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ABSTRACT

Context. Double-lined eclipsing binaries have often been adopted inliterature to calibrate the extension of the convective-core over-
shooting beyond the border defined by the Schwarzschild criterion.
Aims. In a robust statistical way, we quantify the magnitude of theuncertainty that affects the calibration of the overshooting efficiency
parameterβ that is owing to the uncertainty on the observational data. We also quantify the biases on theβ determination that is
caused by the lack of constraints on the initial helium content and on the efficiencies of the superadiabatic convection and microscopic
diffusion.
Methods. We adopted a modified grid-based SCEPtER pipeline to recovertheβ parameter from synthetic stellar data. Our grid spans
the mass range [1.1; 1.6]M⊙ and evolutionary stages from the zero-age main sequence (MS) to the central hydrogen depletion. The
β estimates were obtained by generalising the maximum likelihood technique described in our previous works. As observational
constraint, we adopted the effective temperatures, [Fe/H], masses, and radii of the two stars.
Results. By means of Monte Carlo simulations, adopting a reference scenario of mild overshootingβ = 0.2 for the synthetic data,
and taking typical observational errors into account, we found both large statistical uncertainties and biases on the estimated values
of β. For the first 80% of the MS evolution,β is biased by about−0.04, with the 1σ error practically unconstrained in the whole
explored range [0.0; 0.4]. In the last 5% of the evolution thebias vanishes and the 1σ error is about 0.05. The 1σ errors are similar
when adopting different reference values ofβ. Interestingly, for synthetic data computed without convective-core overshooting, the
estimatedβ is biased by about 0.12 in the first 80% of the MS evolution, andby 0.05 afterwards. Assuming an uncertainty of±1 in
the helium-to-metal enrichment ratio∆Y/∆Z, we found a large systematic uncertainty in the recoveredβ value, reaching 0.2 at the
60% of the MS evolution. Taking into account both the helium abundance indetermination and 1σ statistical uncertainty, we found
that in the terminal part of the MS evolution the error on the estimatedβ values ranges from−0.05 to+0.10, whileβ is basically
unconstrained throughout the explored range at earlier evolutionary stages. We quantified the impact of a uniform variation of ±0.24
in the mixing-length parameterαml around the solar-calibrated value. The largest bias occursin the last 5% of the evolution with an
error on the estimated medianβ from −0.03 to+0.07. In this last part, the 1σ uncertainty that addresses statistical and systematic
error sources ranges from−0.09 to+0.15. Finally, we quantified the impact of a complete neglect ofdiffusion in the stellar evolution
computations. In this case, the 1σ uncertainty that addresses statistical and systematic error sources ranges from−0.08 to+0.08 in
the terminal 5% of the MS, while it is practically unconstrained in the first 80% of the MS.
Conclusions. The calibration of the convective core overshooting with double-lined eclipsing binaries - in the explored mass range
and with both components still in their MS phase - appears to be poorly reliable, at least until further stellar observables, such as
asteroseismic ones, and more accurate models are available.

Key words. Binaries: eclipsing – methods: statistical – stars: evolution – stars: low-mass – stars: interiors

1. Introduction

As the result of the huge effort made in the past decades to refine
the accuracy and reliability of the stellar evolutionary predic-
tions, stellar evolution theory has become one of the most robust
areas of astrophysical research. However, several mechanisms
involved in the evolution of stars are still poorly understood.

The lack of a self-consistent treatment of convection in stel-
lar evolutionary codes is one of the major weaknesses affecting
stellar models. This lack prevents a firm and reliable prediction
of the extension of the convective regions, both in the core and

Send offprint requests to: G. Valle, valle@df.unipi.it

in the envelope. We focus on the convective-core extent during
the central hydrogen burning phase of low-mass stars.

In classical models the border of the convective core is de-
termined by means of the Schwarzschild criterion. However,this
border identifies the locus where the acceleration, not the veloc-
ity, of the convective element vanishes, thus raising the question
of the extension of the overshoot beyond the border itself. The
extension of the extra-mixing region beyond the Schwarzschild
border is usually parametrized in terms of the pressure scale
heightHp: lov = βHp, whereβ is a free parameter.

Many efforts to constrain the values ofβ have been per-
formed since the first investigations (among them we recall
Saslaw & Schwarzschild 1965; Shaviv & Salpeter 1973). An ob-
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vious way to obtain clues on its value and on the possible
dependence on the stellar mass is to compare the theoreti-
cal models computed with different convective-core overshoot-
ing efficiencies with proper observations. Several methods for
calibration have been explored in the literature. They include
the isochrone fitting of stellar cluster colour-magnitude dia-
grams (see e.g. Bertelli et al. 1992; Prada Moroni et al. 2001;
Barmina et al. 2002; Brocato et al. 2003; VandenBerg et al.
2006; Bressan et al. 2012) and the comparison with recently
available asteroseismic constraints (e.g. Montalbán et al. 2013;
Guenther et al. 2014; Tkachenko et al. 2014; Aerts 2015).

Of the many possible candidates, double-line eclipsing bi-
naries are often adopted as an ideal test bed forβ calibration.
As an example, the relevance of the core overshooting effi-
ciency was explored in Andersen et al. (1990). By considering
eight binary systems, they found that non-standard models were
required for masses higher than 1.5M⊙. Other investigations,
which tried to explore the dependence ofβ on stellar mass, were
performed by Ribas et al. (2000) and Claret (2007). These stud-
ies reached somewhat different conclusions. The investigation by
Claret (2007) indicates that the dependence ofβ on mass is more
uncertain and less steep than stated by Ribas et al. (2000), reach-
ing a plateau ofβ ≃ 0.2 for a star more massive than 2M⊙. More
recent investigations were performed by Meng & Zhang (2014)
and Stancliffe et al. (2015). Overall, a lowβ value (i.e.. 0.2) is
typically considered enough to match the observational data.

