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PERVERSELY CATEGORIFIED LAGRANGIAN CORRESPONDENCES

LINO AMORIM AND OREN BEN-BASSAT

Abstract. A study of shifted symplectic geometry in the algebraic context was recently initiated
by Pantev, Toën, Vaquié and Vezzosi. In this article, we construct a 2-category of Lagrangians in
a fixed shifted symplectic derived stack S. Objects, 1-morphisms and 2-morphisms are all given by
Lagrangians living on various fiber products and composition of morphisms is given by composition
of Lagrangian correspondences. A special case of this construction gives a 2-category of n-shifted
symplectic derived stacks Sympn. This is a 2-category version of Weinstein’s symplectic category
in the setting of shifted symplectic (algebraic) geometry. By working in the setting of derived
algebraic geometry, we avoid all issues of transversality for Lagrangians. In the case that n = 0
we introduce another 2-category Sympor where the 0-shifted symplectic derived stacks and the 1-
morphisms and 2-morphisms in Symp0 are enhanced with orientation data. This category Sympor

is used to define a 2-category LSymp, a partial linearization of the 2-category of 0-shifted symplectic
derived stacks. Joyce and his collaborators defined a certain perverse sheaf living on any oriented
(−1)-shifted symplectic derived stack. This perverse sheaf encodes Donaldson–Thomas invariants
in the case that this stack is the stack of perfect complexes on a Calabi–Yau threefold. Joyce
conjectured that Lagrangians in (−1)-shifted symplectic stacks define canonical elements in the
hypercohomology of the perverse sheaf restricted to the Lagrangian. We prove Joyce’s conjecture
in the most general local model of a Lagrangian in a (−1)-shifted symplectic derived scheme. We
then state our version of Joyce’s conjecture which gives a ”quantization” of the 1-category version
of Symp−1 in the sense that (−1)-shifted symplectic manifolds are assigned to perverse sheaves
and Lagrangian correspondences are assigned to maps in the derived category of sheaves in a
functorial way. Finally, we introduce a symmetric monoidal 2-category of d-oriented derived stacks
(in the sense of Pantev-Toën-Vaquié-Vezzosi) and fillings. Taking mapping stacks into a n-shifted
symplectic derived stack S defines a 2-functor from this category to Sympn−d.
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1. Introduction

Since the early stages of the development of Symplectic Geometry it is was clear the important
role played by Lagrangian correspondences as natural generalizations of symplectomorphisms. We-
instein [30] considered a symplectic ”category” where the set of morphisms between two symplectic
manifoldsM0 andM1 is the set of Lagrangian correspondences, that is submanifolds of the product
M−

0 ×M1. Composition in this category should be defined as a fiber product, given Lagrangian
correspondences L1 →M−

0 ×M1 and L2 →M−
1 ×M2, one considers the composition

L1 ×M1 L2 →M−
0 ×M2.

If this fiber product is transversal then this is again a Lagrangian correspondence. Since we cannot
guarantee transversality in general one is forced to work with “categories” where the composition
is only partially defined or to consider strings of correspondences as is done by Wehrheim and
Woodward [29]. One then expects that symplectic invariants of symplectic manifolds can be made
functorial with respect to Lagrangian correspondences. Weinstein’s constructions were related to
quantization where one associates to each symplectic manifold a linear space and to each Lagrangian
a linear map. More recently Wehrheim and Woodward carried such a construction in the context
of Floer theory (under some technical restrictions) [29]. Namely, they associated to each symplectic
manifold its Donaldson-Fukaya category and to each Lagrangian correspondence a functor between
those categories. The Donaldson-Fukaya category is a category whose objects are Lagrangian
submanifolds and morphism spaces are the Floer cohomology groups. Moreover, they showed that
this data can be assembled into a (weak) 2-category, called the Weinstein-Floer 2-category.

In this paper we explore similar ideas in the context of derived symplectic geometry recently
introduced by Pantev, Toën, Vaquié and Vezzosi in [24]. It turns out that all the basic construc-
tions involving Lagrangian correspondences have direct analogues in the derived world, with the
advantage that all fiber products (in the homotopy sense) exist and so we don’t have to worry with
transversality conditions. However there are two new phenomena in the derived setting:

1) The intersection of two derived Lagrangians in a n-shifted symplectic derived stacks (or
schemes) is naturally a (n−1)-shifted symplectic derived stack. This allows us two consider
iterated Lagrangian correspondences.

2) Each (oriented) (−1)-shifted symplectic derived stack carries a perverse sheaf. Its hyperco-
homology will replace Floer cohomology in our context.

The first phenomenon is the starting point of our first main result. Since the (derived) intersection
X ∩ Y of two n-shifted Lagrangians is (n − 1)-shifted symplectic one can think of Lagrangians in
X ∩ Y as “relative” Lagrangian correspondences between X and Y . It should be possible to
iterate this construction and so define a symplectic k-category for each k. More precisely since
derived stacks form an ∞-category one expects that there will be an (∞, k)-category of “relative”
Lagrangian correspondences. This was already proposed by Calaque in [8] and is subject of ongoing
work by Haugseng [11, 12] , Li-Bland [17], and others. Schreiber has written extensively on higher
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Lagrangian correspondences and their quantization in sections 1.2.10, 3.9.14, and 6 of [26]. In
this paper, we only consider the case of k = 2 and work with weak 2-categories (also known as
bicategories), as this all we need for our main goal of constructing an analogue, in derived algebraic
geometry of the Weinstein-Floer 2-category. We prove the following

Theorem 1.1. Let S be an n-shifted symplectic derived stack. There is a bicategory Lag(S) with
objects (derived) Lagrangians in S, 1-morphisms are “relative” Lagrangian correspondences and
2-morphisms are “relative” Lagrangian correspondences between “relative” Lagrangian correspon-
dences.

As observed by Calaque [8], the point is a (n + 1)-shifted derived symplectic stack •n+1 and a
Lagrangian in •n+1 is the same as a n-shited symplectic derived stack. Therefore as a corollary of
the above we obtain a bicategory

Sympn = Lag(•n+1),

with objects n-shifted derived symplectic stacks. Additionally, we show that this 2-category is
symmetric monoidal as defined in [25].

These categories are highly non-linear and so not very manageable, our goal is to construct a
linear version of the category Sympn, in the case of n = 0. In order to do this, one first needs
to chose some extra data on the Lagrangians, which goes by the general name of orientation data
and is partially inspired by the notion of relatively spin Lagrangian from Lagrangian Floer theory
introduced in [10]. We describe in Theorem 5.12 a symmetric monoidal bicategory

Symporc ,

whose objects are 0-shifted symplectic derived stacks equipped with line bundles, 1-morphisms
are oriented 0-shifted Lagrangians correspondences and 2-morphisms are proper, oriented (−1)-
shifted “relative” Lagrangian correspondences. Also, there is a 2-functor of symmetric monoidal
2-categories Symporc → Symp0 which forgets the orientation data.

Our second main result is a linearization of Symporc . This is related to the second phenomenon
mentioned above and can be thought as part of the programme by Joyce and his collaborators
[13, 4, 3, 6, 14], on the categorification of Donaldson–Thomas invariants. One of the outcomes
of this theory is that a (−1)-shifted symplectic derived stack X, together with some orientation
data, carries a natural perverse sheaf PX . This idea of this perverse sheaf was due to Behrend
who suggested it as a sort of categorification of the Behrend function, a function used to present
Donaldson–Thomas invariants as a weighted Euler characteristic on the moduli space [7]. For ex-
ample in the case X is the moduli space of coherent sheaves on a Calabi–Yau 3-fold, the Euler
characteristic of the hypercohomology of PX is the Donaldson–Thomas invariant of the 3-fold.
In our setting we will be interested in the perverse sheaf in the intersection of two 0-shifted La-
grangians, which is (−1)-shifted symplectic as proved in [24]. In fact, the intersection of any two
Lagrangians carries such a perverse sheaf, even in the holomorphic case as proved by Bussi in [5].

Joyce conjectured that this construction should be a part of a “quantization” of (−1)-shifted
symplectic derived stacks. In other words, a (−1)-shifted Lagrangian correspondence φ : M →
X−

0 ×X1, together with some orientation data, determines a map

µM : φ∗0PX0 [vdimM ] −→ φ!1PX1 ,

in the derived category of constructible sheaves of M . We formulate a more detailed version of
this in Conjecture 5.18, namely we describe the behaviour of µ under composition of Lagrangian
correspondences. We also give a local construction of the map µM .

Assuming this conjecture we prove the following
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Theorem 1.2. There exists a symmetric monoidal weak 2-category LSymp, whose objects are 0-
shifted symplectic derived stacks with line bundles, 1-morphisms are oriented Lagrangian correspon-
dences and the space of 2-morphisms between X and Y is the hypercohomology H•(PX∩Y [−vdimX]).

Moreover there is a 2-functor of symmetric monoidal 2-categories Symporc → LSymp.

Given two classical smooth algebraic Lagrangians (of complex dimension n) in a smooth algebraic
symplectic variety, these are examples of 0-shifted Lagrangians, therefore their (derived) intersection
X∩Y is (−1)-shifted symplectic. If this intersection is clean one can show that the hypercohomology
H•(PX∩Y [−vdimX]) is isomorphic to the Floer cohomology of the pair X,Y . In fact, we expect
this to hold in general. One might expect that the Donaldson–Floer 2-category, constructed by
Wehrheim and Woodward embeds in LSymp.

In [24], the authors defined a O-oriented derived stack (X, [X]) of dimension d. Rather informally
this can be thought of as a volume form (of degree d) that allows us to “integrate functions” on X.
In the last section, we describe another bicategory Fill(X) of fillings (or relative O-orientations) of
an O-oriented derived stack (X, [X]). These were introduced by Calaque in [8], and heuristically,
are objects whose boundary is X.

The relevance of O-oriented derived stacks to the present paper is the following construction.
Given S an n-shifted symplectic derived Artin stack, and X an O-oriented, O-compact derived
Artin stack of dimension d, the mapping stack Map(X,S) inherits an (n − d)-shifted symplectic
structure by a theorem of [24]. Also, as proved by Calaque, the mapping stack takes relative
orientations to Lagrangians. We elaborate on this constructions and show that there is a 2-functor

M : FillC(X) −→ Lag (Map(X,S)) ,

where FillC(X) is an appropriate subcategory of Fill(X), dependent on S.
As a particular case when X is the empty set thought of as a (d − 1)-dimensional O-oriented,

derived stack then the bicategory Ord := Fill(∅d−1) is a symmetric monoidal bicategory of d-
dimensional, O-oriented, O-compact derived stacks. We then have a symmetric monoidal 2-functor

M : OrdC −→ Sympn−d

determined by a n-shifted symplectic derived Artin stack S. We expect that the 2-category Cobd
of cobordisms of d-dimensional manifolds, defined in [25], maps into OrdC. Therefore the above 2-
functor should define a TQFT in the sense of Segal. Just as the shifted symplectic geometry of [24]
can be thought of as a mathematically rigorous framework for understanding the AKSZ formalism
[1], we hope this article will be used towards the understanding of classical BV theory (including
boundaries) as in the article [9].

We end this introduction with an open problem. In the case that n = d we have the following
diagram of 2-categories

? //

��

Symporc

��

// LSymp

OrdC
M // Symp0 .

It is a very interesting question, if there is a natural 2-category that completes the above diagram.
This should amount to finding, for each specific S, some geometric structure on O-oriented (or rela-
tively oriented) derived stacks that naturally induces orientations on the symplectic (or Lagrangian)
derived stack Map(−, S). We leave this problem for future work.
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2. Derived Lagrangian Intersections

2.1. Review of shifted symplectic geometry.
We will review some of the basics of shifted symplectic geometry following the work of Pantev,

Toën, Vaquié and Vezzosi [24]. We start by establishing some notation and conventions. We
work relative to a fixed field k of characteristic zero which we suppress from the notation with it
being understood that everything is relative to this field. We often suppress pullbacks of (relative)
tangent or cotangent complexes in order to simplify notation. Also, since all of our fiber products
are homotopy fiber products, we denote them simply in the form X ×Z Y without any special
emphasis on the fact that these are homotopy fiber products. The same goes for other derived
functors.

We assume that all the derived Artin stacks are locally of finite presentation. In particular
given such a derived Artin stack F , its cotangent complex LF is dualizable and hence we define its
tangent complex TF := L∨

F . We call a morphism of derived Artin stacks f : X −→ Y formally étale
if the relative cotangent complex Lf vanishes. All the morphisms in this article are assumed to be
homotopically finitely presentable and so we do not distinguish between formally étale morphisms
and étale morphisms.

Let F be a derived Artin stack. In [24], the authors define a space Ap(F, n) of n-shifted p-forms
on F and similarly a space of n-shifted closed p-forms Ap,cl(F, n). Recall that there is an∞-functor

NCw : dStopk −→ dggrk

defined as the composition of the ∞-functors

DR : dStopk −→ ǫ− dgopk

and the weighted negative cyclic complex ∞-functor

NCw : ǫ− dgopk −→ dggrk .

The space of p-forms of degree n is defined as

Ap(F, n) ∼=MapLqcoh(F )(OF ,∧
pLF [n]) ∼= |DR(F )[n − p](p)|

and the space of closed p-forms of degree n is defined as

Ap,cl(F, n) ∼= |NCw(F )[n− p](p)|

as ∞-functors dStopk −→ S. Note that there is a natural transformation

NCw(F )[n− p](p) −→ ∧pLF [n]

which induces a natural transformation

Ap,cl(F, n) −→ Ap(F, n).

Given a closed p-form ω we call its image under this map the underlying p-form and denote it by
ω0

Definition 2.1. Let S be a derived Artin stack. An element ω ∈ A2,cl(S, n) is called an n-shifted
symplectic form if the underlying 2-form ω0 is non-degenerate. Non-degeneracy is the condition
that the map induced by ω0:

Θω : TS −→ LS [n]

is a quasi-isomorphism. We will denote by Symp(S, n) the space of all symplectic forms in S. We
will call a pair (S, ω) a n-symplectic derived stack.
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Obviously the point Spec(k) admits an unique n-shifted symplectic form, for every n. We will
denote this n-symplectic stack simply by •n.

Suppose that (S, ω) is an n-symplectic derived stack and consider a morphism of derived Artin
stacks f : X −→ S. An isotropic structure on f is an element h ∈ P0,f∗ω(A

2,cl(X,n)), that is a

path in A2,cl(X,n) from 0 to f∗ω. This determines homotopy commutativity data for the diagram

TX

��
0

��
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽

f∗TS

f∗Θω
��

f∗LS[n] // LX [n]

✡✡✡✡
AI

(2.1)

Recall that we have an exact sequence Lf [n−1] −→ f∗LS [n] −→ LX [n], therefore h induces a map

Θh : TX −→ Lf [n− 1].

We say h is non-degenerate, if this map is a quasi-isomorphism.

