results

Technical Lemmas for Proposition 3.4

We first show directed unions of fg-carried coalgebras are lfg.

Lemma A.1. Every directed union of coalgebras fromCoalgfgH is an lfg coalgebra.

Proof. Let D : (I,≤) → CoalgH, (Di, di) := Di be a directed diagram of coalge-
bras fromCoalgfgH and of mono-carried morphisms. Name the colimit coconeci :
(Di, di) → (A, a) in CoalgH . To check Definition 3.2, letS be a finitely generated
object withf : S → A in C. As colimits inCoalgH are created by the forgetful functor
U : CoalgH → C, and becauseU · D is a directed diagram of monos andS is an fg
object, we obtain some factorization as shown below:

S U(A, a) = A

UDi = Di

f

f ′
Uci

Note that becauseU creates the colimits, we know that the colimit injection forUDi in
C is preciselyUci. ⊓⊔

Next follow two easy technical lemmas on directed colimits.

Lemma A.2. For a directed diagramD : D → C of subobjectsmi : Ci ֌ C of
C, the colimit(di : Ci → colimD)i∈D is obtained by taking the (strong epi,mono)-

factorization of
∐

Ci
[mi]
−−−→ C.

Proof. At first, the(mi)i∈D form a cocone, so we have a uniquem : colimD → C with
m · di = mi, anddi is monic. AsC is lfp and bothdi andmi are monic, [8, Proposition
1.62 (ii)] gives us thatm is monic, too. The copair of a family of jointly strongly epic
family [di] :

∐
Ci → colimD is a strong epi and therefore we have the factorization:

∐
Ci C

colimD

[mi]

[di]
m

⊓⊔

Lemma A.3. Images of colimits inCoalgH are directed unions of images. More pre-
cisely, for a diagramD : D → CoalgH , given a colimit cocone(ci : Di→ C)i∈D and
a morphismf : C → B, defineAi as Im(f · ci). ThenIm(f) is the directed union of
theAi together with the induced monomorphisms:

Di Ai

C Im(f) B

ei

ci
di

mi

e

f

e m

(4)
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Proof. As colimits inCoalgH are created by the forgetful functorU : CoalgH → C, we
consider only the objects first. Take the (strong epi-carried,mono-carried)-factorizations
f · ci = mi · ei for eachi ∈ D, andf = m · e. Then (4) wheredi is induced by the
strong epiei. Notice that bym · di = mi, di is a mono as well. For any morphism
g : Di→ Dj we get a mono in̄g : Ai ֌ Aj by the strong epiei:

Di Ai

Dj Aj Im(f)

ei

g
di

ḡ

ej

dj

By dj · ḡ = di, we know that̄g is a mono as well. Thedi also ensure that between each
pair of objectsAi, Aj there is at most one morphism. With this relation to theDi, we
also inherit the existence of upper bounds inAi, which can be summarized in: theAi

form a directed diagram of monos inC, i.e. a directed union inCoalgH .
To see thatIm(f) is indeed its colimit, consider

∐

i Di C

∐
Ai Im(f)

[ci]

∐
ei e

[di]

which commutes, because (4) did for everyi ∈ D. The copair of strong epis[ci] itself is
a strong epi and soe · [ci] and[di] ·

∐
ei as well. So[di] is a strong epi and[mi] factors

intom and[di], and by Lemma A.2Im(f), is the colimit.

∐
Ai Im(f) B

[di]

[mi]

m ⊓⊔

Proof of Proposition 3.4

Proof. Let ci : (Xi, xi) → (X, x) be a colimit cocone of a filtered diagram with
(Xi, xi) fromCoalgfgH . Take the (strong epi,mono)-factorizations

ci ≡ ( Xi Ti X
ei mi )

to get the subcoalgebras(Ti, ti) of (X, x). By Lemma A.3 withf = idX : X → X ,
Im(f) = X is the directed union of theTi. TheseTi are inCoalgfgH since strong
quotients of finitely generated objects are finitely generated. This diagram of theTi

is a directed union with colimit(X, x), both in B and inCoalgH , so according to
Lemma A.1,(X, x) is lfg.
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Proof of Proposition 3.7