However, we recall that theβ value provided by the fitting
procedure depends on the input physics actually implemented
in the evolutionary code that is used to compute stellar mod-
els, even when the parametrization adopted to describe the over-
shooting is the same. Thus, it would be more meaningful to com-
pare the convective-core extension instead of theβ values ob-
tained by different sets of stellar models.

Moreover, the aforementioned calibrations suffer from at
least two shortcomings. The first, which makes a direct com-
parison of the results from different studies difficult, is the lack
of homogeneity in the treatment of the statistical errors owing to
the stellar observational uncertainties. A chief difficulty is that
the uncertainty in the derived masses is often neglected in the
final error budget. The second problem is the lack of theoretical
investigations on the possible bias in the value ofβ obtained by
a fit of the systems with stellar isochrones.

As a first effort to partially fill this gap, we here address many
aspects of these questions. By means of Monte Carlo simula-
tions, we provide some clues on the reliability of convective-core
overshooting calibration for low-mass binary systems, restrict-
ing the analysis to the mass range [1.1; 1.6]M⊙ and to the MS
phase. This mass range contains several well-studied systems
(e.g. AQ Ser, GX Gem, BK Peg, BW Aqr, V442 Cyg, AD Boo,
VZ Hya, V570 Per, HD71636) that have been used in literature
to calibrate theβ parameter (e.g. Lacy et al. 2008; Clausen et al.
2010; Torres et al. 2014).

We adopt the SCEPtER pipeline (Valle et al. 2014, 2015b,a),
modified for estimating the core overshooting parameter. Wead-
dress in a statistical robust way the propagation of the uncer-
tainty on the observational values to the fittedβ parameter and
explore the possible biases that are due to some unconstrained
mechanisms or input that influence the evolution in the consid-
ered mass range: the initial helium content of the stars, andthe
efficiency of microscopic diffusion and of the external convec-
tion, parametrized through the mixing-length valueαml.

2. Methods

The value of theβ parameter was determined by means of the
SCEPtER pipeline, a maximum-likelihood technique relyingon
a pre-computed grid of stellar models and on a set of observa-
tional constraints (see e.g. Valle et al. 2015b). A first applica-
tion to eclipsing binary systems has been extensively described
in Valle et al. (2015a). We briefly summarize the technique here
and focus on the modifications adopted to estimateβ .

We assumeS1 and S2 to be two stars in a de-
tached binary system. The observed quantities adopted
to estimate the core overshooting efficiency are
qS1,2 ≡ {Teff,S1,2, [Fe/H]S1,2

,MS1,2,RS1,2}. Let σ1,2 =

{σ(Teff,S1,2), σ([Fe/H]S1,2
), σ(MS1,2), σ(RS1,2)} be the uncertainty

in the observed quantities. For each pointj on the estimation
grid of stellar models, we defineq j ≡ {Teff, j, [Fe/H] j,M j,R j}.
LetL1,2

j be the single-star likelihood functions defined as

L1,2
j =
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In the computation of the likelihood functions we consider
only the grid points within 3σ of all the variables fromS1,2.
Moreover, in the estimation process we explicitly assume that
the stars are coeval1. We also impose that the two stars share a
common value ofβ since the sampling is performed at constant
value of overshooting efficiency; in Sect. 3.2 we explore the ef-
fect of relaxing this constraint. Then, the joint likelihood L̃ of
the system is computed as the product of the single star likeli-
hood functions. LetL̃max be the maximum value obtained in this
step. The joint-stars estimatedβ is obtained by averaging the cor-
responding quantities of all the models with a likelihood greater
than 0.95× L̃max.

In the computation we assumed as standard deviations 100
K in Teff , 0.1 dex in [Fe/H], 1% in mass, and 0.5% in radius.
The covariance matrix adopted in the perturbation accountsfor
a correlation of 0.95 between effective temperatures, 0.95 be-
tween metallicities, 0.8 between masses, and 0.0 between radii
(see Valle et al. 2015a, for details).

2.1. Stellar model grid

The grid of models covers the evolution from the zero-age
main-sequence (ZAMS) up to the central hydrogen depletion
of stars with mass in the range [1.1; 1.6]M⊙ and initial metal-
licity [Fe/H] from −0.55 dex to 0.55 dex. The grid was com-
puted by means of the FRANEC stellar evolutionary code
(Degl’Innocenti et al. 2008; Tognelli et al. 2011) in the same
configuration as was adopted to compute the Pisa Stellar Evolu-
tion Data Base2 for low-mass stars (Dell’Omodarme et al. 2012;
Dell’Omodarme & Valle 2013). Seventeen sets of models were
computed with a varying core overshooting parameterβ from 0.0
to 0.4 (the last representing a possible maximum value, see e.g.
the results in Claret 2007) with a step of 0.025. The details on

1 This assumption is justified because in building the synthetic datasets
we imposed that the age difference between the binary components must
be≤ 10 Myr.
2 http://astro.df.unipi.it/stellar-models/
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Fig. 1. Left: extension of the convective core (inM⊙), from ZAMS to central hydrogen exhaustion, for three different values of the overshooting
parameterβ = 0.0, 0.2, and 0.4 for a model ofM = 1.12 M⊙ at initial [Fe/H] = 0.0.Middle: same as in the left panel, but forM = 1.36 M⊙. Right:
same as in the left panel, but forM = 1.60 M⊙.

the standard grid of stellar models, the sampling procedure, and
the age estimation technique are fully described in Valle etal.
(2015b) and Valle et al. (2015a); the adopted input and the re-
lated uncertainties are discussed in Valle et al. (2009, 2013a,b).