Definition 2.2. Let (S, ω) is an n-symplectic derived stack. A Lagrangian structure on a morphism
f : X → S is a non-degenerate isotropic structure h. We denote by Lag(f, ω) as the set of
Lagrangian structures on f . A Lagrangian in (S, ω) is a pair (f, h) consisting of a morphism
f : X → S and an element h ∈ Lag(f, ω). The collection of Lagrangians in (S, ω) will be written
Lag(S, ω).

A simple, but conceptually important observation from [8] is the following description of La-
grangians in a point.

Example 2.3. Let •n+1 be the point equipped with the canonical (n+1)-shifted symplectic structure,

let X be a derived Artin stack and let X
π
−→ •n+1 denote the canonical morphism of derived Artin

stacks. A Lagrangian structure on π is equivalent to a n-shifted form on X. To see this note
that, by definition, an isotropic structure h on π is a loop (based at 0) in A2,cl(X,n + 1), thus h
determines a class in π1(A

2,cl(X,n + 1)) ≃ π0(A
2,cl(X,n)). Denote by ω this closed 2-form. It

follows easily from the isomorphism LX ≃ Lπ that non-degeneracy of h implies non-degeneracy of
ω. Hence ω is a n-shifted symplectic structure on X.

We end this subsection with the definition of the product and the opposite for n-symplectic
derived stacks. It is straightforward to check that they are indeed n-symplectic derived stacks.

Definition 2.4. The product of n-symplectic derived stacks (S0, ω0) and (S1, ω1) is given by
(S0 × S1, p

∗
0ω0 + p∗1ω1).

If (S, ω) is a n-symplectic derived stack we define its opposite as the n-symplectic stack (S,−ω).
Often we will denote (S, ω) simply by S, in that case we use the notation S− for its opposite.

2.2. New Lagrangians out of old.
In this subsection we will give several constructions of symplectic and Lagrangian structures

obtained by considering various derived intersections of Lagrangians. The first construction of this
type that serves as inspiration can be found in [24, Theorem 2.9]. Calaque in [8] proved that the
classical result about composing Lagrangian correspondences holds in the shifted setting.
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Here we will show that all these constructions and a few new ones follow from one basic re-
sult, Proposition 2.7, and two canonical Lagrangians: the diagonal and the triple intersection of
Lagrangians [2]. We start with an elementary proposition.

Proposition 2.5. Let (S0, ω0) be an n-symplectic derived stack and f : X −→ S0 be a map of
derived stacks. There is a canonical bijection

Lag(f, ω0) −→ Lag(f,−ω0).

Moreover given another n-symplectic derived stack (S1, ω1) and a map g : Y −→ S1 there is a
canonical map

Lag(f, ω0)× Lag(g, ω1) −→ Lag(f × g, p
∗
0ω0 + p∗1ω1).

Next we show that, like in classical symplectic geometry, the diagonal map is Lagrangian.

Proposition 2.6. Let (S, ω) be an n-symplectic derived stack. Then the diagonal morphism

∆ : S −→ S− × S

has a canonical Lagrangian structure.

Proof. Denote by p0 and p1 the two natural projections S−× S −→ S. By definition of ∆, p0 ◦∆
and p1 ◦∆ are homotopic to idS , therefore we have a natural path l from (p0 ◦∆)∗ω to (p1 ◦∆)∗ω
in A2,cl(S, n). Translating l by (p0 ◦∆)∗ω we obtain a path from 0 to −(p0 ◦ ∆)∗ω + (p1 ◦ ∆)∗ω
which we denote by h. Next we compute

∆∗(p∗0(−ω) + p∗1(ω)) = −(p0 ◦∆)∗ω + (p1 ◦∆)∗ω

and conclude that h is an isotropic structure on ∆.
Next we check non-degeneracy of h. First note that p0 ◦∆ ∼= idS gives the exact triangle

∆∗Lp0 −→ Lid −→ L∆.

This implies L∆[−1] ≃ ∆∗Lp0 , since Lid = 0. Therefore

L∆[−1] ≃ ∆∗Lp0 ≃ ∆∗p∗0LS ≃ LS,

since p0 ◦∆ ∼= idS and Lp0 ≃ p
∗
0LS . Hence we obtain the following quasi-isomorphism

TS
Θω
≃ LS[n] ≃ L∆[n− 1],

which is induced by h. �

From now on we will call a Lagrangian f : X −→ S−
0 × S1, a Lagrangian correspondence from

S0 to S1.
The following proposition generalizes to the shifted setting a result in classical symplectic geom-

etry: (under appropriate transversality assumptions) a Lagrangian correspondence induces a map
from the set of Lagrangians in one factor to the other. This result follows from Theorem 4.4 in [8],
but we prove it here for the sake of completeness.

Proposition 2.7. Let (S0, ω0) and (S1, ω1) be n-symplectic derived stacks, let

f = f0 × f1 : X −→ S−
0 × S1

be a Lagrangian correspondence and let g : N −→ S0 be a morphism of derived stacks. There is a
map

Lag(g, ω0) −→ Lag(cf (g), ω1)

where cf (g) = f1 ◦ πX : N ×g,S0,f X −→ S1.
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Proof. Let h be the Lagrangian structure in f , that is a path from 0 to

f∗(−p∗0ω0 + p∗1ω1) = −(p0 ◦ f)
∗ω0 + (p1 ◦ f)

∗ω1 = −f
∗
0ω0 + f∗1ω1.

As before, up to translations this is equivalent to a path from f∗0ω0 to f∗1ω1 (which we will still
denote by h). Consider the following (homotopy) commutative diagram

N ×S0 X
πX //

πN
��

X

f0
��

N
g

// S0

It gives us a path l from π∗Ng
∗ω0 to π∗Xf

∗
0ω0. Let e be a Lagrangian structure on g. We define a

path H to be the concatenation π∗Ne • l •π
∗
Xh. This is a path from 0 to π∗Xf

∗
1ω1, in other words an

isotropic structure on cf (g).
We now need to check non-degeneracy of H. First observe that the map cf (g) is homotopic to

the following composition

N ×S0 X
(g,f)
−→ S0 ×S0 (S0 × S1)

∼= S0 × S1
p
−→ S1.

This gives the exact triangle

(g, f)∗Lp −→ Lcf (g) −→ L(g,f)

which can be rewritten as

(f0 ◦ πX)
∗LS0 −→ Lcf (g) −→ Lg ⊞ Lf ,

since Lp ≃ p
∗
0LS0 and L(g,f) ≃ Lg ⊞ Lf . Rotating and shifting, we get the exact triangle

Lcf (g)[n− 1] −→ Lg[n− 1]⊞ Lf [n− 1] −→ (f0 ◦ πX)
∗LS0 [n]. (2.2)

Next we recall that, since e and h are Lagrangian structures we have the commutative squares

TN //

Θe
��

g∗TS0

g∗Θω0
��

Lg[n− 1] // g∗LS0 [n]

and

TX //

Θh
��

f∗(TS0 ⊞ TS1)

Θ−ω0⊞Θω1
��

Lf [n − 1] // f∗(LS0 ⊞ LS1)[n]

We can pull back both diagrams to N ×S0 X and assemble them into the following homotopy
commutative square

TN ⊞ TX //

Θe⊞Θh
��

(f0 ◦ πX)
∗TS0

Θω0
��

(Lg ⊞ Lf )[n − 1] // (f0 ◦ πX)
∗LS0 [n]
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and hence we get the commutative diagram

TN×S0X
//

ΘH

��

TN ⊞ TX //

Θe⊞Θh

��

(f0 ◦ πX)
∗TS0

Θω0

��

Lcf (g)[n− 1] // Lg[n− 1]⊞ Lf [n− 1] // (f0 ◦ πX)
∗LS0 [n].

Note that the top row is exact by definition of homotopy fiber product and the bottom row is
exact by (2.2). Therefore we conclude that ΘH is a quasi-isomorphism, since Θe, Θh and Θω0 are
quasi-isomorphisms. This completes the proof that H is a Lagrangian structure on cf (g). �

Definition 2.8. Let (S0, ω0) and (S1, ω1) be n-symplectic derived stacks and let f = f0 × f1 :
X −→ S−

0 × S1 be a Lagrangian correspondence. Given g : N −→ S0 a map of derived stacks, we
define the map

Cf : Lag(g, ω0) −→ Lag(cf (g), ω1)

given by Proposition 2.7, where cf (g) = f1 ◦ πX : N ×g,S0,f X −→ S1.
We will sometimes use the notation CX instead of Cf . Also when the map g and a particular

Lagrangian structure h are fixed we write CX(N) for the Lagrangian Cf (h) on the map cf (g).

We will now use the map Cf , for several different Lagrangian structures f , to recover several
constructions of new Lagrangians out of old ones, in [24] and [8]. We start with [24, Theorem 2.9],

Corollary 2.9. Let (S, ω) be n-symplectic derived stacks and let f : X −→ S and g : Y −→ S be
maps of derived stacks. There is a map

Lag(f, ω)× Lag(g, ω) −→ Symp(X ×S Y, n− 1)

Proof. It follows from Proposition 2.5 that there is a mapping

Lag(f, ω)× Lag(g, ω) −→ Lag(f × g,−ω ⊞ ω). (2.3)

Proposition 2.6 determines a Lagrangian structure on the diagonal morphism ∆ : S −→ S− × S
which can be interpreted as a Lagrangian structure on the map ∆ : S −→ (S − ×S)− × •n. Now
by Proposition 2.7 we get a map

C∆ : Lag(f × g,−ω ⊞ ω) −→ Lag(c∆(f × g), •n).

where c∆(f × g) is the canonical map (X ×Y )×f×g,S×S,∆ S −→ •n. Now recall from Example 2.3,
that a Lagrangian structure in the canonical map to the point is equivalent to a (n − 1)-shifted
symplectic structure on the domain. Therefore composing the above two maps we obtain a map

Lag(f, ω)× Lag(g, ω) −→ Symp((X × Y )×f×g,S×S,∆ S, n− 1),

which is the required map once we note that (X × Y )×f×g,S×S,∆ S ∼= X ×S Y . �

Remark 2.10. Given Lagrangian structures hf on f : X → S and hg on g : Y → S, the symplectic

form which is produced from Corollary 2.9 in A2,cl(X ×S Y, n− 1) can be thought of as the loop at
0 given by the concatenation

π∗Xf
∗ω

""❋
❋❋

❋❋

π∗

Xhf ❋❋
❋❋

❋

π∗Y g
∗ωoo

0

<<②②②②②
π∗

Y hg

②②②②②

(2.4)
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in A2,cl(X ×S Y, n) where the top path is induced by the homotopy between g ◦ πY and f ◦ πX . A
Lagrangian structure on a morphism φ : N → X ×S Y is then a homotopy between the constant
loop at 0 in A2,cl(N,n) to the pullback of (2.4) by φ which is a loop at 0 in A2,cl(N,n). This is
equivalent to, in the path space P0(A

2,cl(N,n)), to a path from φ∗π∗Xhf to φ∗π∗Y hg:

φ∗π∗Xhf
// φ∗π∗Y hg

satisfying the following: when we evaluate at the endpoint we obtain the path in A2,cl(N) from
π∗Xf

∗ω to π∗Y g
∗ω that is homotopic to the natural path induced by g ◦ πY ∼= f ◦ πX .

Remark 2.11. In the case that S is the point •n the map (2.3) takes the pair (X,Y ) of (n − 1)-
shifted symplectic stacks to X−×Y . Since in this case we do not write anything below the product
symbol, it should not cause confusion that X×•n Y = X−×Y as shifted symplectic derived stacks.

In the next corollary we recover the result about composition of Lagrangian correspondences
proved in [8, Theorem 4.4].

Corollary 2.12. Let (Si, ωi) be n-symplectic derived stacks for i = 0, 1, 2 and let f : X −→ S0×S1
and g : Y −→ S1 × S2 be maps of derived stacks. There is a map

Lag(f,−ω0 ⊞ ω1)× Lag(g,−ω1 ⊞ ω2) −→ Lag(f ×S1 g,−ω0 ⊞ ω2),

where f ×S1 g : X ×S1 Y −→ S0 × S2. When S0, S1, S2, f and g are clear, we write this map as
(X,Y ) 7→ Y •X.

Proof. According to Proposition 2.6 the morphism

∆ : S0 × S1 × S2 −→ S0 × S
−
1 × S1 × S

−
2 × S

−
0 × S2

has a canonical Lagrangian structure. Using Proposition 2.7 and arguing as in the proof of Corollary
2.9 we construct the map

C∆ : Lag(f,−ω0 ⊞ ω1)× Lag(g,−ω1 ⊞ ω2) −→ Lag(c∆(f × g),−ω0 ⊞ ω2),

where

c∆(f × g) : (X × Y )×S0×S1×S1×S2 S0 × S1 × S2 −→ S0 × S2

is the natural map induced by f × g. To complete the proof simply note that

(X × Y )×S0×S1×S1×S2 (S0 × S1 × S2)
∼= X0 ×S1 X1

�

Our next goal is to prove a relative version of the previous corollary. In order to do that we need
to use a theorem from [2]. We give a slightly different proof here in order to match the spirit of the
current article.

Theorem 2.13. Let (S, ω) be an n-symplectic derived stack and fi : Xi −→ S be Lagrangian, for
i = 0, 1, 2. Denote by Xij = (Xi ×S Xj, ωij) the (n − 1)-symplectic derived stacks constructed in
Corollary 2.9. Then the natural morphism

ϕ : Z = X0 ×S X1 ×S X2 −→ X01 ×X12 ×X20

has a Lagrangian structure.
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Proof. The construction of a natural isotropic structure on the morphism ϕ can be found in [2]
or in Proposition 3.9. We denote this isotropic structure by H and show it is non-degenerate as
follows.

Using the canonical equivalence Z ∼= X01×X1 X12, we let π : Z −→ X1 be the natural projection
and get an exact triangle

TZ −→ TX01 ⊞ TX12 −→ π∗TX1 −→

If we denote by q the composition

Z
ϕ
−→ X01 ×X12 ×X20

π20−→ X20,

we obtain the exact triangle
ϕ∗Lπ20 −→ Lq −→ Lϕ −→ .

Next we observe that the Cartesian square

X0 ×S X1 ×S X2
q

//

π

��

X0 ×S X2

��

X1
f1

// S

implies that Lq ∼= π∗Lf1 . Also Lπ20
∼= LX01 ⊞ LX12 . Putting everything together we get the exact

triangle
LX01 ⊞ LX12 −→ π∗Lf1 −→ Lϕ −→

or equivalently, the exact triangle

Lϕ[−1] −→ LX01 ⊞ LX12 −→ π∗Lf1 −→ .