Proof. The direction from left to right is clear, asCoalgfg ⊆ Coalglfg. For the other
one, let(S, s) be some lfg coalgebra. By Proposition 3.5, it is the directedunion of all
its subcoalgebras with finitely generated carrier. For eachsubcoalgebrainp : (P, p) →
(S, s), there is a unique homomorphismp† : (P, p) → (L, ℓ). By the uniqueness ofp†

it follows thatL together with thep† is a cocone. Hence there is a unique morphism
∃!u : (S, s) → (L, ℓ) with u · inp = p† for each appropriate(P, p). For any other
morphismū : (S, s) → (L, ℓ) the equation̄u · inp = p† must hold as well, becausep†

is unique. As theinp are jointly epic, one gets̄u = u. ⊓⊔

Proof of Lemma 3.9

Proof. Consider some strong quotientq : (X, x) → (Y, y) where(X, x) is lfg. As
(X, x) is the directed colimit of its subcoalgebras with fg carrier, we have that(Y, y) –
the codomain of the strong epi-carriedq – is the union of the images of these subcoal-
gebras by Lemma A.3. The images themselves have a finitely generated carrier – more
precisely the factorization inCoalgH exist becauseH preserves monos, by factoriza-
tion. So(Y, y) is the union of these images and thus is lfg. ⊓⊔

Technical Lemmas for Proposition 3.16

The first task is to show that̄e is lfg. So essentially for eachf : S → X + ϑH
wheref is fg we have to find a coalgebra through whichf factors, as required by
Definition 3.2. Roughly this is done in two steps: firstly we construct the fg image ofe
in ϑH , secondly the fg image off in ϑH , for the unionP of these images, we construct
a coalgebra structure onX + P through whichf factors. In order to get this kind of
image factorization off ande from the property ofX being finitely generated,ϑH has
to be expressed as a directed colimit of monos. This is done with the following lemmas
before going into the detail of the proof of the theorem.

Lemma A.4. Let Coalg′fg be the full subdiagram ofCoalgfg consisting of those coal-
gebras(A, a) wherea† : A → ϑH is a monomorphism. Then the forgetful functor
U ′ : Coalg′fg → C is a directed diagram of monos and filtered.

Proof. At first, let us show that

for (A, a) in Coalgfg there exists(A′, a′) in Coalg′fg with h : (A, a)→ (A′, a′). (5)

This follows directly from the (strong epi,mono) factorization which lifts from C to
Coalgfg. So a† : A → ϑH factors intoh : A ։ A′ anda′† : A′

֌ ϑH . The
strong epih induces the structurea′ : A′ → HA′ and proves that bothh anda′† are
coalgebra homomorphisms. For the existence of upper bounds, which is required by
the directedness, observe that coproducts exists inCoalgfg, inducing upper bounds in
Coalg′fg by (5).

For any homomorphismsg, h : (A1, a1)→ (A2, a2) we havea†2 · g = a†1 = a†2 · h.
As a†2 is monic,g = h, i.e. there is at most one arrow in each hom set ofCoalg′fg, which
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means thatU ′ is essentially small, a poset, and thus directed. Asa†1 is a mono,h is a
mono as well, soU ′ is a directed diagram of monos. ⊓⊔

Lemma A.5. ϑH is the colimit ofU ′ : Coalg′fgH → C.

Proof. As (5) proves, the inclusion functorV : Coalg′fgH → CoalgfgH is a cofi-
nal subdiagram.ϑH is the colimit of the forgetful functorU : CoalgfgH → C, so
colimU = colimUV = colimU ′. ⊓⊔

Lemma A.6. Every equation morphisme : X → HX + ϑH induces an lfg coalgebra

ē ≡
(
X + ϑH

[e,inr]
−−−→ HX + ϑH

HX+ℓ
−−−−→ HX +HϑH

can
−−→ H(X + ϑH)

)
,

wherecan : HA+HB → H(A+B) is the canonical morphism[H inl, H inr].

Proof. Consider the equation morphisme : X → HX+ϑH . The functorHX+(−) is
finitary, soHX +ϑH = colim(Z 7→ HX +UZ). By the previous lemma,HX+ϑH
is a directed diagram of monos. Hence the fact thatX is finitely generated gives us a
factorization through a(V, v : V → HV ) in Coalg′fg:

X HX + ϑH

HX + U(V, v)
︸ ︷︷ ︸

=V

e

e0 HX + v† (6)

To prove the actual lfg property, assume somef : S → X + ϑH in ϑH , with S finitely
generated. Analogously toe, f factors through some(W,w : W → HW ) in Coalg′fg:

S X + ϑH

X + U(W,w)

f

f0
X + w†

Define(P, p) := (V, v) + (W,w) in Coalgfg – we do not need thatp† is monic, so we
can stay inCoalgfg. Let us define a coalgebra structure onX + P and see thatX + p†

is a coalgebra homomorphism:

S X + ϑH HX + ϑH HX +HϑH H(X + ϑH)

X +W X + P (HX + V ) + P HX + P HX +HP H(X + P )

f

f0

[e, inr]
HX + ℓ can

X
+
w

†

X + inr

X
+

p
†

e0 + P

(i)

[HX + inl, inr] HX + p

H
X

+
p
†

(ii)

can

H
X

+
H
p
†

(iii)

H
(X

+
p
†
)

Let us check the commutativity of the bottom triangle and thethree squares.
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– The triangle commutes because of the finality ofϑH .
– For the right-hand componentP , (i) commutes trivially. For the left-hand compo-

nent, recall thate = (HX + v†) · e0 by (6). By v† = p† · inl we get the desired
e = (HX + p† · inl) · e0.

– In the left component of (ii) are identities only. The right component of (ii) com-
mutes becausep† : (P, p)→ (ϑH, ℓ) is a coalgebra homomorphism.

– Recall thatcan = [H inl, H inr], so the left component reduces toH inl = H inl. For
the right component, we have to verifyH inr ·Hp† = H(X+p†) ·H inr. This holds
becauseH inr : H → H(X +−) is a natural transformation.

SoX + p† : X + P → X + ϑH is indeed a coalgebra homomorphism.X + P is
finitely generated, henceX + ϑH is an lfg coalgebra. ⊓⊔

Proof of Proposition 3.16

Proof. We are able to adapt the proof that final coalgebras are fg-iterative [30, Example
2.5 (iii)] as follows. Assume an equation morphisme : X → HX+ϑH for ϑH . Define
the equation morphism̄e just as in Lemma A.6:

ē ≡
(
X + ϑH

[e,inr]
−−−→ HX + ϑH

HX+ℓ
−−−−→ HX +HϑH

can
−−→ H(X + ϑH)

)
.

Consider the unique morphism̄e† = [l, r] : (X + ϑH, ē) → (ϑH, ℓ) into the final lfg
coalgebra. As the right-hand component ofē essentially isℓ, r must be the identity on
ϑH . Now consider the following diagram for anarbitrary morphisms : X → ϑH :

X HX + ϑH HX +HϑH H(X + ϑH)

ϑH HϑH + ϑH HϑH

s

e

(i) Hs + ϑH (ii)

HX + ℓ can

[Hs,HϑH]

H[s, ϑH]

ℓ

∼=
[ℓ−1, ϑH] [HϑH, ℓ]

(7)
Note that the top right triangle ofcan andHs always commutes, as well as the bottom
triangle. The square (ii) commutes:

– For the left-hand componentHX , the square reduces to the equalityHs · HX =
HϑH ·Hs.

– For the right-hand componentϑH , it reduces toHϑH · ℓ = ℓ · ϑH .

So all parts of (7) except (i) commute. Now consider the following list of equivalences:

s is a solution ofe in ϑH .
⇔ The square (i) commutes.
⇔ The entire diagram (7) commutes.
⇔ [s, r] : (X + ϑH, ē)→ (ϑH, ℓ) is a coalgebra homomorphism.
⇔ [s, r] = [l, r] = ē†.

Reading this from bottom to top gives us the existence of a solutions = l. Reading this
from top to bottom for another solution̄s, gives us that̄s = s by the uniqueness of̄e†,
hence(ϑH, ℓ−1) is fg-iterative. ⊓⊔



24 S. Milius, D. Pattinson and T. Wißmann

Technical Lemma for Theorem 3.17

Lemma A.7. For an fg-iterative algebra(A,α : HA→ A) and a coalgebrae : X →
HX fromCoalgfg there is a uniqueC-morphismue : X → A such thatue = α ·Hue ·e.

X A

HX HA

∃!ue

e

Hue

	 α

Proof. Consider the equation morphisminl · e : X → HX + A. For an arbitrary
morphisms : X → A, consider the following diagram:

X A

HX HX +A HA+A

HA

s

e

inl

Hs

Hs + A

[α,A]

	 inl

α	

The lower part and the right-hand part always commute. But for the commutativity of
the whole diagram consider the following sequence of equivalences:

s is a solution ofinl · e in A.
⇔ The upper square commutes.
⇔ s = [α, idA] · inl ·Hs · e
⇔ s = α ·Hs · e

So by the existence and the uniqueness of a solution ofinl · e in the fg-iterative algebra
A, we get the desired morphismue : X → A with ue = α ·Hue · e and its uniqueness,
by reading the equivalences from top or from bottom respectively. ⊓⊔