2.1.1. Influence of β on the extension of the convective core

Before we proceed with analysing the theoretical capability of
recovering an unknown value ofβ from a synthetic dataset, it
is worth showing the effect of the different choices ofβ on the
extension of the convective core for the models adopted in the
present work. Figure 1 shows for an initial [Fe/H] = 0.0 the evo-
lution of the convective core mass versus the evolutionary time
for stellar models of masses 1.12, 1.36, and 1.60M⊙, which cov-
ers the range we explore here. The extension of the convective
core for the lightest model computed without overshooting is
clearly negligible. Moreover, the impact of increasingβ on the
maximum core extension is lower at higher masses. These re-
sults, coupled with the fact that more than 95% of theKepler
targets in the KOI catalogue have a mass lower than about 1.6
M⊙, are the main reasons for the choice of the upper and lower
limits of the mass range explored here.

3. Intrinsic accuracy and precision of the
overshooting calibration

The first key point to discuss is the intrinsic precision and ac-
curacy of the core overshooting calibration procedure, that is, in
the ideal case in which the stellar models used in the recovery
procedure perfectly match the data. In other words, it is impor-
tant to establish the magnitude of both the random error and the
possible bias in the recovered overshooting parameter thatis due
alone to the observational uncertainties that affect the observ-
ables used to constrain the overshooting itself. To this purpose,
we followed a procedure similar to that outlined in Valle et al.
(2015a), as detailed below.

We determined the expected errors in theβ estimation pro-
cess by Monte Carlo simulations. In the following we assume a
true value ofβ = 0.2, regardless of the mass of the stars. This
assumption would not affect the validity of the results if there
were a trend of the overshooting parameter with the stellar mass
(e.g. Ribas et al. 2000; Claret 2007) because we are interested in
a differential effect, that is, in the theoretical difference expected
between the true and the recovered values ofβ. We also discuss

the effect of adopting differentβ reference values in Sect. 3.1. We
therefore generated a synthetic sample ofN = 50 000 binary sys-
tems from the grid of stellar models withβ = 0.2 and subjected
all these systems to random perturbation on the observablesto
simulate the effect of measurement errors. The overshooting pa-
rameter was then estimated from adopting the full grid of stellar
models with seventeen differentβ values in the range [0.0; 0.4].
It is important that that the procedure accounts simultaneously
for all the errors in the observables, so that it is possible to ob-
tain a robust estimate ofβ and of its uncertainty.

The results of the simulations are presented in Table 1 and
in Fig. 2. The table reports the median (q50) of the estimated
core overshooting parameter and the 1σ random error envelope
(q16 andq84) as a function of the mass of the primary star, of
the primary star relative ager (defined as the ratio between the
age of the star and the age of the same star at central hydrogen
exhaustion), and of the mass ratioq = M2/M1. The envelope
was obtained as in Valle et al. (2015b) by computing the 16th
and 84th quantiles of the relative errors over a moving window
in mass and relative age.

The main result is that the estimatedβ values are affected by
large random errors, with a mean envelope half-width of about
0.10. We note a very mild increase of the envelope width as
a function of the mass of the primary star; with respect to the
mass ratioq, we note a mild shrinking of the envelope at highq.
The most significant trend is due to the evolutionary stage ofthe
primary star. While the overshooting parameter is consistently
underestimated by about 0.04 when the primary star is in the
early part of its MS phase (r ≦ 0.5), in a more advanced MS
stage (r & 0.7) we observe a trend similar to that described in
Valle et al. (2015b) for mass estimates. In this zone the morphol-
ogy of the grids computed with various overshooting efficiencies
are most different, since the overall contraction starts in different
regions of the grids. As a consequence, it is more likely thata
model computed with overshooting efficiencyβ is nearer to a
model withβ̃ < β than to a model with̃β > β. This effect leads
to the observed underestimation ofβ. In the very last evolution-
ary stages (r ≥ 0.9) the bias vanishes since all the stellar tracks
return to evolve parallel after the overall contraction end. In this
zone the error envelope half-width shrinks from a mean valueof
0.15 to about 0.06.

The apparent lack of bias in the left panel of Fig. 2 should
be considered with caution. It is due to the adopted sampling
method, which favours systems with primary stars in the later
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Fig. 2. Left: 1σ envelope ofβ estimates that are due to the observational errors (solid line) as a function of the mass of the primary star. The dashed
line marks the position of the median.Right: same as in the left panel, but as a function of the relative age of the primary star.

Table 1. Median (q50) and 1σ random envelope (q16, q84) of the estimated core overshooting parameter, as a function of the mass of the primary
star, of its relative ager, and of the mass ratio of the systemq. In all three cases, the envelope is obtained by marginalization over all the remaining
parameters.

primary star mass (M⊙)
1.1 1.2 1.3 1.4 1.5 1.6

q16 0.13 0.10 0.10 0.10 0.07 0.07
q50 0.21 0.20 0.20 0.20 0.20 0.20
q84 0.30 0.28 0.30 0.30 0.30 0.32

primary star relative ager
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q16 0.03 0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.10 0.17
q50 0.15 0.15 0.16 0.16 0.16 0.17 0.20 0.17 0.12 0.19 0.20
q84 0.34 0.33 0.31 0.33 0.33 0.35 0.35 0.35 0.33 0.28 0.28

mass ratioq
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

q16 0.07 0.07 0.06 0.06 0.06 0.06 0.10 0.11
q50 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
q84 0.35 0.33 0.32 0.31 0.31 0.30 0.30 0.30

evolutionary stages, where the bias inβ is absent (see Valle et al.
2015a, for a detailed discussion on the adopted sampling). Adif-
ferent sampling would show the biases present at lowr.