Now consider the following diagram

TZ //

ΘH

��

TX01 ⊞ TX12
//

Θω01⊞Θω12

��

π∗TX1

π∗Θh1

��

Lϕ[n− 2] // LX01 [n− 1]⊞ LX02 [n− 1] // π∗Lf1 [n− 1],

(2.5)

where h1 is the Lagrangian structure in f1. It follows from the construction of ωij that both squares
commute. Moreover the above discussion shows that both rows are exact. Therefore we conclude
that ΘH is a quasi-isomorphism since the other two vertical arrows in the diagram are also quasi-
isomorphism. One can see from the definition of H in Proposition 3.9 and a bit of diagram chasing
that the left vertical map is in fact ΘH . �

We are now ready to prove a “relative” version of Corollary 2.12 that will later be used to define
the composition of 1-morphism (and vertical composition of 2-morphisms) in the 2-category we
construct in Section 4.

Corollary 2.14. Let (S, ω) be a n-symplectic derived stack and fi : Xi −→ S be Lagrangians, for
i = 0, 1, 2. Denote by Xij = (Xi ×S Xj , ωij) the (n − 1)-symplectic derived stack constructed in
Corollary 2.9. Given morphisms φ : N1 −→ X01 and ψ : N2 −→ X12, there is a map

Lag(φ, ω01)× Lag(ψ, ω12) −→ Lag((φ,ψ), ω02)

where (φ,ψ) : N1 ×X1 N2 −→ X02 is the morphism induced by φ and ψ.
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Proof. Theorem 2.13 defines a Lagrangian structure on the morphism

ϕ : X0 ×S X1 ×S X2 −→ (X01 ×X12)
− ×X02.

Now we apply Proposition 2.7 to this Lagrangian structure and, as before, obtain a map

Cϕ : Lag(φ, ω01)×Lag(ψ, ω12) −→ Lag(cϕ(φ× ψ), ω02)

where

cϕ(φ× ψ) : (N1 ×N2)×X01×X12 (X0 ×S X1 ×S X2) −→ X02,

is the natural map induced by φ× ψ. To complete the proof simply note that

(N1 ×N2)×X01×X12(X0 ×S X1 ×S X2) =

= (N1 ×N2)×(X0×SX1)×(X1×SX2) (X0 ×S X1 ×S X2)

∼= (N1 ×N2)×X1×X1 X1

∼= N1 ×X1 N2.

�

Remark 2.15. As we saw in Remark 2.10, the isotropic structure hN1 can be interpreted as a path
between φ∗0h0 and φ∗1h1 in P0(A

2,cl(N1)). Under this interpretation, one can easily check that the
isotropic structure constructed above is given by the following concatenation

π∗1φ
∗
0h0

//

π∗

1hN1

π∗1φ
∗
1h1

// π∗1ψ
∗
1h1

//

π∗

2hN2

π∗1ψ
∗
2h2

Where the middle path is induced by the homotopy commutativity of the following diagram:

N1 ×
X1

N2

π2

##●
●●

●●
●●π1

{{✇✇
✇✇
✇✇
✇

N1

φ1

$$■
■■

■■
■■

■■
■

φ0

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

N2

ψ2

!!❇
❇❇

❇❇
❇❇

❇
ψ1

zz✉✉
✉✉
✉✉
✉✉
✉✉

X0 X1 X2

(2.6)

We need one more map between sets of Lagrangian structures, which will be used later to define
the horizontal composition in the 2-category to be defined in Section 5. For this we need the
appropriate Lagrangian correspondence. The next proposition will provide such a correspondence
and also be useful to describe symplectomorphisms (which will be introduced in Section 3).

Proposition 2.16. Let (S, ω) be an n-symplectic derived stack and let f : X −→ S and g : Y −→ S
be Lagrangians. Consider a morphism of derived stacks ∆ : W −→ X ×S Y and denote by u and
v the compositions of ∆ with the projections to X and Y , respectively. Let hf and hg be the
Lagrangian structures on f and g. Assume we are given a homotopy H between the paths u∗hf and
v∗hg. Evaluating at one endpoint the homotopy H gives a path between u∗f∗(ω) and v∗g∗(ω), we
assume this path is homotopic to the path induced by the homotopy of morphisms f ◦ u ∼= g ◦ v.

If u and v are étale then H induces a Lagrangian structure on ∆ with respect to the symplectic
structure on X ×S Y constructed in Corollary 2.9. On the other hand, if ∆ has a Lagrangian
structure then u is étale if and only if v is étale.
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Proof. Consider the (homotopy) commutative diagram

W

∆

##❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

v

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

u

��
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹

X ×S Y

��

// Y

g

��

X
f

// S

(2.7)

Pulling back ω and the Lagrangian structures along the maps in this diagram gives rise to the
following picture in A2,cl(W,n)

0

��
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

∆∗π∗

Y
hg

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹��✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠

∆∗π∗

X
hf

✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠

��u∗hf
))❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙

v∗hg

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙

u∗f∗ω

{{

// v∗g∗ω

∆∗π∗Xf
∗ω // ∆∗π∗Y g

∗ω

;;✇✇✇✇✇✇✇✇✇✇✇

✇✇✇✇✇✇✇✇✇✇✇

(2.8)

The commutativity of the diagram (2.7) determines a 2-simplex that fills the base of the diagram,
i.e. it interpolates between the four ways of pulling back ω. By definition, the boundary of the
front triangle is the pullback by ∆ of the loop that defines the (n− 1)-shifted symplectic structure
on X ×S Y . Our assumption on H implies that it fills the back triangle. All of the other faces of
the pyramid are filled in by homotopies induced by the commutativity of the two triangles in the
diagram in Equation 2.7. Therefore, the front triangle bounds a 2-simplex A2,cl(W,n). This defines
an isotropic structure h∆ on the morphism ∆.

In order to check the non-degeneracy of

Θ∆ : T∆ −→ LW [n− 2]

notice that πX ◦∆ is homotopic to u which gives the exact triangle

∆∗LπX −→ Lu −→ L∆ −→

Now, because u is étale, Lu = 0 and so we get isomorphisms

L∆[−1] ≃ ∆∗LπX ≃ ∆∗π∗Y Lg ≃ v
∗Lg

where the middle isomorphism follows from the fact that the square in (2.7) is Cartesian. By
definition we have the exact triangle

Tv −→ TW −→ v∗TY −→ .

which implies that TW ≃ v
∗TY , since v is étale. Putting together these equivalences, we obtain

L∆[n− 2] ≃ v∗Lg[n− 1]
v∗Θg
←− v∗TY ≃ TW . (2.9)



14 LINO AMORIM AND OREN BEN-BASSAT

where Θg is an equivalence because g has a Lagrangian structure. One can see by diagram chasing
that this chain of equivalences is precisely Θ∆. Tracing back the argument, if we start by assuming
that ∆ is Lagrangian and u is étale then (2.9) gives an equivalence v∗TY ≃ TW and so v is étale. �

Remark 2.17. The reader may have wondered why u∗Θf and v∗Θg were not both used in the
proof, but because we are assuming the existence of H, they do not really define different maps.

As a simple corollary of Proposition 2.16 we have

Corollary 2.18. Let (S, ω) be a n-symplectic derived stack and f : X −→ S a Lagrangian in
S. Then the diagonal ∆X : X −→ X ×S X has a Lagrangian structure where X ×S X has the
symplectic structure from Corollary 2.9.

Proof. We take X = Y and ∆ to be the diagonal and u and v the identity morphisms in Proposition
2.16. This gives an obvious choice for the (constant) homotopy H. �

Proposition 2.19. Let (S, ω) be a n-symplectic derived stack and X0,X1 and X1 be Lagrangians
in S. Consider the (n − 1)-symplectic derived stacks X01 = X0 ×S X1, X12 = X1 ×S X2, and
X02 = X0×SX2 determined by Corollary 2.9 and letM0 and M1 be Lagrangians in X01 and N0 and
N1 be Lagrangians in X12. Corollary 2.14 defines two new Lagrangians P0 = M0 ×X1 N0 −→ X02

and P1 =M1×X1 N1 −→ X02. Given morphisms α : U −→M0×X01 M1 and β : V −→ N0×X12 N1

there is a map
Lag(α, ωM01)× Lag(β, ωN01) −→ Lag(α ×X1 β, ωP01),

where ωM01 , ωN01 and ωP01 are the (n−2)-shifted symplectic structures on M0×X01M1, N0×X12N1

and P0 ×X02 P1, respectively, determined by Corollary 2.9 and α×X1 β is the induced map

α×X1 β : U ×X1 V −→ P0 ×X02 P1.

Proof. The proof is analogous to previous ones, first we claim that the natural map

ϕ : P0 ×X0×SX1×SX2 P1 −→ (M0 ×X01 M1)× (N0 ×X12 N1)× (P1 ×X02 P0),

has a Lagrangian structure. To see this note that Corollary 2.12 implies that M0 ×X0 M1 and
N0×X2N1 are Lagrangians in X1×SX1. Also the diagonal ∆ : X1 −→ X1×SX1 has a Lagrangian
structure according to Corollary 2.18. Applying Theorem 2.13 to these three Lagrangians we
conclude that the triple intersection:

(M0 ×X0 M1)×X1×SX1 (N0 ×X2 N1)×X1×SX1 X1

∼= (M0 ×X1 N0)×X0×SX2 (M1 ×X1 N1)×X1×SX1 X1

∼= (M0 ×X1 N0)×X0×SX1×SX2 (M1 ×X1 N1)

= P0 ×X0×SX1×SX2 P1

(2.10)

is Lagrangian in the product

((M0 ×X0 M1)×X11 X1)× (X1 ×X11 (N0 ×X2 N1))× ((N0 ×X2 N1)×X11 (M0 ×X0 M1))

∼= (M0 ×X01 M1)× (N0 ×X12 N1)× ((M1 ×X1 ×N1)×X0×SX2 (M0 ×X1 N0))

∼= (M0 ×X01 M1)× (N0 ×X12 N1)× (P1 ×X02 P0).

This proves the claim once we establish that the above equivalences preserve the symplectic struc-
tures, that is they are symplectomorphic, in next section notation. We omit the details of this. In
Lemma 3.11 we will give an alternative description of this Lagrangian.

Now we apply Proposition 2.7 to this Lagrangian correspondence and obtain a map

Cϕ : Lag(α, ωM01)× Lag(β, ωN01) −→ Lag(cϕ(α× β), ωP01).
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To complete the proof we just need to check that cϕ(α× β) = α×X1 β, for this note:

(U × V )×(M0×X01
M1)×(N0×X12

N1) (P0 ×X0×SX1×SX2 P1)

∼= (U × V )×(M0×X01
M1)×(N0×X12

N1) ((M0 ×X0 N0)×X0×SX1×SX2 (M1 ×X1 N1))

∼= (U × V )×(M0×X01
M1)×(N0×X12

N1) ((M0 ×X01 M1)×X1 (N0 ×X12 N1))

∼= U ×X1 V.

(2.11)

�

Remark 2.20. We now explain the operation in Proposition 2.19 in a way that will be helpful
later. Consider the following diagram

M0

φ1

!!❈
❈❈

❈❈
❈❈

❈
φ0

}}④④
④④
④④
④④

X0 U

α0

OO

α1

��

X1

M1

ψ1

==④④④④④④④④ψ0

aa❈❈❈❈❈❈❈❈

(2.12)

representing a Lagrangian structure on α : U →M01. Recall from Remark 2.10 that a Lagrangian
structure in φ is given by an appropriate path h0 in P0(A

2,cl(M0, n)). Using this interpretation, an
isotropic structure on α : U →M01 is equivalent to a filling HU of the square

α∗
0φ

∗
0h0

HU

//
α∗

0hM0

��

α∗
0φ

∗
1h1

��

α∗
1ψ

∗
0h0

//

α∗

1hM1

α∗
1ψ

∗
1h1

(2.13)

in the path space P0(A
2,cl(U, n)) satisfying an additional requirement. Evaluating at the endpoint

HU determines 2-simplex in A2,cl(U, n) interpolating between the four ways of pulling-back ω to
U , we require that this is homotopic to the 2-simplex induced by the commutativity of (2.12).

If we also consider

N0

τ2

!!❇
❇❇

❇❇
❇❇

❇
τ1

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

X1 V

β0

OO

β1

��

X2

N1

κ2

==⑤⑤⑤⑤⑤⑤⑤⑤
κ1

aa❇❇❇❇❇❇❇❇

(2.14)

the isotropic structure on α×X1 β constructed in Proposition 2.19 is the concatenation of the three
squares in equation 2.15
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pi∗Uα
∗
0φ

∗
0h0

π∗

U
HU

π∗

U
α∗

0hM0//

��

π∗Uα
∗
0φ

∗
1h1

��

// π∗V β
∗
0τ

∗
1h1

π∗

V
HV

//
π∗

V
β∗

0hN0

��

π∗V β
∗
0τ

∗
2h2

��

π∗Uα
∗
1ψ

∗
0h0

//

π∗

U
α∗

1hM1

π∗Uα
∗
1ψ

∗
1h1

// π∗V β
∗
1κ

∗
1h1

//

π∗

V
β∗

1hN1

π∗V β
∗
1κ

∗
2h2

(2.15)

where the filling of the middle square comes from the homotopy given by pulling h1 back to
U ×X1 V in the four different ways from X1.

3. Symplectomorphisms and Lagrangeomorphisms

In this section we will introduce the notions of equivalence of n-symplectic derived stacks and
Lagrangians, which we will call symplectomorphism and Lagrangeomorphism respectively. We will
then show that the Lagrangians constructed in Theorem 2.13 and Proposition 2.19 are unique
up to Lagrangeomorphism and the operation defined in Corollary 2.14 is associate, again up to
Lagrangeomorphism.

Definition 3.1. Let S0 and S1 be n-symplectic derived stacks. A symplectomorphism is a pair
consisting of an equivalence φ : S0 −→ S1 of derived stacks and a Lagrangian structure on

Γφ : S0 −→ S0 × S1.

Definition 3.2. Let (S, ω) be an n-symplectic derived stack and let f0 : X0 −→ S and f1 : X1 −→ S
be Lagrangians. A Lagrangeomorphism is a pair consisting of an equivalence φ : X0 −→ X1 of
derived stacks such that f1 ◦ φ is homotopic to f0 and a Lagrangian structure on the induced
morphism

Γφ : X0 −→ X0 ×S X1

to the (n− 1)-symplectic derived stack X0 ×S X1.

Remark 3.3. If we take S = •n in Definition 3.2 then X0 and X1 are (n − 1)-shifted symplectic
derived Artin stacks and an isomorphism φ is a Lagrangeomorphism of these Lagrangians in •n if
and only if it is a symplectomorphism.

We now give two corollaries of Proposition 2.16.

Corollary 3.4. Let S0 and S1 be n-symplectic derived stacks and let φ : S0 −→ S1 be an equivalence
of derived stacks. A path h in A2,cl(S0, n) between φ

∗ω1 and ω0 determines a Lagrangian structure
on Γφ and so a symplectomorphism. On the other hand, any symplectomorphism determines such
data (φ, h).