Proof of Theorem 3.17

Proof. By Proposition 3.5,e : X → HX is the union of the diagramD of its subcoal-
gebrass : S → HS with S finitely generated. Denote the corresponding colimit injec-
tions by ins : (S, s)→ (X, e). Each suchs induces a unique morphismus : S → A
with

us = α ·Hus · s. (8)

For any coalgebra homomorphismh : (R, r)→ (S, s) in Coalgfg the diagram

R S A

HR HS HA

h

r

us

s

Hh Hus

α
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commutes, becauseh is a coalgebra homomorphism and because of the property ofus.
Sour = us ·h. In other words,A together with the morphisms(us : S → A)s:S→HS lfg

form a cocone forD in C. This induces a unique morphismue : X → A.
For eachs : S → HS, ins : S → X is a coalgebra homomorphism. Furthermore,

we have isus = ue · ins in C by the universal property ofX . So every part except
possibly (ii) of the diagram

S X A

HS HX HA

ins

s

us

	

(i) 	 e

ue

(ii)

Hins

Hus

	

Hue

α

commutes, as indicated. In particular the outer square square commutes which gives

α ·Hue · e · ins = ue · ins for every fg subcoalgebra(S, s) of (X, e).

As the colimit injectionsins are jointly epic, (ii) commutes.
Conversely everyC-morphismũe : X → A making (ii) commute, makes the bigger

square (i)+(ii) commute and defines a family of morphismsũe · ins : S → A having
the property (8) each. So by the uniqueness of theus : S → A, we getus = ũe · ins.
Using again that theins are jointly epic, reduces the equation

ue · ins = us = ũe · ins

to the desired uniqueness ofue, namelyue = ũe. ⊓⊔

Proof of Proposition 3.21

Proof. Take a coalgebra(X, x) with finitely generated carrier, which is the strong quo-
tient of some fp objectX ′ via q : X ′

։ X . By assumption,X ′ is the strong quotient
of a projective fp objectX ′′ via q′ : X ′′ → X ′. AsH preserves strong epis, the projec-
tivity of X ′′ induces the coalgebra structurex′′:

X ′′ HX ′′

X ′ HX ′

X HX

x′′

q′ Hq′

q Hq

x

⊓⊔
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Proof of Proposition 4.3

Proof. First of all,(ϑHT , ℓ) is final for all(TX, x♯), with X finite, so it is a competing
cocone for(K, k):

(TX, x♯) (K, k) (I, i)

(UϑHT , Uℓ) (νH, τ)

inX

Ux♯†
w

e
k†

m

n

Hence,w is induced making the triangle commute. Any(G, g) in CoalgfgH
T is the

quotient of some(TX, x♯). And on the other hand, theg† : (G, g) → (ϑHT , ℓ) are
jointly epic. Hence, thex♯† are jointly epic as well, and so theUx♯†, too. Hence alsow is
epic, and – as we are inSet – even a strong epimorphism. In other words,(UϑHT , Uℓ)
is the (unique) image of(K, k) in (νH, τ). ⊓⊔

Proof of Theorem 4.4

Proof. Combining the previous Proposition 4.3 together with the Lemma A.3 proves
the first equality. For the second equality, consider any elementt ∈ TX and define a
new coalgebra onX + 1 by

(Y, y) ≡
(

X + 1 HTX HT (X + 1)
[x, x♯(t)] HT inl

)
.

Clearly,[idTX , t] : Y → X is aHT -coalgebra homomorphism, andt ∈ y♯† · ηTY [Y ].
⊓⊔

Definition of the Lifting of S × (−)Σ to S-algebras

TheS〈−+Σ〉-algebra structure –S-module structure, monoid structure,Σ-pointing –
onS ×AΣ can be defined using theS〈−+Σ〉-structure onA as follows:

Structure Connective inS in AΣ

S-Module 0 0S a 7→ 0A
(o1, δ1) + (o2, δ2) o1 + o2 a 7→ δ1(a) + δ2(a)
s · (o1, δ1) s · o1 a 7→ s · δ1(a)

Monoid 1 1S a 7→ 0A
(o1, δ1) ∗ (o2, δ2) o1 · o2 a 7→ δ1(a) · [o2, δ2] + i(o1) · δ2(a)