In summary, even in this ideal case of a perfect agreement
between the stellar tracks adopted for the recovery procedure
and the artificial stars, which are sampled from the same grid
of models, the estimated value ofβ is generally biased towards
lower values and shows a large uncertainty.

Such a considerable random error undermines the possibility
of obtaining a reliable estimate of the core overshooting param-
eter from a single binary system in the considered mass range
with stars in the MS because the probability of calibrating on a
statistical fluctuation is high. Moreover, the presence of the bias
sheds doubts even on the statistical calibration ofβ that is per-
formed by combining the results obtained in several systems.

3.1. Effect of changing the β reference value

In this section we briefly present some results obtained by adopt-
ing differentβ reference values and discuss the differences with
respect to the standard scenario ofβ = 0.2. Figure 3 – analogous
to the right panels of Fig. 2 – shows the resulting error enve-
lope obtained by assumingβ = 0.0, 0.1, 0.3, and 0.4 as reference
values. The differences between the panel are apparent.

In the case of sampling from the grid withβ = 0.0, no under-
estimation can occur; therefore the results are influenced by an
edge effect similar to those discussed in other works for mass,
radius, and age estimates (Valle et al. 2014, 2015b,a). A median
bias of about 0.12 was found up tor ≈ 0.8. In the last part of the
evolution the bias is of about 0.05. For comparison we also plot
in the figure the envelope obtained by halving the uncertainties
on the observational parameters. In this case the bias is lower
and the envelope shrinks, but only forr ≥ 0.4. Concerning the
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Fig. 3. Same as in the right panel of Fig. 2, but sampling from the gridwith differentβ values reported in the labels. The green dot-dashed lines
refer to the scenario in which the nominal errors on the observables are halved.

effect of the single error sources, we verified that their individual
halving contributes in nearly equal manner to the final result.

This scenario is particularly interesting because it showsthe
tendency to prefer models with moderate overshooting efficiency
even in the fit of binary systems sampled from a grid without
overshooting. The resulting median bias is relevant since in the
recent literature, as discussed in Sect. 1, there is a general feeling
thatβ ≤ 0.2 is adequate to describe the observations.

The presence of a distortion in the estimates of the
convective-core overshooting parameters sheds some doubts on
the precision of the estimates at lowβ, in particular forβ ≤ 0.1.

The case of referenceβ = 0.1 provides a lower biases than all
other scenarios in the estimated overshooting efficiency; the true
value is overestimated by about 0.05 up tor ≈ 0.8. However,
the estimate is affected by non-negligible random errors; even in
the last part of the evolution – where the precision is highest –

the 1σ error envelope is wide (from overestimation of+0.1 to
underestimation of−0.025).

The cases of referenceβ = 0.3, 0.4 are more similar to the
standard scenario, showing a strong underestimation (greater
than 0.2 forβ = 0.4) in the first part of the evolution, and the
characteristic underestimation aroundr = 0.8. In both cases the
latter underestimation is partially suppressed when the errors on
the observables are halved.

In conclusion, while the expected bias depends on the actual
value of the overshooting efficiency in the reference set, there is
clear evidence that all the scenarios show a large variability in
theβ estimates at 1σ level. Furthermore, the bias toward higher
values ofβ that we found when sampling fromβ = 0.0 suggests
great care in the evaluation of fittedβ . 0.1.
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3.2. Effect of relaxing the assumption of a common β for both
stars

In the previous analyses we assumed that the two stellar com-
ponents share a common value ofβ. Since it has been proposed
in the literature that a possible trend ofβ with the stellar mass
exists (Ribas et al. 2000; Claret 2007), we verify in this section
that no biases mar our results that are caused by the estimation
procedure assumptions.

To this purpose we repeated the estimation of the overshoot-
ing parameter forN = 10 000 binary systems, sampled from the
grid of β = 0.2, without imposing the constraint that the solu-
tions for the primary and the secondary stars share a commonβ

value. In other words, only the coevality was imposed duringthe
recovery. This procedure would show possible systematic distor-
tions in the estimated overshooting parameter for the two stars in
the systems. A lack of bias would support the conclusion thatthe
individualβ is recovered well by our technique.

The results of the analysis are displayed in Fig. 4. The left
panel of the figure shows the probability density function (eval-
uated by means of a kernel density estimator, see e.g. Scott 1992;
Venables & Ripley 2002 and Appendix A in Valle et al. 2014) of
the recoveredβ values for the whole systems – that is, impos-
ing that the two stars share a common value, as in the previous
sections – and individually for primary and secondary stars. It is
apparent that the recovered values are always consistent inme-
dian with the true valueβ = 0.2 and that the distributions of the
individual estimates are wider than the common one, especially
for the secondary stars, which are sampled in earlier stagesof the
their evolution. The right panel of Fig. 4 shows the probability
density function of theβ differences between primary and sec-
ondary stars for theN binary systems. The function is strongly
peaked at zero difference, with the 16th and 84th quantile∓0.12
respectively.

These results are reassuring for the capability of the tech-
nique of recovering the correct value of the overshooting param-
eter for the two stars, without suffering from distortions that are
due to the different masses and evolutionary stages from the pri-
mary and secondary star.

In the light of these results, it is safe to conclude that the
individualβ for the two stars can be estimated without significant
bias with respect to the scenario of constrained common value, at
the expense of an extra loss of precision on the individual values.

However, since no definitive trend ofβ with the stellar mass
is firmly established, we prefer to adopt in the sampling scheme
that we followed to produce the synthetic dataset a commonβ
value for both components and impose the same constraint in
the recovery phase as well. In turn, this choice translates into a
conservative evaluation of the uncertainties in the estimated β
values.