Proof. Take S to be a point in Proposition 2.16 and let ∆ = Γφ. �

Corollary 3.5. Let (S, ω) be an n-symplectic derived stack and f : X −→ S and g : Y −→ S be
Lagrangians in S. Let φ : X −→ Y be an equivalence of derived Artin stacks such that g ◦ φ ∼= f .
Let H be a homotopy in P0(A

2,cl(X0, n)) between hf and φ∗hg, which evaluates at the endpoint to

a path homotopic in A2,cl(X0, n) to the path between f∗ω and (g ◦φ)∗ω induced by g ◦φ ∼= f . Then
H induces a Lagrangian structure on Γφ : X −→ X×S Y , that is, a Lagrangeomorphism. Moreover
any Lagrangeomorphism is determined in this way.
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Proof. In Proposition 2.16, take ∆ = Γφ, u = id and v = φ. This immediately proves the
statement. �

Lemma 3.6. Lagrangeomorphism is an equivalence relation for Lagrangians in a n-symplectic
derived stack (S, ω).

Proof. Let f : X −→ S be a Lagrangian, Corollary 2.18 shows that the diagonal ∆ : X −→ X×SX
is a Lagrangian which implies reflexivity, since ΓidX = ∆X .

Next we show symmetry, let g : Y −→ S be another Lagrangian and suppose we have a La-
grangeomorphism (φ,Hφ) from X to Y . By definition φ : X → Y is an equivalence of derived
stacks so we can choose an inverse ψ : Y −→ X. Then we homotopy equivalences f ◦ ψ ∼= g and
φ◦ψ ∼= id. This last homotopy equivalence induces a path from ψ∗φ∗hg to hg which we concatenate
with ψ∗hφ to obtain a path from hg to ψ∗hf . Corollary 3.5 now shows that this data determines a
Lagrangeomorphism from Y to X.

Consider two Lagrangeomorphisms φ0 : X0 −→ X1 and φ1 : X1 −→ X2 over S given by
Lagrangian structures on

Γφ0 : X0 −→ X0 ×S X1 and Γφ1 : X1 −→ X1 ×S X2.

Corollary 2.14 implies that

X0 ×X1 X1
q
−→ X0 ×S X2

is Lagrangian where q is induced by (1, φ1) : X0×X1 −→ X0×X2. Because there is an equivalence
between X0 ×X1 X1 and X0 commuting up to homotopy with the morphisms q and Γφ1◦φ0 over
X0 ×S X2 we can pullback this Lagrangian structure to Γφ1◦φ0 : X0 → X0 ×S X2. This gives a
Lagrangeomorphism X0 → X2 and hence proves transitivity. �

The next two propositions show that the operation defined in Corollary 2.14 is associative up
to Lagrangeomorphism. Moreover the diagonal serves as a unity and Lagrangeomorphism are
invertible with respect to this unit, again up to Lagrangeomorphism. From now on we refer to this
operation as composition of relative Lagrangian correspondences.

Proposition 3.7. Let Xi, for i = 0, 1, 2, 3 be Lagrangians in a n-symplectic derived stack and
consider Lagrangians N1 → X01, N2 → X12, N3 → X23. Applying Corollary 2.14 we obtain
Lagrangians N1×X1 (N2×X2 N3) and (N1×X1 N2)×X2 N3 in X03. There is a canonical Lagrange-
omorphism between them.

Proof. Let

ρ : N1 ×X1 (N2 ×X2 N3) −→ (N1 ×X1 N2)×X2 N3

be one of the canonical equivalences coming from the universality of homotopy limits. Then ρ
(homotopy) commutes with the induced morphisms of the two sides to X0 ×S X3. According to
Corollary 3.5 to determine a Lagrangeomorphism we need to construct a homotopy between the
isotropic structure on N1 ×X1 (N2 ×X3 N3) and the pullback by ρ of the isotropic structure on
(N1 ×X1 N2) ×X3 N3. It will be clear from our construction that our homotopy will satisfy the
additional requirement stated in the corollary. Consider the commutative diagram:
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N1 ×X1 (N2 ×X2 N3)

ρ

��

π
1(23)
23

��

π
1(23)
1

��

(N1 ×X1 N2)×X2 N3

π
(12)3
12

��

π
(12)3
3

��

N1 ×X1 N2
π12
1

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥ π12
2

((PP
PPP

PPP
PPP

PP
N2 ×X2 N3

π23
2yyss

ss
ss
ss
ss

π23
3 %%❑

❑❑
❑❑

❑❑
❑❑

❑

N1

φ0

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤ φ1

((PP
PPP

PPP
PPP

PPP
P N2

ψ2

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

ψ1

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
N3

τ3

!!❇
❇❇

❇❇
❇❇

❇
τ2

yyss
ss
ss
ss
ss
s

X0 X1 X2 X3

Applying Remark 2.15, and working in the path space P0(A
2,cl(N1 ×X1 (N2 ×X2 N3), n)) the

Lagrangian structure on N1×X1 (N2×X3N3) is given by the top row of the following diagram while
the bottom row is the pullback by ρ of the Lagrangian structure on (N1 ×X1 N2)×X3 N3.

π
1(23)∗
1 φ∗0h0

//

��
π
1(23)∗
1 hN1

ρ∗π
(12)3∗
12 π12∗1 φ∗0h0

��
ρ∗π

(12)3∗
12 π12∗

1 hN1

π
1(23)∗
1 φ∗1h1

//

��

ρ∗π
(12)3∗
12 π12∗1 φ∗1h1

��

π
1(23)∗
23 π23∗2 ψ∗

1h1 //

��
π
1(23)∗
23 π23∗

2 hN2

ρ∗π
(12)3∗
12 π12∗2 ψ∗

1h1

��
ρ∗π

(12)3∗
12 π12∗

2 hN2

π
1(23)∗
23 π23∗2 ψ∗

2h2
//

��

ρ∗π
(12)3∗
12 π12∗2 ψ∗

2h2

��

π
1(23)∗
23 π23∗3 τ∗2h2

//

��
π
1(23)∗
23 π23∗

3 hN3

ρ∗π
(12)3∗
3 τ∗2h2

��
ρ∗π

(12)3∗
3 hN3

π
1(23)∗
23 π23∗3 τ∗3h3 // ρ∗π

(12)3∗
3 τ∗3h3

The homotopy is given by patching together homotopies which fill in the squares in this diagram.

The top square is filled in using the homotopy between π121 ◦ π
(12)3
12 ◦ ρ and π

1(23)
1 . The next

square to the down comes from the fact that there are four homotopic maps in the diagram from
N1 ×X1 (N2 ×X2 N3) to X1. The fourth one from the top is analogous to the second one and third
and the fifth squares from the top are analogous to the top square. This completes the proof of the
proposition. �
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Proposition 3.8. Let X0 and X1 be Lagrangians in a n-symplectic derived stack and consider
a Lagrangian φ : N → X01. Then the Lagrangians N ×X1 ∆X1 and ∆X0 ×X0 N in X01 are
Lagrangeomorphic to N by a canonical Lagrangeomorphisms.

If N = Γϕ is a Lagrangeomorphism then M = Γψ, the graph of ψ a homotopy inverse of
ϕ, is a Lagrangeomorphism. Moreover N ×X1 M is Lagrangeomorphic to ∆X0 and M ×X1 N is
Lagrangeomorphic to ∆X1.

Proof. By definition of fiber product we can choose an equivalence of derived stacks ρ : N ×X1

∆X1 −→ N . Now consider the following diagram

N ×X1 ∆X1

ρ

yytt
tt
tt
tt
tt πX1

&&▲
▲▲

▲▲
▲▲

▲▲
▲

N
φ0

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ φ1

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

∆X1

id

xxrr
rr
rr
rr
rr
r

id

""❉
❉❉

❉❉
❉❉

❉

X0 X1 X1

(3.1)

In the path space P0(A
2,cl(N ×X1 ∆X1 , n)) we have

ρ∗φ∗0h0
//

ρ∗hN

##❋
❋❋

❋❋
❋❋

❋❋
❋

❋❋
❋❋

❋❋
❋❋

❋❋

ρ∗φ∗1h1

##❋
❋❋

❋❋
❋❋

❋❋
❋

❋❋
❋❋

❋❋
❋❋

❋❋

// π∗X1
h1 //

��

π∗X1
h1

||①①
①①
①①
①①
①

①①
①①
①①
①①
①

ρ∗φ∗0h0
//

ρ∗hN
ρ∗φ∗1h1

. (3.2)

where the unlabeled edges are homotopies determined by the commutativity of (3.1). Then it
follows from the definitions that the top path is the Lagrangian structure on N ×X1 ∆X1 while
the bottom path is the Lagrangian structure on N . Again commutativity of the previous diagram
provides homotopies filling the square and the triangles. This homotopy together with ρ determine
the required Lagrangeomorphism. The proof for ∆X0 ×X0 N is similar.

For the second part of the statement we proceed as follows. The proof of Lemma 3.6 shows that
M is a Lagrangeomorphism. Then notice that Γφ×X1 Γψ is equivalent as a derived stack over X00

to Γψ◦φ which is equivalent to the diagonal ∆X0 . An argument analogous to the above shows that
their Lagrangian structures are homotopic via this equivalence and so we get a Lagrangeomorphism
between N ×X1 M and ∆X0 . Finally the Lagrangeomorphism between M ×X1 N and ∆X1 is
constructed in the same way. �

The next few propositions characterize, up to Lagrangeomorphism, the Lagrangians we con-
structed in Theorem 2.13 and in the proof of Proposition 2.19, as well as a few other Lagrangians
that we construct using the results from Section 2.

Proposition 3.9. Let (S, ω) be n-symplectic derived stack and let X0, . . . ,Xm be Lagrangians in S.
Denote by Xij be the (n−1)-symplectic derived stacks Xi×SXj and consider the (n−1)-symplectic
derived stack W = X01×X12× · · ·×X(m−1)m×Xm0 with the product (n− 1)-symplectic form ωW .
We have the following

(a) The canonical morphism

φ : X01...m = X0 ×S X1 ×S · · · ×S Xm →W
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has a Lagrangian structure
(b) The Lagrangian from (a) can be uniquely characterized as follows: any Lagrangian ψ : N →

W satisfying conditions (1) and (2) below is Lagrangeomorphic to X01...m.
(1) As a derived stack, N is a homotopy limit of the following diagram

X01

}}④④
④④
④④
④④

!!❈
❈❈

❈❈
❈❈

❈
X12

}}④④
④④
④④
④④

!!❈
❈❈

❈❈
❈❈

❈
· · · X(m−1)m

$$■
■■

■■
■■

■■
Xm0

||②②
②②
②②
②②

rrX0

,,❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳ X1

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

X2

��

· · · Xm

ss❣❣❣❣❣
❣❣❣❣❣

❣❣❣❣❣
❣❣❣❣❣

❣❣❣❣❣
❣❣❣❣❣

S

(3.3)

(2) The isotropic structure on ψ, considered as a 2-simplex in A2,cl(N,n) with boundary
the pullback of the loop defining ωW , is homotopic (relative to its boundary) to the
2-simplex ΘN := Θ +

∑n
i=0Θi. Here ΘN is defined as follows: each of the isotropic

structures hi in Xi pulls back in two different ways to N , by definition of N there is
homotopy between these which we call Θi. Note that since hi is a path in A2,cl(Xi, n),
Θi is a 2-simplex in A2,cl(N,n). Also, because N is a homotopy limit, there is a 2-
simplex Θ in A2,cl(N,n) providing a homotopy between the 2(m + 1) ways of pulling
back ω, along all the morphisms in the diagram, from S to one of the Xi and then to
one of the Xij and finally to N .

Proof. Part (a) was the main theorem in [2] and this general case is entirely analogous to the special
case discussed in Theorem 2.13. To prove (b) one must first observe that X01...m is a homotopy
limit of the diagram (3.3) and the isotropic structure on φ certainly satisfies these requirements
as that is how it was constructed in [2]. The existence of the required Lagrangeomorphism now
follows from Corollary 3.5. �

Corollary 3.10. Let X0,X1,X2,X3 be Lagrangians in S. Then we have the following Lagrangian
correspondences

X012 ×∆X23 −→ (X01 ×X12 ×X23)
− × (X02 ×X23)

∆X01 ×X123 −→ (X01 ×X12 ×X23)
− × (X01 ×X13).

The following two Lagrangian correspondences (obtained by composition) are Lagrangeomorphic

X023 • (X012 ×∆X23)
∼= X013 • (∆X01 ×X123) (3.4)

as Lagrangians in (X01 ×X12 ×X23)
− ×X03.

Proof. To prove this we apply Proposition 3.9 for m = 4. It follows from general properties of
fiber products that both sides of shows that both sides of (3.4) are equivalent to X0123 as derived
stacks. A long but straightforward check then shows that the Lagrangian structures are homotopic
to the one described in Proposition 3.9. Therefore we can apply Proposition 3.9 and prove the
claim. �

We now give a characterization of the Lagrangian which appears in the proof of Proposition
2.19. Recall the situation, we have Lagrangians X0,X1, x2 in S and Lagrangians M0,M1 in X01

andN0, N1 inX12. We denote by Pi =Mi×X1Ni the Lagrangians inX02 obtained by composition of
relative Lagrangian correspondences. In the proof of Proposition 2.19 we constructed a Lagrangian:

P0 ×X012 P1 → (M01 ×N01)
− × P01 (3.5)



21

We will show this is unique in the appropriate sense. Consider the diagram:

M01

||②②
②②
②②
②②

��

P01

||②②
②②
②②
②②

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧

""❉
❉❉

❉❉
❉❉

❉

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗ N01

!!❉
❉❉

❉❉
❉❉

❉

��

M0

""❊
❊❊

❊❊
❊❊

❊

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

M1

�� ""❊
❊❊

❊❊
❊❊

❊
N0

��||③③
③③
③③
③③

N1

}}③③
③③
③③
③③

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠

X0

""❊
❊❊

❊❊
❊❊

❊❊
X1

��

X2

||②②
②②
②②
②②
②

S

(3.6)

Let K be a homotopy limit of the above diagram. The universal property of homotopy limit gives
a map

K → (M01 ×N01)
− × P01 (3.7)

We now construct directly an isotropic structure on the morphism (3.7). Recall that the Xi come
with isotropic structures hi, the Mi with isotropic structures hMi

and the Ni with isotropic struc-
tures hNi . Let ΘM0 be the 2-simplex in P0(A

2,cl(K,n)) giving the homotopy between the two
pullbacks of hM0 along K → P01 →M0 and K →M01 →M0 and similarly for ΘN0 , ΘM1 and ΘN1 .
Additionally denote by Θi the homotopy between the four different pullbacks of hi to K. In the
space P0(A

2,cl(K,n)) (and suppressing pullbacks) we get the diagram

h0

ΘM0

��

��

��

//
hM0

h1 //

��

h1

ΘN0

��

//
hN0

h2

��

��

��

h0

Θ0 ��

//

hM0

h1

Θ1��

h1

��

//

hN0

h2

Θ2��

h0

ΘM1

��

//

hM1

h1

��

h1

ΘN1

��

//

hN1

h2

��

h0 //

hM1

h1 // h1 //

hN1

h2

(3.8)

Note that, by definition, the boundary of the two unlabeled squares are (the pullback of) the
(n − 2)-shifted symplectic structures on M01 and N01, respectively. Also (the pullback of) the
(n − 2)-shifted symplectic structure on P01 is the outside boundary of the diagram. The sum
Θ0 + Θ1 + Θ2 + ΘM0 + ΘN0 + ΘM1 + ΘN1 therefore gives a homotopy between ωM01 + ωN01 and
ωP01 (suppressing pullbacks to K), that is an isotropic structure on (3.7).