Σ-pointing b ∈ Σ 0S b 7→ 1A, a 7→ 0A, b 6= a

The defined connectives only makes use of connectives fromS (seen as aS-algebra) and
from theS-algebraA, soH maps anyS〈− + Σ〉-algebra homomorphismh : A → B
to again a homomorphismHh : S × AΣ → S × BΣ . In total, we have a lifting
HT : SetT → SetT of H .
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Proof of Lemma 4.9

Proof. In other words, let us prove thatR = {([c(w)], w) | w ∈ A} is a bisimulation.
First, takec = 〈o, δ〉 in Set (not in SetT ) and note that the following holds for any
b ∈ Σ andv ∈ A (where̺b : Σ → A with ̺b(b) = 1 and̺b(a) = 0 for a 6= b):

c(j(b)) ∗ c(v) = (0S , ̺b) ∗ c(v) = (0S , ̺b) ∗
(
o(v), δ(v)

)

=
(
0S · o(v), a 7→ ̺b(a) · [c(v)] + i(0S) · δ(v)(a)

)

=
(
0S , a 7→ ̺b(a) · [c(v)]

)

The following shows thatR is a bisimulation:

c([c(w)]) = c([o(w), δ(w)]) = c

(

i(o(w)) +
∑

b∈Σ

(
j(b) · δ(w)(b)

)

)

= c
(
i(o(w)
︸︷︷︸

∈S

)
)
+
∑

b∈Σ

c
(
j(b)

)
∗ c
(
δ(w)(b)

)

= (o(w), a 7→ 0A) +
∑

b∈Σ

(
0S , a 7→ ̺b(a) · [c(δ(w)(b))]

)

= (o(w), a 7→ 0A) +

(

0S , a 7→
∑

b∈Σ

̺b(a) · [c(δ(w)(b))]

)

= (o(w), a 7→ 0A) + (0S, a 7→ [c(δ(w)(a))])

= (o(w), a 7→ [c(δ(w)(a))])

This says that for anyv ∈ A, o([c(v)]) = o(v) and for alla ∈ Σ

δ([c(v)])(a) = [c(δ(v)(a))] R δ(v)(a).

i.e.R is a bisimulation. ⊓⊔

Proof of Lemma 4.10

Proof (By induction onu w.r.t. the connectives ofS-algebras).Putc♯ = 〈o♯, δ♯〉.

– Base Case:For anyx ∈ X , x ∈ S〈X〉 andx ∈ S〈X + Σ〉 are behaviourally
equivalent by construction of̂c andc♯.

– Step “S-Module-Structure”:The definition of̂c onS-Module connectives is point-
wise [44, Sect. 3], and thus identical to the definition ofc♯.

– Step “Monoid-Structure”:The neutral element is mapped byĉ to (1, a 7→ 0) [44,
Sect. 4], and this is identical to the definitionc♯.
For polynomialsv, w ∈ S〈X〉 andv′, w′ ∈ S〈X +Σ〉, assume thatv ∼ v′, w ∼
w′ (with ∼ denoting behavioural equivalence). We have

ô(v ∗ w)
(3)
= ô(v) · ô(w)

IH
= o♯(v′) · o♯(w′)

(2)
= o♯(v′ ∗ w′).
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Note that final homomorphism̂c† : S〈X〉 → νH preserves multiplication by [44,
Prop 15] and the finalc♯† as well, because it lives inSetT . So for anyx ∼ x′ and
y ∼ y′, x, y,∈ S〈X〉, x′, y′ ∈ TX , we have:

ĉ†(x ∗ y) = ĉ†(x) ∗ ĉ†(y)
x∼x′

=
y∼y′

c♯†(x′) ∗ c♯†(y′) = c♯†(x′ ∗ y′),

i.e. ∼ is a congruence for∗ (and also for+). The hypothesisv ∼ v′ implies
δ̂(v, a) ∼ δ♯(v′, a). Fora ∈ Σ,

δ̂(v ∗ w, a)
(3)
= δ̂(v, a) ∗w + ô(v) ∗ δ̂(w, a)

IH
∼ δ♯(v′, a) ∗ w′ + o♯(v) ∗ δ♯(w′, a)

Lemma 4.9
∼ δ♯(v′, a) ∗ [o♯(w′), δ♯(w′)] + o♯(v) ∗ δ♯(w′, a)

(2)
= δ♯(v′ ∗ w′, a).

Sov ∗ w ∼ v′ ∗ w′. ⊓⊔

Proof of Lemma 4.12

Proof. LetD : D → Mndf(C),Di = (Mi, η
i, µi) be a filtered diagram. Take its colimit

M = colimD with injectionsini : Mi →M in Funf(C) and define a monad unit by

η ≡
(
Id

ηi

−→Mi
ini−→M

)
, for anyi ∈ D.