4. Stellar models induced biases in the calibration
procedure

In addition to the random fluctuation discussed in the previous
section, the estimatedβ value is prone to systematic biases that
are due to stellar models adopted in the calibration procedure.
Several inputs or assumptions are routinely adopted in stellar
evolutionary codes, which are still poorly constrained by obser-
vations. In this section we focus on three bias sources that are
relevant in the mass range considered in this paper: the initial he-
lium content, the mixing-length value, and the efficiency of the
element diffusion used to compute stellar models. While the in-
fluence of the last two is expected to disappear for more massive

systems because the convective envelope vanishes and because
the timescale evolves very fast, the first is unavoidable in every
mass range.

To quantify the biases due to the considered factors, we fol-
lowed the same procedure as described in Valle et al. (2015a).
We built several synthetic datasets of artificial binary systems
sampling from grids computed withβ = 0.2, but varying the ini-
tial helium content, the mixing-length value, or neglecting mi-
croscopic diffusion. These systems were subjected to random
perturbation to simulate the observational errors, following the
same procedure as outlined in Sect. 3. Finally, we estimatedthe
overshooting parameter by adopting the standard multi-grid.

4.1. Initial helium abundance

The evolution of stars strongly depends on the initial helium
abundance. As a consequence, for a given mass and age, the ob-
servable stellar quantities depend on its value. On the other hand,
the stars we examine here are too cold to allow a spectroscopic
measurement of the surface helium content. Moreover, such a
value would not be representative of the initial value owingto
the effect of microscopic diffusion.

This means that stellar modellers have to assume an ini-
tial value Y for the helium abundance to adopt in stellar evo-
lution computations. A linear relationship between the primor-
dial helium abundanceY and metallicityZ is usually assumed.
Unfortunately, the value of the helium-to-metal enrichment ra-
tio ∆Y/∆Z is still quite uncertain (e.g. Pagel & Portinari 1998;
Jimenez et al. 2003; Gennaro et al. 2010). This in turn leads to
an uncertainty in the initial helium abundance adopted in stellar
computations for a given initial metallicity, which affects stellar
model predictions and, consequently, the value of the estimated
β parameter.

To assess the bias that is due to the uncertain initial helium
content, we computed two additional grids of stellar modelswith
β = 0.2, the same metallicity valuesZ as in the standard grid,
but by changing the helium-to-metal enrichment ratio∆Y/∆Z to
values 1 and 3. Then, we built two synthetic datasets, each of
N = 50 000 artificial binary systems by sampling the objects
from these two non-standard grids, and subjected the observ-
ables of the obtained systems to random perturbations. As a last
step, the core overshooting efficiency was reconstructed using
the standard multi-grid with∆Y/∆Z = 2.

The resulting error envelopes are presented in Fig. 5 as a
function of the relative age of the primary star. The median esti-
matedβ in the low-helium scenario tends to decrease withr up
to r ≃ 0.7, while the opposite trend appears for the high initial
helium case. We also note a shift in the estimatedβ for stars near
to the ZAMS, positive for the∆Y/∆Z = 1 case, and negative for
∆Y/∆Z = 3. The trends visible in the figure are obviously caused
by the differential effects on the stellar evolution timescale of
changing the initial helium content and of assuming a different
overshooting efficiencyβ. The great difference between the two
panels of Fig. 5 poses a serious problem whenever theβ value is
attempted to be constrained because the original helium content
of a system is generally poorly constrained.

The final uncertainty onβ for a change of±1 in ∆Y/∆Z is
presented in Fig.6 and Tables 2 and 3. The figure and tables show
the position of the median and of the 1σ and 2σ error boundaries
on theβ estimates, accounting for the chosen initial helium vari-
ability. They were constructed by computing for each relative
ager the maximum and minimum values assumed by the enve-
lope boundaries and by the median in all the considered initial
helium scenarios. As an example, theql

50 (qu
50) value was ob-
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Fig. 4. Left: probability density functions for the estimatedβ from N = 10 000 systems sampled at trueβ = 0.2. The black solid line corresponds
to the estimation performed assuming a common value ofβ for primary and secondary star; the red dashed line corresponds to theβ values for the
primary star alone; the greed dot-dashed line toβ values for the secondary star alone.Right: probability density function for the differences of the
estimatedβ for primary and secondary stars.
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Fig. 5. Left: as in the right panel of Fig. 2, but sampling from a grid with∆Y/∆Z = 1. Right: same as in theleft panel, but sampling from a grid
with ∆Y/∆Z = 3. In both cases the reconstruction was performed with the standard grid with∆Y/∆Z = 2.

tained by considering the minimum (maximum) value at a given
mass (Table 2) orr (Table 3) of the medianβ obtained sampling
from∆Y/∆Z = 1, 2, 3 grids.

We note a mild increase of the uncertainty with the mass of
the primary starM1; the trend withr is clearly more problem-
atic and suggests that for relative agesr ≤ 0.8 the effect of the
unknown initial helium content even prevents the possibility of
determining the sign of the bias. For the very last evolutionary
phases the 1σ random error onβ ranges from−0.05 to+0.10,
while at the 2σ level the value ofβ is almost unconstrained in
the whole explored range of overshooting efficiency.

4.2. Mixing-length value

One of the weakest point in stellar model computations is the
treatment of the convective transport in superadiabatic regimes,
which actually prevents a firm prediction of the effective temper-
ature and radius of stars with an outer convective envelope.