Lemma 3.11. Up to Lagrangeomorphism, there is a unique Lagrangian K whose underlying derived
stack is the homotopy limit of (3.6) and whose isotropic structure is homotopic to the one explained
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above. Furthermore, the Lagrangian P0 ×X012 P1 → (M01 ×N01)
−×P01 which appears in the proof

of Proposition 2.19 has these properties.

Proof. The uniqueness follows immediately from the definition of Lagrangeomorphism. Tracing
back through the construction in Proposition 2.19 we can see that the Lagrangian structure defined
there is homotopic to the one just described above. As a result of this and Proposition 2.19 the
isotropic structure on K is in fact non-degenerate and so K is Lagrangian. �

Consider now the same situation as described above but with extra Lagrangians M2 in X01 and
N2 in X12. We will now prove one more uniqueness result for composition of the Lagrangians
obtained in Lemma 3.11. Consider the diagram

M01

��||②②
②②
②②
②②

M12

||①①
①①
①①
①①

��

P02

||②②
②②
②②
②②

ss❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤

""❉
❉❉

❉❉
❉❉

❉

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱ N01

�� ""❊
❊❊

❊❊
❊❊

❊
N12

!!❉
❉❉

❉❉
❉❉

❉

��

M0

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱ M1

""❋
❋❋

❋❋
❋❋

❋

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

M2

�� ""❊
❊❊

❊❊
❊❊

❊
N0

��||③③
③③
③③
③③

N1

||②②
②②
②②
②②

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧

N2

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧

ss❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤

X0

""❊
❊❊

❊❊
❊❊

❊❊
X1

��

X2

||②②
②②
②②
②②
②

S

(3.9)

A homotopy limit K of this diagram has a natural morphism

K → (M01 ×M12 ×N01 ×N12)
− × P02. (3.10)

We now construct an isotropic structure on this morphism. This is very similar to the discussion
before Lemma 3.11. In the space P0(A

2,cl(K,n)) we have 2-simplices ΘMi
for i = 0, 1, 2, 2-simplices

ΘNi for i = 0, 1, 2 and also 2-simplices Θi for i = 0, 1, 2. A diagram similar to (3.8) and similar
considerations show that

∑2
i=0(ΘMi

+ΘNi+Θi) determines an isotropic structure on the morphism
(3.10).

Lemma 3.12. Up to Lagrangeomorphism, there is a unique Lagrangian K whose underlying stack
is the homotopy limit of (3.9) and whose isotropic structure is homotopic to the one explained above.
One such Lagrangian K can be constructed as the composition

(P0 ×X012 P2) • (M012 ×N012)

We end this section by describing the behaviour of the operation Cf defined in Proposition 2.7
under Lagrangeomorphism and composition of Lagrangian correspondences.

Proposition 3.13. Let S0, S1 and S2 be n-symplectic derived stacks and let f : X −→ S−
0 × S1,

g : Y −→ S−
0 ×S1 and h : Z −→ S−

1 ×S2 be Lagrangian correspondences and consider Lagrangians
e : N −→ S0 and e′ : N ′ −→ S0. We have the following:

(a) If X is Lagrangeomorphic to Y and N is Lagrangeomorphic to N ′ then CX(N) and CY (N
′)

are Lagrangeomorphic in S1.
(b) We have a Lagrangeomorphism

CZ(CX(N)) ∼= CZ•X(N),

where Z •X is the Lagrangian constructed in Corollary 2.12.
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Proof. The first part of the statement is easy and left to the reader. The second part follows from
Proposition 3.7 by taking S = •n+1, X0 = •n, X1 = S0, X2 = S1 and X3 = S2, N1 = N , N2 = X
and N3 = Z in that proposition. �

Remark 3.14. A different but equivalent way to establish associativity, that is to prove Proposition
3.7 would be to first prove Proposition 3.13 and use part (b) to show that

(N1 ×X1 N2)×X2 N3
∼= CX023•(X012×∆X23

)(N1 ×N2 ×N3)

and
N1 ×X1 (N2 ×X2 N3) ∼= CX013•(∆X01

×X123)(N1 ×N2 ×N3).

Then Corollary 3.10 and part (a) of Proposition 3.13 imply associativity.

4. A 2-category of Lagrangians

Fix a n-symplectic derived stack (S, ω). In this section we will define a bicategory (or weak
2-category) Lag(S, ω), whose objects are Lagrangians in S.

We start by reviewing the definition of bicategory (following [25]) and setting up some notation.

Definition 4.1. A bicategory (or weak 2-category) C consists of

• a collection of objects C0;
• for each two objects X,Y a category C(X,Y );
• for any three objects X0,X1,X2, composition functors

µ012 : C(X1,X2)× C(X0,X1) −→ C(X0,X2);

• for each object X, an object idX ∈ C(X,X);
• natural isomorphisms

ζ : µ013 ◦ (µ123 × idC(X0,X1))→ µ023 ◦ (idC(X2,X3)×µ012)

l : µ011(idX1 ,−)→ idC(X0,X1)

r : µ001(−, idX0)→ idC(X0,X1).

These are required to satisfy the triangle and pentagon identities which will be written
explicitly later.

Given objects X,Y in C, the objects of C(X,Y ) are called 1-morphisms of C, this collection is
denoted C1(X,Y ). For each object X in C we call idX the identity 1-morphism. The morphisms
of C(X,Y ) are referred to as 2-morphisms of C. Given f, g ∈ C1(X,Y ), we write C2(f, g) for the
set of morphisms from f to g in C(X,Y ). For any 1-morphism f we call 1f ∈ C2(f, f) the identity
2-morphism. We will use the notation µ0,1,2(g, f) = g ◦ f for f an object of C(X0,X1) and g an
object of C(X1,X2). For α a morphism in C(X0,X1) and β a morphism in C(X1,X2) we write
µ0,1,2(β, α) = β ∗ α, this is called the horizontal composition of α and β. The composition in the
categories C(X,Y ) is called vertical composition and for ξ, η composable morphisms in C(X,Y )
we write their composition as η ⊙ ξ.

One can also define bicategories enriched in some symmetric monoidal category M. We require
that, for each pair of objects X,Y in C, the category C(X,Y ) is enriched over M, the functors µ012
are functors of M-enriched categories and finally ζ, r and l are M-natural transformations.

In this article, we will construct bicategories enriched over two different symmetric monoidal
categories (other than the category of sets). First we will take M to be the category gr-Vect of
graded vector spaces (and degree preserving homomorphisms), with the monoidal structure given

by the tensor product and symmetric structure given by a ⊗ b → (−1)|a||b|b ⊗ a, where | · | stands
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for degree. We will also consider a less common symmetric monoidal category, that we will denote
by gr-Inv. Objects are sets S equipped with an involution −1 : S → S and a degree function
| · | : S → Z, invariant under −1, and whose morphism are maps that preserve both structures. The
monoidal structure is defined as

S ⊗ T = S × T/ ∼,

where we take the equivalence relation (−s, t) ∼ (s,−t) and define the degree in the product as the

sum of the degrees on each factor. The symmetric structure is defined as (s, t)→ (−1)|s||t|(t, s).
The most visible difference between a standard bicategory and a bicategory enriched over one

of the symmetric monoidal categories just described is in the compatibility between the horizontal
and vertical composition of 2-morphisms. This is equivalent to the statement that µ012 is a functor,
and for 1-morphims fj ∈ C1(X,Y ) and gj ∈ C1(Y,Z) (for j = 0, 1, 2) it states

(η2 ∗ ξ2)⊙ (η1 ∗ ξ1) = (η2 ⊙ η1) ∗ (ξ2 ⊙ ξ1)

for any 2-morphisms ξi ∈ C2(fi−1, fi) and ηi ∈ C2(gi−1, gi) for i = 1, 2. While in the enriched case
it reads

(η2 ∗ ξ2)⊙ (η1 ∗ ξ1) = (−1)|η1||ξ2|(η2 ⊙ η1) ∗ (ξ2 ⊙ ξ1).

We will also need the definitions of homomorphism of bicategories (also called weak 2-functor)
and symmetric monoidal bicategory and homomorphisms of these. We refer the reader to [25].

We now define objects, morphism and compositions in Lag(S, ω) (sometimes written Lag, when
(S, ω) is fixed), what will become our bicategory of Lagrangians.

Definition 4.2. Let (S, ω) be an n-symplectic derived stack. The objects of Lag(S, ω) are La-
grangians in (S, ω). Given two Lagrangians X0 and X1 in S the 1-morphisms are defined to be

Lag1(X0,X1) = Lag(X0 ×S X1).

Given two Lagrangians N0, N1 in X0 ×S X1, we define the set of 2-morphisms between them as

Lag2(N0, N1) = Lag(N0 ×(X0×SX1) N1)/ ∼,

that is, Lagrangeomorphism equivalence classes of Lagrangians. In the definitions of 1-morphisms
and 2-morphisms we chose a model for the homotopy fiber products and use the (n− 1)-symplectic
derived stack X01 = (X0 ×S X1, ω01) and (n − 2)-symplectic derived stack N01 = (N0 ×(X0×SX1)

N1, ωN01) provided by Corollary 2.9.
The composition of 1-morphisms is defined by

Lag1(X1,X2)× Lag1(X0,X1)
◦
−→ Lag1(X0,X2) (4.1)

(N1, N0) 7→ N1 ◦N0

where N1 ◦ N0 is the pair consisting of the map N0 ×X1 N1 → X02 and the Lagrangian structure
discussed in Corollary 2.14. Using the notation from Definition 2.8 N1 ◦ N0 = CX012(N0 × N1),
where X012 is the Lagrangian constructed in Theorem 2.13. Again here we choose a representative
for the homotopy fiber product. For each object X define the identity 1-morphism of X as diagonal
∆X constructed in Corollary 2.18.

The vertical composition of 2-morphisms

Lag2(N1, N2)× Lag2(N0, N1)
⊙
−→ Lag2(N0, N2) (4.2)

is defined as
(U1, U0) 7→ U1 ⊙ U0

where U1 ⊙ U0 is the pair consisting of the natural morphism U0 ×N1 U1 → N02 along with the
Lagrangian structure constructed in Corollary 2.14, therefore U1 ⊙ U0 = CN012(U0 × U1).
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Denote P0 = N0 ◦M0 and P1 = N1 ◦M1, we define horizontal composition of 2-morphisms as

Lag2(N0, N1)× Lag2(M0,M1)
∗
−→ Lag2(N0 ◦M0, N1 ◦M1) (4.3)

by

(V,U) 7→ V ∗ U = CP0×X012
P1(U × V )

where P0 ×X012 P1 is the Lagrangian constructed in in Proposition 2.19. Recall that as derived
stack V ∗ U is given by U ×X1 V → P0 ×X02 P1.

The units for 2-morphisms will be introduced in the proof of Lemma 4.3. The associator and
unitors will be introduced in Definitions 4.5 and 4.8.

We give a sequence of lemmas which will show that the data

{◦, ∗,⊙, Lag(S, ω)1(−,−), Lag(S, ω)2(−,−)}

along with the unitors and associators which we define in Definitions 4.5 and 4.8 define a bicategory.

Lemma 4.3. The vertical composition of 2-morphisms defined in (4.2) is associative and has units.

Proof. The claim on associativity follows immediately from Proposition 3.7. GivenM ∈ Lag1(X0,X1),
we define the identity 2-morphism 1M to be the Lagrangian ∆ : M → M ×X01 M constructed in
Corollary 2.18. Now Proposition 3.8 shows that this is indeed an identity for ⊙. �

Lemma 4.4. Vertical and horizontal composition of 2-morphism are compatible. In other words,
given objects X0, X1 and X2, 1-morphismsM0,M1,M2 ∈ Lag1(X0,X1) and N0, N1, N2 ∈ Lag1(X1,X2)
and 2-morphisms U1 ∈ Lag2(M0,M1), U2 ∈ Lag2(M1,M2), V1 ∈ Lag2(N0, N1) and V2 ∈ Lag2(N1, N2)
we have:

(V2 ∗ U2)⊙ (V1 ∗ U1) = (V2 ⊙ V1) ∗ (U2 ⊙ U1).

Proof. From the definitions we have

(V2 ∗ U2)⊙ (V1 ∗ U1) = CP012

Ä
CP0×X012

P1(U1 × V1)× CP1×X012
P2(U2 × V2)

ä

∼= CP012•((P0×X012
P1)×(P1×X012

P2))

Ä
U1 × U2 × V1 × V2

ä
,

using Proposition 3.13(b). If we denote by ρ the symplectomorphism

ρ :M01 ×M12 ×N01 ×N12 −→M01 ×N01 ×M12 ×N12,

which interchanges the two middle factors, then we have the Lagrangeomorphism

CΓρ

Ä
U1 × U2 × V1 × V2

ä
∼= U1 × V1 × U2 × V2.

Therefore, by a similar argument we have

(V2 ⊙ V1) ∗ (U2 ⊙ U1) ∼= C(P0×X012
P2)•(M012×N012)

Ä
U1 × V1 × U2 × V2

ä
. (4.4)

∼= C(P0×X012
P2)•(M012×N012)•Γρ

Ä
U1 × U2 × V1 × V2

ä
. (4.5)

Hence, by Proposition 3.13(a), the proof will be complete once we establish a Lagrangeomorphism

P012 • ((P0 ×X012 P1)× (P1 ×X012 P2)) ∼= (P0 ×X012 P2) • (M012 ×N012) • Γρ.

In turn, the existence of such Lagrangeomorphism follows from Lemma 3.12. For this note that
both Lagrangians are homotopy limits of the diagram (3.9) as derived stacks. Inspecting the
constructions of the Lagrangian structures in both cases one can see that they are homotopic to
the one described in Lemma 3.12. Hence we can apply the lemma to conclude the proof. �
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Definition 4.5. Consider a sequence of 1-morphisms

X0
N1−→ X1

N2−→ X2
N3−→ X3

We define the associator

WN3N2N1 ∈ Lag2((N3 ◦N2) ◦N1, N3 ◦ (N2 ◦N1))

as the Lagrangian constructed in Proposition 3.7. It follows from Proposition 3.8 that this is
invertible and hence a 2-isomorphism.