Similarly, define the monad multiplicationµ : MM → M as the unique natural trans-
formation with

MiMi Mi

MM M

µi

ini ∗ ini ini

µ

for anyi ∈ D.

The filteredness ofD proves the independence of the choice ofi: for any other candidate
j ∈ D choose an upper boundmi,k : Mi → Mk ← Mj : mj,k of Mi andMj . Then
we have a commutative diagram

Mi

Id Mk M

Mj

inimi,k
ηi

ηj

ηk
ink

mj,k
inj

The left-hand triangles commute becausemi,k,mj,k are monad morphisms and the
right-hand triangles becausemi,k,mj,k are connecting natural transformations ofD
and thein the colimit injections.
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Note that(MiMi)i∈D is a filtered diagram with colimitMM in Funf(C). Let us
check the monad laws:

– Unit laws: the diagrams

Mi MiMi Mi

MiM

M MM M

ini

ηiMi

Naturality
of ηi Mi ini

µi

Definition
of µ ini

Def. η
iniM

ηiM

ηM µ

and

Mi MiMi Mi

MiM

M MM M

Miη
i

Miη

ini

µi

Mi ini

Definition
of µ ini

Def. η

iniM

Mη µ

commute. As theini are jointly epic,(M, η, µ) fulfills the unit laws.

– Associativity:

MiMiMi MiMi

MMM MM

MM M

Mi Mi

µiMi

Miµ
i

in
i ∗ in

i ∗ in
i

µi

ini
∗
ini

µM

Mµ µ

µ

µi

ini
∗ i
ni in

i

The outside commutes, and by definition ofµ also all inner parts (except possibly
for the middle square). As theini ∗ ini ∗ ini are jointly epic, the middle square
commutes as well.

By definition ofη andµ, eachini : Mi →M is a monad morphism. In fact,η andµ are
the unique natural transformations making the diagrams (inthe definition) commute,
i.e. are the unique monad structure onM such thatini is a monad morphism.

To see that(M, η, µ) is a colimiting cocone, consider another coconeni : Mi → N
in Mndf(C). This induced a unique natural transformationm : M → N with ni =
m · ini. To see thatm is also a monad morphism, use the jointly epicness of theini:

m · η = m · ini · η
i = ni · η

i = ηN ,
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Consider the following diagram:

MiMi Mi

MM M

NN N

µi

in
i ∗

in
i

n
i
∗
n
i

in i

n
i

µ

m ∗ m ? m

µN

The outside commutes, becauseni is a monad morphism. The outer triangles commute
on the level ofFunf(C) and the upper part commutes becauseini is a monad morphism.
Again, as theini ∗ ini are jointly epic, the inner square commutes as well, hencem is a
monad morphism. ⊓⊔

Proof of Lemma 4.14

Proof. Strong epis in slice categories are carried by strong epis, so consider a strong
epi q : A → B in Mndf(Set). Consider the (strong epi,mono)-factorizations of the
components inFunf:

M I N

q

e m

The factorization lifts further toMndf(Set), i.e. we have factorized the monad morphism
q into an epie and a monom in Mndf(Set). As any strong epi is also extremal, we get
that m is an isomorphism. Henceq has epic components. AllSet-functors preserve
(strong) epis, soHqX + Id is epic for any setX and so the natural transformation
Hq + Id as well.

Proof of Lemma 4.15

Proof. (B, β) is the strong quotient of a(FH+V , κ̂ · inl), which again is a quotient
of (FH+P , κ̂ · inl), whereP a polynomial functor and therefore an epi-projective in
Funf(C).

(FH+P , κ̂ · inl) (FH+V , κ̂ · inl) (B, β) H (B, β)
qP

=: q

qV b

This corresponds to a natural transformationb · q : P → HB + Id. AsP is projective
and by Lemma 4.14Hfq is epic as a natural transformation, we get a natural transforma-
tion p : P → HFH+P + Id such that the diagram on the left below commutes:

P HFH+P + Id

HB + Id

b · q

p

Hq + Id ⇐⇒

(FH+P , κ̂ · inl) Hf(F
H+P , κ̂ · inl)

(B, β) Hf(B, β)

p̄

q Hq + Id

b
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It follows that the coalgebrab is the strong quotient of the coalgebrap̄, which is a
coalgebra inEQ.
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