Stellar evolutionary codes usually implement the mixing-
length formalism (Böhm-Vitense 1958), where the efficiency of
the convective transport depends on a free parameterαml that is
routinely calibrated on the Sun, a procedure that in our standard
case providesαml = 1.74. Nevertheless, there are several doubts
that the solar-calibratedαml value is also suitable for stars of
different masses and/or in different evolutionary stages (see e.g.
Ludwig et al. 1999; Trampedach et al. 2014).
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Fig. 6. Left: overall uncertainty (statistical and systematic) that isdue to the considered variations in∆Y/∆Z, in dependence on the mass of the
primary star. The lighter region shows the uncertainty on the median of the estimatedβ caused by ignoring the correct initial helium value. The
intermediate colour regions show the overall error up to 1σ that is due to the cumulated contribution of observational errors and systematic bias as
a result of the unknown initial helium value. The darker regions correspond to cumulated errors up to 2σ. Right: same as in theleft panel, but in
dependence on the relative age of the primary star.

Table 3. Same as Table 2, but as a function of the relative age of the primary star.

primary star relative age
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

unknown initial helium content
q0.025 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
q0.16 0.03 0.03 0.05 0.03 0.03 0.03 0.01 0.00 0.00 0.07 0.15

ql
50 0.08 0.11 0.16 0.16 0.14 0.12 0.09 0.07 0.07 0.16 0.20

qu
50 0.28 0.26 0.23 0.20 0.25 0.28 0.30 0.27 0.12 0.20 0.23

q0.84 0.38 0.38 0.38 0.35 0.38 0.38 0.38 0.38 0.35 0.30 0.30
q0.975 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.38

unknown mixing-length
q0.025 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
q0.16 0.01 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.07 0.11

ql
50 0.12 0.12 0.14 0.13 0.12 0.17 0.19 0.15 0.12 0.15 0.17

qu
50 0.15 0.17 0.19 0.19 0.20 0.23 0.20 0.17 0.14 0.23 0.27

q0.84 0.35 0.35 0.35 0.34 0.35 0.36 0.35 0.35 0.34 0.30 0.35
q0.975 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

unknown element diffusion efficiency
q0.025 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
q0.16 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.05 0.12

ql
50 0.13 0.13 0.15 0.16 0.16 0.17 0.20 0.17 0.12 0.17 0.17

qu
50 0.15 0.15 0.16 0.17 0.19 0.23 0.28 0.26 0.20 0.19 0.20

q0.84 0.34 0.33 0.31 0.33 0.35 0.36 0.38 0.38 0.36 0.31 0.28
q0.975 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.38

To establish the impact of assuming different values of su-
peradiabatic convective efficiency, we computed two additional
grids of stellar models withβ = 0.2, but withαml = 1.50 and
αml = 1.98. As in the previous section, we built two synthetic
datasets, each ofN = 50 000 artificial binary systems, by sam-
pling the objects from these two non-standard grids, and we sub-

jected the observables to random perturbations. Finally, the over-
shooting efficiency was reconstructed using the standard multi-
grid with αml = 1.74.

The assumed scenario is appropriate for systems withq ≈ 1;
these stars are expected to share a common value – whatever itis
– of mixing-length. The hypothesis is more questionable forsys-
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Table 2. Overall uncertainty, statistical (1σ and 2σ) and systematic (ql
50,

qu
50) as a result of the considered variations in∆Y/∆Z, αml, and micro-

scopic diffusion efficiency as a function of the mass of the primary star.

primary star mass (M⊙)
1.1 1.2 1.3 1.4 1.5 1.6
unknown initial helium content

q0.025 0.01 0.00 0.00 0.00 0.00 0.00
q0.16 0.12 0.07 0.07 0.07 0.05 0.03

ql
50 0.21 0.20 0.20 0.20 0.20 0.17

qu
50 0.23 0.22 0.21 0.23 0.23 0.23

q0.84 0.32 0.30 0.30 0.33 0.34 0.35
q0.975 0.39 0.38 0.39 0.40 0.40 0.40

unknown mixing-length
q0.025 0.01 0.00 0.00 0.00 0.00 0.00
q0.16 0.09 0.07 0.07 0.07 0.07 0.07

ql
50 0.17 0.16 0.17 0.17 0.18 0.20

qu
50 0.30 0.28 0.25 0.23 0.23 0.20

q0.84 0.38 0.36 0.35 0.33 0.33 0.33
q0.975 0.40 0.40 0.40 0.40 0.40 0.40

unknown element diffusion efficiency
q0.025 0.01 0.00 0.00 0.00 0.00 0.00
q0.16 0.10 0.05 0.05 0.07 0.07 0.07

ql
50 0.17 0.17 0.17 0.17 0.18 0.20

qu
50 0.21 0.20 0.20 0.20 0.20 0.20

q0.84 0.30 0.28 0.30 0.30 0.32 0.33
q0.975 0.38 0.38 0.38 0.40 0.40 0.40

tems with significantly different masses, since a possible trend of
αml with the stellar mass is still uncertain (Trampedach & Stein
2011; Bonaca et al. 2012; Mathur et al. 2012; Tanner et al. 2014;
Magic et al. 2015). Therefore the results presented here canbe
considered as the extreme variation on theβ calibration for dif-
ferences in the mixing-length parameter of±0.24.

The error envelopes as a function of the relative age of the
primary star are shown in Fig. 7. The trends caused by assum-
ing different mixing-length values are slightly different; lower-
ing αml has the effect of underestimating theβ value forr ≤ 0.7,
while for r ≥ 0.9 the overshooting efficiency is overestimated. In
contrast, an higher value ofαml leads to aβ underestimate in the
last part of the MS evolution.

The final uncertainty onβ that is due to the ignorance ofαml
is presented in Fig. 8 and Tables 2 and 3. As expected (see left
panel in Fig. 8), the bias caused by the explored uncertaintyin
the mixing-length value vanishes for massive systems. In these
cases the primary stars do not present a convective envelope.

Finally (right panel in Fig. 8), a moderate bias of about±0.05
in the last stages of the evolution is apparent, an unfortunate
event, since this zone has been found in the preceding sections
to offer the best opportunity for theβ estimate.