Lemma 4.6. The associator is natural, meaning that given 2-morphisms Ui ∈ Lag2(Mi, Ni), for
i = 1, 2, 3, we have

(U3 ∗ (U2 ∗ U1))⊙WM3M2M1 =WN3N2N1 ⊙ ((U3 ∗ U2) ∗ U1).

Proof. We will denote by Li = Mi ×Xi−1i Ni the (n − 2)-symplectic derived stack and M12 =
M1 ×X1M2 the Lagrangian in X02. Recall from definition and the properties of C− we have

U3 ∗ (U2 ∗ U1) = C(M(12)3×X023
N(12)3)•((M12×X012

N12)×∆L3
)(U1 × U2 × U3).

Also, by the definition of ⊙ and Proposition 3.9 we have

WN3N2N1 ⊙ ((U3 ∗ U2) ∗ U1)⊙W
−1
M3M2M1

= CJ(W
−1
M3M2M1

× ((U3 ∗ U2) ∗ U1)×WN3N2N1),

where J = M(12)3 ×X03 M1(23) ×X03 N1(23) ×X03 N(12)3. Now as above, (U3 ∗ U2) ∗ U1 = CK(U1 ×
U2 × U3), with K = (M1(23) ×X013 N1(23)) • (∆L1 × (M23 ×X123 N23)). Next we observe that the
associator WN3N2N1 , which was defined as the graph of a Lagrangeomorphism ΓρN , can equivalently
be described as CΓρN

(•) where we consider ΓρN as a Lagrangian correspondence from a point to
N1(23) ×X03 N(12)3. Therefore we have

WN3N2N1 ⊙ ((U3 ∗ U2) ∗ U1)⊙W
−1
M3M2M1

= CJ•(Γ
ρ
−1
M

×K×ΓρN )(U1 × U2 × U3).

Hence the lemma will be a consequence of the following Lagrangeomorphism

(M(12)3 ×X023 N(12)3) • ((M12 ×X012 N12)×∆L3)
∼= J • (Γρ−1

M
×K × ΓρN ), (4.6)

between Lagrangians in (L1 ×L2 ×L3)
− × (M(12)3 ×X03 N(12)3). The existence of such Lagrangeo-

morphism follows from a statement analogous to Proposition 3.9 and Lemma 3.11, that is we can
show that there is a unique Lagrangian in (L1×L2×L3)

−×(M(12)3×X03N(12)3) satisfying a natural
condition that we will not spell out. Then one checks that both Lagrangians in (4.6) satisfy this
requirement. �

Lemma 4.7. The associator satisfies the pentagon axiom. This states that given a sequence of
1-morphisms

X0
N1−→ X1

N2−→ X2
N3−→ X3

N4−→ X4,

we have
W43(21) ⊙W(43)21 = (1N4 ∗W321)⊙W4(32)1 ⊙ (W432 ∗ 1N1)

where we have simplified the notation so that W(43)21 stands for W(N4◦N3)N2N1
.

Proof. To prove the pentagon axiom, we first notice that the underlying space of W321 is Γρ321
where ρ321 is the morphism ρ appearing in the proof of Proposition 3.7. Notice that the ⊙-
composition of two graphs of morphisms is the graph of the composition of these morphisms. Also,
we can see that W432 ∗ 1N1 is Lagrangeomorphic to Γ(idN1

,ρ432), where

(ρ432, idN1) = idN1 ×X1 ρ432 : N1 ×X1 (N2 ×X2 (N3 ×X3 N4)) −→ N1 ×X1 ((N2 ×X2 N3)×X3 N4).
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Similarly 1N4 ∗W321 is Lagrangeomorphic to Γ(ρ321,1N4
). Therefore the equation we are trying to

show, follows from establishing a Lagrangeomorphism between the graphs of ρ43(21) ◦ ρ(43)21 and
(ρ321, idN4) ◦ ρ4(32)1 ◦ (1N1 , ρ432).

First we can chose a homotopy equivalence

ρ43(21) ◦ ρ(43)21 → (ρ321, idN4) ◦ ρ4(32)1 ◦ (1N1 , ρ432). (4.7)

This is because (1) both sides are equivalences between N1×X1 (N2×X2 (N3×X3N4)) and ((N1×X1

N2)×X2 N3)×X3 N4 which homotopy commute with the system given by the projections to the Ni

and Xj and (2) both N1×X1 (N2×X2 (N3×X3N4)) and ((N1×X1N2)×X2N3)×X3N4 are homotopy
limits of the same system.

The equivalence of graphs induced by (4.7) homotopy commutes with the projections of both
graphs to (((N4 ◦N3) ◦N2) ◦N1)))×X04 (N4 ◦ (N3 ◦ (N2 ◦N1))). According to Corollary 3.5 what
remains is to show that that there is a homotopy between the two isotropic structures (one of which
is pulled back by this equivalence of graphs). We do not include the details of the diagrams needed
to establish this homotopy as similar proofs appear throughout this article. �

Definition 4.8. Fix objects X0 and X1 and consider M ∈ Lag1(X0,X1). We define the unitors
lM ∈ Lag2(idX1 ◦M,M) and rM ∈ Lag2(M ◦ idX0 ,M) to be the graphs of the Lagrangeomorphisms
ρl :M ×X1 ∆X1 →M and ρr : ∆X0 ×X0 M →M constructed in Proposition 3.8.

We leave the proof of the following lemma to the reader as it can be proved using the same
techniques as the previous two lemmas.

Lemma 4.9. The unitors are natural and satisfy the triangle axiom. For objects X0 and X1

and 1-morphisms M,N ∈ Lag1(X0,X1), naturality says that U ⊙ rM = rN ⊙ (U ∗ 1idX0
) and

U ⊙ lM = lN ⊙ (1idX1
∗ U), for any 2-morphism U ∈ Lag2(M,N). The triangle axiom says that,

given another 1-morphism P ∈ Lag1(X1,X2), we have:

(1P ∗ lM ) ◦WP,idX1
,M = rP ∗ 1M .

Summarizing the results in this section, we have shown the following theorem.

Theorem 4.10. Let (S, ω) be an n-symplectic derived stack. Then Lag(S, ω) as defined above is a
bicategory.

In the case of S = •n+1 we use the notation Sympn = Lag(•n+1, ω). In this case the theorem
gives the following

Corollary 4.11. There exists a bicategory Sympn whose objects are n-symplectic derived stacks,
whose 1-morphisms are Lagrangian correspondences, and whose 2-morphisms are relative Lagrangian
correspondences up to Lagrangeomorphism.

The bicategory Sympn has an additional structure, namely that of a symmetric monoidal bicat-
egory (see Definition 2.1 [25]).

Theorem 4.12. The bicategory Sympn is a symmetric monoidal bicategory. The monoidal struc-
ture

Sympn × Sympn → Sympn,

at the level of objects, sends ((S1ω1), (S2, ω2)) to (S1×S2, ω1⊞ω2) and has the point •n as the unit.

Proof. We define the monoidal structure on morphisms by product of Lagrangians, as defined in
Proposition 2.5. Together with some natural isomorphisms which we do not write down, this defines
a morphism of bicategories. This morphism of bicategories along with several obvious compatibility



28 LINO AMORIM AND OREN BEN-BASSAT

natural transformations defines the structure of a symmetric monoidal bicategory in the sense of
Definition 2.1 of [25]. The details are straightforward but tedious. �

5. Orientations and Perverse sheaves

In this section we will discuss some facts about perverse sheaves that are needed to linearize the
bicategory Symp0. The starting point is the construction in [6] and [3] of a canonical perverse sheaf
on oriented (−1)-symplectic derived stacks. The second ingredient is that an oriented Lagrangian
in a (−1)-symplectic derived stack determines a section of the perverse sheaf, which was conjectured
by Joyce. Here we give a more refined version of this conjecture and provide a local construction of
the section. But for all of these constructions we need to impose some orientability requirements,
so we cannot linearize Symp0 directly. We will rather linearize an oriented version of it which we
denote by Sympor.

5.1. Orientations on Lagrangians.
For a derived Artin stack Q, we define its canonical bundle KQ as the line bundle det(LQ).

If the derived Artin stack Q has a 0-symplectic structure ωQ then this can be used to trivialize
KQ = det(LQ) and we always use this trivialization.

We start with the definition of (relatively) oriented Lagrangian in a 0-symplectic derived stack. It
is inspired in the notion of relatively spin Lagrangian introduced in Lagrangian Floer cohomology.

Definition 5.1. Let (S, ω) be a 0-symplectic derived stack and let E be a line bundle on S. An
E-oriented Lagrangian in S is a triple consisting of a Lagrangian f : L → S, a line bundle RL on
L and an isomorphism

γL : R⊗2
L → KL ⊗ f

∗E.

When S is a point, L is (−1)-symplectic and this recovers the notion of orientation on a (−1)-
symplectic derived stack X introduced in [3]. Concretely it consists of line bundle RX and an
isomorphism

γX : R⊗2
X

∼=−→ KX

Example 5.2. Given a smooth scheme U , f ∈ O(U), we have the derived critical locus

Crit(f) := U ×df,T ∗U,0 U
ι
→ U,

which is (−1)-symplectic. Denoting by α : Crit(f) → T ∗U the induced morphism, we have
KCrit(f)

∼= ι∗K⊗2
U ⊗ α∗K−1

T ∗U
∼= ι∗K⊗2

U , since T ∗U is symplectic. This defines a canonical ori-
entation on Crit(f), with RCrit(f) = ι∗KU .

Now we define orientation for a (−1)-Lagrangian. If X is a (−1)-symplectic derived stack and
φ : M → X is a Lagrangian then we have by definition TM ∼= Lφ[−2]. Using the exact triangle
φ∗LX → LM → Lφ we get

det(LM )−1 ∼= det(TM ) ∼= det(Lφ) ∼= (det(LM ))⊗ φ∗ det(LX)
−1.

Therefore, there is a canonical isomorphism

αM : (detLM )⊗2 → φ∗(detLX). (5.1)

Definition 5.3. Consider a (−1)-symplectic derived stack X with an orientation RX . An oriented
Lagrangian in X is a pair consisting of a Lagrangian φ :M → X and an isomorphism

βM : KM −→ φ∗RX

such that γX ◦ β
⊗2
M = αM .
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Remark 5.4. Note that the space of orientations on a (−1)-Lagrangian M has a Z2 action, given
by multiplying the orientation βM by ±1. If M is a (−1)-Lagrangian with some orientation βM ,
we will denote by −M the same Lagrangian with orientation −βM , which we refer to as the reverse
orientation.

We now prove several lemmas establishing some properties of orientations.

Lemma 5.5. Let S0 and S1 be 0-symplectic derived stacks with line bundles Ei in Si, for i = 0, 1.
Given an E0-oriented Lagrangian X0 → S0 and an E1-oriented Lagrangian X1 → S1, there is an
induced E0⊠E1-orientation on the product Lagrangian X0×X1 → S0×S1 discussed in Proposition
2.5.

Let Y0 and Y1 be oriented (−1)-symplectic derived stacks. Given oriented Lagrangians M0 → Y0
and M1 → Y1, there is an induced orientation on the product Lagrangian M0 ×M1 → Y0 × Y1.

Proof. The first statement easily follows from the fact that KX0×X1
∼= KX0 ⊠KX1 . For the second

part note that the map α defined in 5.1 satisfies

αM0×M1 = αM0 ⊠ αM1 ,

for a product Lagrangian. This implies the result. �

Lemma 5.6. Let S0, S1, S2 be 0-symplectic derived stacks with line bundles Ei on Si for i = 0, 1, 2.
Given f : N1 → S−

0 × S1, a (E−1
0 ⊠E1)-oriented Lagrangian and g : N2 → S−

1 × S2, a (E−1
1 ⊠E2)-

oriented Lagrangian. Then the Lagrangian N2 •N1 has a natural (E−1
0 ⊠ E2)-orientation.

Proof. Let (RNi , γNi) be orientations of the Ni for i = 1, 2. Recall the Lagrangian N2 • N1 is
defined as a Lagrangian structure on the map h : N1 ×S1 N2 → S−

0 × S2, induced by f0 and g2.

We define an (E−1
0 ⊠E2)-orientation by taking RN1×S1N2 = RN1 ⊠RN2 and γN1×S1N2 equal to the

composition

R⊗2
N1×S1N2

∼= R⊗2
N1

⊠R⊗2
N2

γN1
⊠γN2−→ (KN1 ⊗ f

∗(E−1
0 ⊠ E1))⊠ (KN2 ⊗ g

∗(E−1
1 ⊠ E2))

∼= (KN1 ⊠KN2)⊗ h
∗(E−1

0 ⊠ E2)

∼= KN1×S1N2 ⊗ h
∗(E−1

0 ⊠ E2).

(5.2)

Here we have use the fact that KS1 and f∗1 (E1)⊠ g∗1(E
−1
1 ) have canonical trivializations. �

Lemma 5.7. Let S be a 0-symplectic derived stack with line bundle E and consider N0, N1, N2,
E-oriented Lagrangians in S.

(a) The E-orientations on N0, N1 induce an orientation on the (−1)-symplectic derived stack
N01 = N0 ×S N1.

(b) Using the orientations on N01, N12, N20 from part (a) and the orientation on their product
discussed in Lemma 5.6, there is a natural orientation on the Lagrangian

ϕ : N0 ×S N1 ×S N2 → N01 ×N12 ×N20

defined in Theorem 2.13.

Proof. Denote by fi : Ni → S the Lagrangian morphisms and by (RNi , γNi) the orientations. For
part (a) we define RN01 = (RN0 ⊗ f

∗
0E

−1) ⊠ RN1 . The composition defining γN01 can be easily
constructed using the isomorphism KN01

∼= KN0 ⊠KN1 .
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For part (b) we define the orientation on the triple fiber product as the composition:

det(LN012)
∼= KN0 ⊠KN1 ⊠KN2

∼= (R⊗2
N0
⊗ E−1)⊠ (R⊗2

N1
⊗ E−1)⊠ (R⊗2

N2
⊗ E−1)

−→ (RN0 ⊗ E
−1 ⊗RN1)⊠ (RN1 ⊗ E

−1 ⊗RN2)⊠ (RN2 ⊗ E
−1 ⊗RN0)

∼= ϕ∗(RN01×N12×N20),

where we have omitted the pullbacks from the notation. It’s easy to check that this map satisfies
the required property. �

Lemma 5.8. Given X0,X1 oriented (−1)-symplectic derived stacks and oriented Lagrangians g :
N −→ X0 and (f0, f1) :M −→ X−

0 ×X1 the Lagrangian cf (g) : N ×X0 M −→ X1 from Proposition
2.7 has an induced orientation

Proof. We have isomorphisms βN : KN → g∗RX0 and βM : KM → (f∗0RX0) ⊗ (f∗1RX1) and
γX0 : R⊗2

X0
→ KX0 . Define βN×X0

M as the composition

KN×X0
M
∼= (KN ⊗ g

∗K−1
X0

)⊠KM
(βN⊗id)⊠βM
−−−−−−−−→ g∗(RX0 ⊗K

−1
X0

)⊠ ((f∗0RX0)⊗ (f∗1RX1))
∼= cf (g)

∗RX1

where in the last isomorphism we use γX0 . It is easy to check that γX1 ◦ β
⊗2
N×X0

M = αN×X0
M . �

As in the unoriented case, we will use the notation CM (N) for the oriented Lagrangian con-
structed in the above lemma.