To explore in greater detail the bias that is due to the lack of
information about the correct mixing-length value to adopt, we
present in Table 4 the cumulated envelope obtained by consid-
ering only systems with a secondary star more massive than 1.4
M⊙ and than 1.5M⊙. These stars have a progressively thinner
convective envelope, and therefore they are increasingly more
independent of the efficiency of the superadiabatic convection.
As expected, in these subsets of masses the width of the bias in-
terval inβ, for r = 1.0 shrinks from 0.10 in the standard scenario
to 0.05 and 0.03, respectively.

4.3. Helium and heavy element diffusion

Another tricky process to implement in stellar evolution codes is
the diffusion of helium and heavy elements. Depending on the
efficiency of microscopic diffusion, the surface abundances of
the chemical elements change with time. As an example, dur-
ing the central hydrogen burning, the surface [Fe/H] drops from
the ZAMS value and reaches a minimum at about 90% of its
evolution before central hydrogen depletion (see e.g. Fig.12 in
Valle et al. 2014). After this point the convective envelopesinks
inwards in more internal regions, where metals were previously
accumulated by gravitational settling, leading to an increase of
the surface metallicity. The size of the effect depends on both the
mass of the star and its initial metallicity. The lower the initial
metallicity and the thinner the convective envelope, the higher
the surface metallicity drop.

In the considered mass range of MS stars the observed [Fe/H]
might therefore be quite different from the initial one – if inhibit-
ing processes are inefficient – depending on the stellar age and
mass. Hence the microscopic diffusion effect should be taken
into account whenever the structural characteristics of low-mass
MS stars have to be determined. Neglecting microscopic diffu-
sion in the stellar models used in the recovery procedure and
assuming that the observed [Fe/H] is coincident with the initial
one will introduce a systematic bias.

However, the efficiency of diffusion has been questioned
by some authors (see e.g. Korn et al. 2007; Gratton et al. 2011;
Nordlander et al. 2012; Gruyters et al. 2014). Moreover, some
widely used stellar model grids in the literature, namely BaSTI
(Pietrinferni et al. 2004, 2006) and STEV (Bertelli et al. 2008,
2009), do not implement diffusion. The same occurs in stel-
lar models used in some grid-based techniques, such as RA-
DIUS (Stello et al. 2009) and SEEK, which both adopt a grid
of models computed with the Aarhus STellar Evolution Code
(Christensen-Dalsgaard 2008).

Thus, it is worthwhile to analyse the distortion in the inferred
value of the convective-core overshooting efficiency that arises
whenever the effects of the diffusion are neglected in stellar mod-
els. The maximum bias caused by the element diffusion uncer-
tainty on the estimatedβ value was assessed by computing a grid
of models withβ = 0.2 and no element diffusion. As in the pre-
vious section, a synthetic dataset ofN = 50 000 binary systems
was sampled from this grid and subjected to random perturba-
tions. Theβ values were then estimated by adopting the standard
multi-overshooting grid.

The results are presented in Fig. 9; the figure shows the 1σ β

envelope as a function of the relative age of the primary star.
Overall, the diffusion-induced bias is the lowest of those ex-
plored in the paper. The largest difference from the standard sce-
nario occurs for systems whose primary star has a relative age in
the range 0.5 < r < 0.8. In the terminal phase of the evolution, a
small underestimation of 0.025 occurs. The final uncertainty on
β that is due to the lack of knowledge of diffusion efficiency is
presented in Fig.10 and Tables 2 and 3. As for the mixing-length
variability, we present in Table 4 the detail about the expected
bias and random uncertainty in the subsets of masses obtained
by restricting to systems with secondary star more massive than
1.4 M⊙ and than 1.5M⊙. As a result of two competing effects
(i.e. the thinning of the convective envelope and the fasterevo-
lutionary timescale), we obtained that the differences among all
these scenarios are almost negligible.
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αml = 1.98. In both cases the reconstruction was performed with the standard grid withαml = 1.74.
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Fig. 8. Left: overall uncertainty (statistical and systematic) that isdue to the considered variations inαml, in dependence on the mass of the primary
star. The lighter region shows the uncertainty on the medianof the estimatedβ that is a result of ignoring the correct mixing-length value. The
intermediate colour regions show the overall error up to 1σ caused by the cumulated contribution of observational errors and systematic bias that
is due to the unknown mixing-length value. The darker regions correspond to errors up to 2σ. Right: same as in theleft panel, but in dependence
on the relative age of the primary star.

5. Conclusions

We theoretically investigated the statistical and systematic er-
rors in the calibration of the convective-core overshooting effi-
ciency on low-mass binary systems whose two components are
in the MS phase. We used the grid-based pipeline SCEPtER
(Valle et al. 2014, 2015b,a) and adopted as observational con-
straints the stellar effective temperature, the metallicity [Fe/H],

the mass, and the radius of the two stars. The grid of stellar mod-
els was computed for the evolutionary phases from the ZAMS to
the central hydrogen depletion in the mass range [1.1; 1.6]M⊙,
with 17 different values of the core overshooting parameterβ

from 0.0 to 0.4.

The statistical uncertainty that affects theβ value provided by
the calibration procedure arising from the observational errors is
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Table 4. Same as Table 3, but only for the impact ofαml and diffusion efficiency, restricting the mass range of the secondary stars toM2 > 1.4 M⊙
andM2 > 1.5 M⊙.

primary star relative age
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M2 > 1.4 M⊙
unknown mixing-length value

q0.025 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
q0.16 0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.07 0.15

ql
50 0.12 0.15 0.15 0.12 0.14 0.17 0.19 0.17 0.15 0.17 0.19

qu
50 0.15 0.17 0.16 0.17 0.17 0.20 0.19 0.20 0.17 0.23 0.24

q0.84 0.33 0.32 0.30 0.34 0.35 0.38 0.38 0.36 0.38 0.34 0.30
q0.975 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

unknown element diffusion efficiency
q0.025 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09
q0.16 0.04 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.07 0.15

ql
50 0.15 0.15 0.16 0.17 0.17 0.17 0.19 0.20 0.17 0.20 0.17

qu
50 0.15 0.15 0.18 0.20 0.24 0.28 0.30 0.28 0.28 0.20 0.20

q0.84 0.34 0.30 0.32 0.35 0.38 0.38 0.39 0.38 0.38 0.38 0.28
q0.975 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.36

M2 > 1.5 M⊙
unknown mixing-length value

q0.025 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10
q0.16 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.07 0.15

ql
50 0.13 0.15 0.14 0.10 0.12 0.17 0.17 0.17 0.11 0.16 0.20

qu
50 0.17 0.17 0.16 0.20 0.21 0.20 0.20 0.20 0.17 0.21 0.23

q0.84 0.33 0.30 0.31 0.35 0.38 0.38 0.38 0.38 0.38 0.33 0.30
q0.975 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.39

unknown element diffusion efficiency
q0.025 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10
q0.16 0.04 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.15

ql
50 0.15 0.15 0.14 0.20 0.21 0.19 0.17 0.20 0.11 0.17 0.18

qu
50 0.17 0.16 0.20 0.24 0.27 0.28 0.33 0.30 0.30 0.17 0.20

q0.84 0.33 0.30 0.35 0.38 0.38 0.38 0.39 0.38 0.38 0.35 0.25
q0.975 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.35

very large. Moreover, the calibrated parameter was generally bi-
ased, the exact magnitude depending on the evolutionary phase
of the stars and on the assumed true value ofβ. As reference
scenario we adopted a mild overshootingβ = 0.2. In this case
only for systems with primary star in the last 5% of the MS evo-
lution, the estimate is unbiased with a 1σ random error ranging
from +0.08 to−0.03. Earlier evolutionary stages show a biased
estimate of about−0.04 and a much higher variability; for bi-
nary systems whose primary star has a relative ager ≤ 0.8, the
1σ envelope is practically unconstrained in the whole range of
β [0.0; 0.4]. The random 1σ uncertainty affecting the estimated
β is weekly dependent on the reference value used to build the
synthetic dataset.

Interestingly, in the scenario where the synthetic stars donot
take core overshooting into account (i.e. true value ofβ = 0.0),
the calibration procedure is always biased because it always
provides a very mild overshooting (+0.05 at late evolutionary
phases and+0.12 before). This constitutes a serious problem for
calibration studies, and fitted values ofβ ≤ 0.1 should be con-
sidered with caution.

In addition to the effect that is due only to the current un-
certainties that affect the observables used in the estimate proce-
dure, we also studied the theoretical biases caused by stillpoorly
contained parameters that affect stellar model behaviour. We fo-
cused on the initial helium abundance, the mixing-length value,
and the efficiency of element diffusion. The first source of un-

certainty is also relevant for more massive objects and prevents
a firm determination ofβ. By assuming an uncertainty of±1 in
the helium-to-metal enrichment ratio∆Y/∆Z required to deter-
mine the initial helium content used to compute the evolution
of the artificial stars, we found a large systematic uncertainty on
theβ value for the first 85% of the evolution of the primary star;
the maximum bias reaches 0.2 atr = 0.6. In the terminal phases
of the evolution the effect of the initial helium uncertainty is of
about 0.03. Taking both systematic and 1σ statistical uncertainty
into account, we found that the error on the estimatedβ values
ranges from−0.05 to+0.10 in the last part of the evolution. At
2σ level, theβ values is practically unconstrained in the whole
explored range of convective-core overshooting efficiency. The
results are significantly poorer for lowerr. For r ≤ 0.8 the 1σ
statistical uncertainty is basically unconstrained throughout the
explored range ofβ.

The lack of constraints on the mixing-length value is an im-
portant bias source in the explored mass range. We quantifiedthe
effect of an uniform variation of±0.24 in the value ofαml used
to compute the evolution of the synthetic stars. The largestbias
occurs for binary systems whose primary star is in the last part of
its MS evolution (r ≥ 0.9) with an error on the estimated median
β from−0.03 to+0.07. The 1σ uncertainty that addresses statis-
tical and systematic error sources ranges from−0.09 to+0.15.

Another uncertainty source in the considered mass range is
the efficiency of microscopic diffusion. We quantified the effect
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Fig. 10. Same as Fig. 6, but for the scenario without diffusion.
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Fig. 9. Same as the right panel of Fig. 2, but sampling from a grid with-
out element diffusion.

of completely neglecting diffusion on the stellar evolution. The
bias is smaller than those due to the other considered sources. In
this case, the 1σ uncertainty that addresses statistical and sys-
tematic error sources ranges from−0.08 to+0.08.

In summary, the results presented in this study suggest that
the calibration of the convective-core overshooting efficiency
based on the observed mass, effective temperature, radius, and
metallicity of binary systems – whose components are in the
MS phase and in the explored mass range – is not statistically
grounded. The random uncertainty affecting the calibratedβ
value is so large that it undermines the possibility of providing it
in a reliable way from a single (or a few) binary systems. More-
over, the highlighted systematic biases also shed some doubts

on the possibility of adopting a set of binary stars to reducethe
uncertainty on the recoveredβ. However, in the near future the
scenario could change because high-quality asteroseismicobser-
vations of binary stars will become available. These data will
shed light on the internal structure of the stars, allowing abetter
constraint of the main parameters that govern the stellar evolu-
tion.

The effectiveness of core overshooting calibration on binary
stars in more advanced evolutionary phases and/or different mass
range from those studied here deserves further investigations.
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