Definition 5.9. Let S be a 0-symplectic derived stack with a line bundle E. An oriented La-
grangeomorphism between E-oriented 0-Lagrangians (X0, RX0 , γX0) and (X1, RX1 , γX1) is a pair
consisting of a Lagrangeomorphism ρ : X0 → X1 and an isomorphism ζ : ρ∗RX1 → RX0 .

Let Y be an oriented (−1)-symplectic derived stack and (f0 : N0 −→ Y, βN0), (f1 : N1 −→ Y, βN1)
be oriented (−1)-Lagrangians. An oriented Lagrangeomorphism between N0 and N1 consists of a
Lagrangeomorphism ψ : N0 −→ N1 such that βN0 equals

KN0
∼= ψ∗(KN1)

ψ∗βN1−−−−→ ψ∗(f∗1 (RY ))
∼= f∗0 (RY ).

Remark 5.10. Notice that the condition of oriented Lagrangeomorphism between 0-Lagrangians
gives the following isomorphism of line bundles

KX0
∼= R⊗2

X0
⊗ f∗0 (E

−1) ∼= RX0 ⊗ ρ
∗(RX1)⊗ f

∗
0 (E

−1) ∼= Γ∗
ρ(RX01).

We can easily see that this determines an orientation on the Lagrangian Γρ : X0 → X01, and in
fact it is equivalent to it.

The operation CM (·) satisfies similar properties to the unoriented one, stated in Proposition
3.13, which we collect in the following lemma, whose proof is elementary.

Lemma 5.11. Let X0, X1 and X2 be (−1)-symplectic derived stacks and let M0,M
′
0 −→ X−

0 ×Y0,
M1 −→ X−

1 × Y1 and N0 −→ Y −
0 × Z0 be Lagrangian correspondences and consider Lagrangians

U1, U
′
1 −→ X0 and U1 −→ X1. We have the following:

(a) If M0 is oriented Lagrangeomorphic to M ′
0 and U0 is oriented Lagrangeomorphic to U ′

0 then
CM0(U0) and CM ′

0
(U ′

0) are oriented Lagrangeomorphic.

(b) We have an oriented Lagrangeomorphism

CN0(CM0(U0)) ∼= CN0•M0(U0),

where N0 •M0 is the oriented Lagrangian constructed in Lemma 5.6.
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(c) We have an oriented Lagrangeomorphism

CM0×M1(U0 × U1) ∼= (−1)m0u1CM0(U0)× CM1(U1),

where m0 = vdimM0 and u1 = vdimU1.

Now we have the tools to carry out all the constructions of Section 4 in the oriented setting.
This gives the following

Theorem 5.12. There exists a symmetric monoidal bicategory Sympor enriched over gr-Inv. The
objects are pairs consisting of a 0-symplectic derived stack S and a line bundle E on S. The 1-
morphisms in Sympor1 ((S0, E0), (S1, E1)) consist of (E

−1
0 ⊠E1)-oriented Lagrangians in S−

0 ×S1 and
the 2-morphisms Sympor2 (X0,X1) are oriented Lagrangeomorphism classes of oriented Lagrangians
in X0 ×S X1.

There is a symmetric monoidal homomorphism Sympor → Symp0 which forgets the orientation
data.

Proof. We first discuss the enrichment over gr-Inv. We define the involution in the set Sympor2 (X0,X1)
to be the reversion of the orientation on a Lagrangian and define the degree of a Lagrangian N as
|N | = n− vdimN , where n = vdimX0.

The composition of 1-morphism is defined as Corollary 4.11, using Lemma 5.6 to define the
orientations. Using Lemmas 5.7 and 5.8 we define the compositions of 2-morphisms as follows.
Given M ∈ Sympor2 (X0,X1), N ∈ Sympor2 (X1,X2) and P ∈ Sympor2 (Y0, Y1) we take

N⊙M = (−1)vdimN(n0+n1)CX012(M×N) and P ∗M = (−1)(n0+n1)(n1+n2)CZ0×S0×S1×S2Z1(M×P ),

where ni = vdimSi. Recall that the Lagrangian Z0 ×S0×S1×S2 Z1 can be described as a triple
intersection of oriented 0-Lagrangians and hence Lemma 5.7 (b) assigns it an orientation.

Using Lemma 5.11 we can easily show that we have

M2 ⊙ (M1 ⊙M0) = (−1)vdimM1(n0+n1)CX023•(X012×∆X23
)(M0 ×M1 ×M2)

and

(M2 ⊙M1)⊙M0 = (−1)vdimM1+n0+n1CX013•(∆X01
×X123)(M0 ×M1 ×M2).

Now following our conventions for orientations we can easily check that there is an oriented La-
grangeomorphism X023 • (X012 × ∆X23)

∼= (−1)n0+n1X013 • (∆X01 × X123). Putting these facts
together we conclude that ⊙ is associative. We proceed similarly and compute

(N2∗M2)⊙(N1∗M1) = (−1)(n0+n2)(vdimM2+vdimN2)C
Z012•

Ä
(Z0×S012Z1)×(Z1×S012Z2)

ä(M1×N1×M2×N2).

(5.3)
Next using the symplectomorphism ρ as in the proof of Lemma 4.4 and using our conventions for
orientations we have the oriented Lagrangeomorphism

CΓρ(M1 ×M2 ×N1 ×N2) ∼= (−1)vdimN1 vdimM2M1 ×N1 ×M2 ×N2.

Therefore we have

(N2 ⊙N1) ∗ (M2 ⊙M1) = (−1)ǫC(Z0×S012Z2)•(X012×Y012)•Γρ(M1 ×N1 ×M2 ×N2), (5.4)

where ǫ = (n0+n1)(n1+n2+vdimN1+vdimN2)+(n0+n2)(vdimM2+vdimN2)+vdimN1 vdimM2.
Tracing back through our conventions for orientations we can check that the Lagrangeomorphism

Z012 •
Ä
(Z0 ×S012 Z1)× (Z1 ×S012 Z2)

ä
∼= (Z0 ×S012 Z2) • (X012 × Y012) • Γρ,
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constructed in Lemma 4.4 is in fact an oriented Lagrangeomorphism. Therefore we conclude that
(5.3) and (5.4) differ by

(−1)(n0+n1)(n1+n2)+vdimM2(n1+n2)+vdimN1(n1+n2)+vdimN1 vdimM2 = (−1)|M2||N1|,

which finishes the proof of the compatibility of vertical and horizontal composition of 2-morphisms.
The rest of the proof of the theorem doesn’t differ from Corollary 4.11. Recall that the identity

1-morphisms in Symp0 are given by ∆ : S → S− × S. This has the canonical orientation RS =
OS since there is a canonical isomorphism KS ⊗OS ∆∗(E−1

⊠ E) ∼= OS ⊗OS OS
∼= OS . The

identity 2-morphisms, associators and unitors in Symp0 were all described as the graphs of certain
Lagrangeomorphisms. To assign them orientations in the sense of Definition 5.9 is simply a matter
of choosing the obvious ζ-morphisms needed in that definition.

The monoidal structure can be constructed as in Corollary 4.11 using Lemma 5.5 to define the
necessary orientations. The existence of the forgetful homomorphism is obvious. �

5.2. Constructible sheaves. In the remainder of this chapter and in the next one, we take the
ground field k to be C for simplicity. We will work in the context of algebraically constructible
sheaves of F-vector spaces on higher algebraic Artin stacks. This theory itself has two approaches.
The first is the theory of constructible sheaves on the lisse-étale topos of an algebraic Artin stack
for which F can be taken to be Z/lZ, for some prime l or closely related categories using l-adic
coefficients of various types with some slight technical difficulties (for example restriction on the
values of l). The second (see for instance [27]) is the theory of constructible sheaves on the Lisse-
analytic topos of the analytification of an Artin stack over C. In this case, we can take F =
Z/lZ again but now also Q or C or any Noetherian ring is fine. Rigid (or Berkovich or Huber)
geometry allows us to consider analytifications of stacks defined over fields other than C if the
field is equipped with a valuation and there are also theories of algebraically constructible sheaves
on those analytifications but we do not pursue this here. For a derived algebraic Artin stack X
over C we use the notation Dc(X), D+

c (X), D−
c (X), Db

c(X) to denote the (triangulated) categories
of algebraically constructible sheaves of F-modules on the underlying Artin stack of X, and its
bounded below, above, and bounded versions. Categories of constructible sheaves on stacks in the
(algebraic) étale topology are defined in the work [20] of Y. Liu and W. Zheng, following Lurie
and the work of Laszlo and Olsson [18], [19]. Categories of algebraically constructible sheaves on
analytic stacks in the classical analytic topology are discussed in [27] (see also [23]). In the case of
rings F where both theories make sense, such as F = Z/lZ there is no ambiguity in this notation
as shown in the comparison theorem proven in [27].

We consider only morphisms between derived Artin stacks which are locally of finite type, quasi-
compact and quasi-separated. For all types of pullback and pushforward functors for morphisms
of derived Artin stacks, we work with the associated morphisms on the reduced Artin stacks. For
a morphism f : X → Y of derived Artin stacks we have a functor f∗ : D+

c (X) → D+
c (Y ) with

left adjoint the restriction of a functor f∗ : Dc(Y ) → Dc(X) to D+
c (X). There is also a duality

functor DX : Dc(X) → Dc(X). We also sometimes use the pushforward with proper support,
f! = DY ◦ f∗ ◦ DX : D−

c (X) → D−
c (Y ), which is used in the definition of the perverse sheaf of

vanishing cycles. We denote by f ! : D−
c (Y )→ D−

c (X) the right adjoint of f! which is actually the
restriction of a functor Dc(Y ) → Dc(X). See Lemma 6.3.3 and Proposition 6.3.4 of [20] for the
existence of these functors and their adjointness properties. We use the notation

Γ•(S,T ) =
∞⊕

i=−∞

HomDbc(X)(S,T [i])
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and Homi(S,T ) = HomDbc(X)(S,T [i]). We write H•(X,S) = Γ•(FX ,S). Consider derived Artin
stacks X,Y together with morphisms πX from X to a point and πY from Y to a point. Then for
any S ∈ Dc(X) and T ∈ Dc(Y ) we know by the Kunneth Formula (Proposition 6.1.3 of [20]) and
by the compatibility of the duality functor with the derived box-product (see Proposition 5.6.4 of
[18]) that

(πX × πY )!(DX×Y (S ⊠ T )) ∼= (πX × πY )!(DXS ⊠DY T )) ∼= (πX!DXS)⊗ (πY !DY T )

and therefore,

(πX × πY )∗(S ⊠ T ) ∼= (πX∗S)⊗ (πY ∗T )

and so we have

H•(X × Y, S ⊠ T ) ∼= H•(X,S)⊗H•(Y, T ). (5.5)

Lemma 5.13. If f : X → Y is a proper morphism of derived Artin stacks then f∗ = f! as a
functor Db

c(X)→ Db
c(Y ). If f is a closed embedding of derived schemes then f∗f

∗ = id. Given any
Cartesian diagram,

X ×S Y
πY //

πX
��

Y

g

��

X
f

// S

(5.6)

of derived Artin stacks there are base change natural isomorphisms

f∗g! ∼= (πX)!π
∗
Y and g∗f! ∼= (πY )!π

∗
X .

Additionally there is a natural transformation

cf,g : π
∗
Xf

! =⇒ π!Y g
∗

Proof. The first statement is trivial. The second can be found on page 12 of [21] in the complex
analytic context. The third statement can be found in Proposition 3.2 of [22] in the complex
analytic context or in Proposition 6.1.1 of [20] in the algebraic étale context. For the last statement
see Proposition 3.1.9 of [16] in the complex analytic context or in either context simply notice that

Hom(π∗Xf
!S, π!Y g

∗S) ∼= Hom(πY !π
∗
Xf

!S, g∗S) ∼= Hom(g∗f!f
!S, g∗S)

and the right hand side has a canonical element corresponding to the pullback by g of the canonical
morphism f!f

!S → S. �

We will now review the construction, and some properties, of the perverse sheaf of vanishing
cycles of a regular function. Recall that given a regular function f on a variety U over C, we can
define a sheaf of nearby cycles of F ∈ Db

c(U) in Db
c(U

0) where U0 = f−1(0). It is defined using the
commutative diagram

U0
ι //

��

U

f

��

T (U0)− U0

��

j
oo E

��

π
oo

{0} // C Dǫ − {0}oo ‹Dǫ
oo

(5.7)

where Dǫ is a disk of radius ǫ at 0 in C, ›Dǫ the universal cover of Dǫ − {0}, T (U0) = f−1(Dǫ) and
each square is Cartesian. Then the sheaf of nearby cycles of F ∈ Db

c(U) is defined as

ψfF = ι∗(j ◦ π)∗(j ◦ π)
∗F .
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The sheaf of vanishing cycles of F ∈ Db
c(U) is defined as the object φfF making

ι∗F → ψfF → φfF (5.8)

into an exact triangle where we have used the natural morphism F → (j ◦ π)∗(j ◦ π)
∗F . Suppose

now that we are given a morphism ϕ : V → U. We can consider the morphism

V0

ϕ0

��

ιV // V

ϕ

��

T (V0)− V0

��

jV
oo EV

ϕ̃

��

πVoo

U0
ιU // U T (U0)− U0

jUoo EU
πUoo

(5.9)

of diagrams living over the bottom row of (5.7). Each square in this diagram is Cartesian. Then
we have natural equivalences ϕ̃!(jV ◦ πV )

∗ = (jU ◦ πU )
∗ϕ! and ϕ0!i

∗
V = i∗Uϕ! using base change.

Also there is natural morphism ϕ!(jV ◦ πV )∗ → (jU ◦ πU )∗ϕ̃! (which is a natural equivalence if ϕ
is proper). This morphism is constructed in (2.5.7) of Proposition 2.5.11 of [16]. Let g = f ◦ ϕ.
Putting these all together we get for any F ∈ Db

c(V ) morphisms

ϕ0!ψgF = ϕ0!ι
∗
V (jV ◦ πV )∗(jV ◦ πV )

∗F = i∗Uϕ!(jV ◦ πV )∗(jV ◦ πV )
∗F → i∗U (jU ◦ πU )∗ϕ̃!(jV ◦ πV )

∗F
(5.10)

and

i∗U (jU ◦ πU )∗ϕ̃!(jV ◦ πV )
∗F = i∗U (jU ◦ πU )∗(jU ◦ πU )

∗ϕ!F = ψfϕ!F . (5.11)

So for any F ∈ Db
c(V ) we have a canonical morphism

ϕ0!(ψf◦ϕF)→ ψf (ϕ!F)

and hence by (5.8) we also have a canonical morphism

ϕ0!(φf◦ϕF)→ φf (ϕ!F). (5.12)

If ϕ is proper these are isomorphisms.

Lemma 5.14. Consider a diagram

X0 W
φ0

oo
φ1

// X1

of Artin stacks and suppose that φ1 is proper and we have objects S0 ∈ D
b
c(X0), and S1 ∈ D

b
c(X1).

The following holds:

(a) A morphism µ ∈ HomDbc(W )(φ
∗
0S0, φ

!
1S1) induces a map

µ∗ : H
•(X0,S0)→ H•(X1,S1),

where H• stands for hypercohomology.
(b) Given another diagram

X0 U
τ0oo

τ1 // X1

and an equivalence ρ : W → V such that τ ◦ ρ is equivalent to φ, along with morphisms
µ : φ∗0S0 → φ!1S1 and η : τ∗0S0 → τ !1S1 such that ρ∗η = µ then µ∗ = η∗.
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(c) The maps µ∗ compose correctly: given a diagram

W ×X1 V
πW

zztt
tt
tt
tt
t πV

$$■
■■

■■
■■

■■
■

W
φ0

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤ φ1

%%❏
❏❏

❏❏
❏❏

❏❏
❏ V

ψ1

zz✉✉
✉✉
✉✉
✉✉
✉✉ ψ2

  ❆
❆❆

❆❆
❆❆

❆

X0 X1 X2

(5.13)

with φ1 and ψ2 proper and morphisms µ : φ∗0S0 → φ!1S1 and η : ψ∗
1S1 → ψ!

2S2 then

(π!V (η) ◦ c ◦ π
∗
W (µ))∗ = η∗ ◦ µ∗ (5.14)

where c comes from the natural transformation π∗Wφ
!
1 =⇒ π!V ψ

∗
1 discussed in Lemma 5.13.

(d) When X0 = X = X1 and W is the diagonal X → X ×X and S0 = S = S1 and φ0 = idX =
φ1 we have φ∗0S = S = φ!1S, µ = idS and using these identifications, µ∗ = idH•(X,S).

(e) Given another diagram

Y0 V
ψ0

oo
ψ1

// Y1

morphisms µ : φ∗0S0 → φ!1S1 and η : ψ∗
0T0 → ψ!

1T1, consider

µ⊠ η : (φ0 × ψ0)
∗(S0 ⊠ T0)→ (φ1 × ψ1)

!(S1 ⊠ T1).

Then we have (µ⊠η)∗ = µ∗⊗η∗ via the natural isomorphism H•(Si⊠Ti) ∼= H•(Si)⊗H•(Ti)
for i = 0, 1 from equation (5.5).

Proof. Using the canonical morphism FX1 → φ1∗FW we can compose with the pullback to get

Γ•(FX0 ,S0)→ Γ•(FW , φ
∗
0S0)→ Γ•(FW , φ

!
1S1)

∼= Γ•(φ1∗FW ,S1)→ Γ•(FX1 ,S1) (5.15)

which is µ∗ : Γ
•(FX0 ,S0)→ Γ•(FX1 ,S1), the morphism claimed in (a).

In order to prove (b) consider the commutative diagram

Γ•(FX0 ,S0)
φ∗0 //

ψ∗

0 ''PP
PPP

PPP
PPP

P
Γ•(FW , φ

∗
0S0) // Γ•(FW , φ

!
1S1) // Γ•(φ1∗FW ,S1) //

��

Γ•(FX1 ,S1)

Γ•(FV , ψ
∗
0S0)

ρ∗

OO

// Γ•(FV , ψ
!
1S1)

ρ∗

OO

// Γ•(ψ1∗FV ,S1)

66♥♥♥♥♥♥♥♥♥♥♥♥♥

where the map from Γ•(φ1∗FW ,S1) to Γ•(ψ1∗FV ,S1) is given by pre-composing by the pushforward
by ψ1 by the canonical map FV → ρ∗FW . Since each square and triangle commutes the two paths
from Γ•(FX0 ,S0) to Γ•(FX1 ,S1) agree.

We now prove (c). Let U =W×X1 V . A straightforward but tedious check shows that every sub-
diagram of the following three diagrams commutes. Each arrow is some combination of a canonical
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adjunction, base change, pullback, and the morphisms c, µ and η.

Γ•(FX0 ,S0) //

��
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
Γ•(FW , φ

∗
0S1) //

��

Γ•(FW , φ
!
1S1)

��

// Γ•(φ1∗FW ,S1)

��

Γ•(ψ∗
1φ1∗FW , ψ

∗
1S1)

��

Γ•(πV ∗FU , ψ
∗
1S1)

Γ•(FU , π
∗
Wφ

∗
0S1) // Γ•(FU , π

∗
Wφ

!
1S1) // Γ•(FU , π

!
V ψ

∗
1S1)

OO

(5.16)

Γ•(φ1∗FW ,S1)

��

// Γ•(FX1 ,S1) // Γ•(FV , ψ
∗
1S1) // Γ•(FV , ψ

!
2S2)

Γ•(ψ∗
1φ1∗FW , ψ

∗
1S1)

22❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

��

Γ•(πV ∗FU , ψ
∗
1S1) // Γ•(πV ∗FU , ψ

!
2S2)

OO

Γ•(FU , π
!
V ψ

∗
1S1)

OO

// Γ•(FU , π
!
V ψ

!
2S2)

OO

(5.17)

Γ•(FV , ψ
!
2S2) // Γ•(ψ2∗FV ,S2) // Γ•(FX2 ,S2)

Γ•(πV ∗FU , ψ
!
2S2)

OO

Γ•(FU , π
!
V ψ

!
2S2)

OO

// Γ•((ψ2 ◦ πV )∗FU ,S2)

OO @@✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁

(5.18)

Putting together the above three diagrams we have the proof of (c). Item (d) is obvious since in
this situation, all the maps in equation (5.15) are the identity.

In order to prove (e), notice that (µ⊠ η)∗ can be decomposed into tensor product morphisms

Γ•(FX0 ,S0)⊗ Γ•(FY0 ,T0)→ Γ•(FW , φ
∗
0S0)⊗ Γ•(FV , ψ

∗
0T0)→ Γ•(FW , φ

!
1S0)⊗ Γ•(FV , ψ

!
1T0)

followed by

Γ•(FW , φ
!
1S0)⊗ Γ•(FV , ψ

!
1T0)→ Γ•(φ1∗FW ,S0)⊗ Γ•(ψ1∗FV ,T0)→ Γ•(FX1 ,S1)⊗ Γ•(FY1 ,T1).

�
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5.3. Joyce’s conjecture.
The starting point for the linearization comes from the fact that on an oriented (−1)-symplectic

derived stack (X,ω) there is ([3], [6]) a perverse sheaf P(X,ω) on its underlying reduced Artin stack
which is locally modeled on the perverse sheaf of vanishing cycles of a certain algebraic function
appearing in the local Darboux model [4]. As usual, we continue to assume that X is defined over
C for simplicity, but as emphasized in [6], this perverse sheaf can be constructed in other contexts
including the algebraic étale context when X is defined over a general field k. For simplicity
however, we stick to the complex analytic context where techniques of classical topology are used.
The following theorem is a rephrasing of a theorem which appeared in [6].

Theorem 5.15. Let (X,ω) be a (−1)-symplectic derived stack with orientation SX , µX). Then we
may define a perverse sheaf PX,ω on X uniquely up to canonical isomorphism. It is characterized
in the following way. The Darboux theorem implies the existence of local models

V
(i,ϕ)
−→ Crit(f)− ×X

where U is a smooth scheme, f ∈ O(U), and V is a derived scheme, ϕ is smooth of dimension n,
and the morphism (i, ϕ) is an oriented Lagrangian 1. The perverse sheaf PX,ω satisfies the following
condition: ϕ∗(PX,ω)[n], is canonically isomorphic to i∗(PU,f ) where PU,f is the perverse sheaf of
vanishing cycles of f .

Remark 5.16. In [6] it was written that V is coisotropic but the fact that it is an oriented
Lagrangian was not mentioned. Instead, two other properties were given. For the reader familiar
with [6] we now explain why our statement is equivalent to the one in [6]. The Lagrangian condition
is equivalent2 to the fact that LV/Crit(f) ∼= TV/X [2]. This is the first of two conditions on V given
in [6]. Indeed we have a pair of exact triangles and a morphism between them

TV/X
//

��

TV //

��

TX

��

LV/Crit(f)[−2] // L(i,ϕ)[−2] // LX [−1].

(5.19)

Since the rightmost and center downward arrows give isomorphisms in the homotopy category we
can conclude that the leftmost downward arrow is also an isomorphism in the homotopy category.
The orientation is a isomorphism

det(LV )→ (i, ϕ)∗SCrit(f)−×X

inducing the canonical isomorphism det(LV )
⊗2 ∼= det(LCrit(f)−×X). However, we can rewrite this

as an isomorphism

KV/X ⊗ ϕ
∗KX → i∗SCrit(f) ⊗ ϕ

∗SX ∼= i∗KU ⊗ ϕ
∗SX

or using S⊗2
X
∼= KX an isomorphism

KV/X ⊗ ϕ
∗SX → i∗SCrit(f) ∼= i∗KU

or ϕ∗(SX)∼= i
∗(KU )⊗Λ

nTV/X which is the second condition of the two conditions given in [6].

1where we use the canonical orientation on Crit(f) and the product orientation on Crit(f)− ×X, the details of
exactly what V,U, f and ϕ can be found in [6]

2Thank you to Chris Brav for verifying this suspicion.
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The theorem we are citing from [6] was shown in the case of derived schemes in [4], [3]. In
that case, one can take ϕ to be smooth of dimension 0 (in fact a Zariski open) and i to be an
isomorphism, which give the following

Corollary 5.17. Let (X,ω) be a (−1)-symplectic derived scheme with orientation SX , µX). For
each closed point p in X, there is an open neighbourhood W symplectomorphic to Crit(f) where f
is a regular function on a smooth scheme U . Then the restriction of PX,ω to W is isomorphic to
the pullback of the sheaf of vanishing cycles PU,f .

Joyce conjectured that there should exist a natural way to assign cycles in the cohomology of
the perverse sheaf PX to Lagrangians in X. He made the following conjecture.

Conjecture 5.18. Let (X,ω) be an oriented (−1)-symplectic derived stack and i : L −→ X a
proper oriented Lagrangian. Let P(X,ω) be the perverse sheaf described in Theorem 5.15. Then
there is a natural morphism

µL : Ft0(L)[vdimL] −→ i!P(X,ω)

of constructible sheaves on L with given local models in the Darboux charts.

In order to give some evidence for this conjecture, we first explain the construction of the map
µ in a simple local model.

Example 5.19. Let U be a smooth variety over C equipped with a regular function f . Consider the
derived critical locus X = Crit(f). It is equipped with the shifted symplectic structure coming from
writing Crit(f) = U×T ∗UU given by the pair of Lagrangians df and 0. Let ψ :W −→ U be a smooth
subvariety such that f ◦ψ = 0. Consider the total space N∗(W/U) ⊂ T ∗U of the conormal bundle,
the dual of NW/U . Then df ◦ ψ can be thought of as a section of N∗(W/U) → W . Let M be the
derived zero locus of df ◦ψ. Notice that vdim(L) = dimW − (dimU − dimW ) = 2dimW − dimU .

Let us apply Corollary 2.14 taking S = T ∗U , and the three Lagrangians X0 = U
df
→ T ∗U and

X2 = U
0
→ T ∗U and X1 = N∗(W/U) → T ∗U and N1 = W

(ψ,df◦ψ)
−−−−−→ Udf ×T ∗U N

∗(W/U) and

N2 =W
(0,ψ)
−−−→ N∗(W/U)×T ∗U 0U . These are simply graphs of df ◦ψ and 0 interpreted as sections

of the shifted cotangent bundle T ∗[−1]W . We conclude that natural morphism φ from the derived
zero locus

L = (df ◦ ψ)−1(0) =W df◦ψ ×N∗(W/U) 0W → Udf ×T ∗U 0U = Crit(f) = X

is Lagrangian.
Consider the morphism

j : Crit(f)→ f−1(0)

induced by (j1, j2). Let U0 = f−1(0). We have the diagram

X
j

// U0
// U

f
// C

L

ϕ

OO

i // W

ψ

OO >>⑥⑥⑥⑥⑥⑥⑥⑥

(5.20)

Given a smooth algebraic variety Z, over C, we let orZ = FZ [2 dimZ] denote the orientation
complex of its underlying topological space . For simplicity we assume that Crit(f) is contained in
f−1(0). In this case the perverse sheaf PX is the pullback of the sheaf of vanishing cycles

PX = PVf = j∗φpf (FU [dimU ])
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where j : Crit(f) → f−1(0) = U0 is the inclusion. In the general case we would sum PVf−c over
all the critical values c of f .

We now construct the desired map, for this consider the canonical map δψ ∈ Hom(ψ!orW , orU ).
Applying the functor φpf and pulling back by j we obtain a morphism

j∗φpf (δψ) : j
∗φpfψ!orW → j∗φpforU .

Noticing that j∗φpforU = PX [dimU ] and using Theorem 2.10 of [3] we have since ψ is proper that

φpfψ!orW
∼= ψ!φ

p
f◦ψ(orW ) ∼= ψ!φ

p
0(orW ) ∼= ψ!orW .

Hence, we can consider j∗φpf (δψ) as a morphism j∗ψ!orW → PX [dimU ]. Since the square (5.20) is
Cartesian, we have

j∗ψ!(orW ) ∼= ϕ!i
∗(orW ) = ϕ!(FL[2 dimW ]).

So we get a morphism ϕ!(FL)[2 dimW − dimU ])→ PX or, by adjunction, a morphism

µL : FL[vdimL]→ ϕ!PX . (5.21)

The preceding was a kind of warm-up to the general situation of (−1)-Lagrangians which we
now do. We will restrict ourselves to the case of derived schemes, that is both X and L will be
derived schemes. In this situation the paper [14] provides a local description for L.

Proposition 5.20. Assume we have a Darboux chart (U, f) for the (−1)-symplectic derived scheme
X, that is, X is locally equivalent to Crit(f). Then [14, Example 3.6] shows that any (−1)-
Lagrangian L in Crit(f) is locally determined by the following data: a submersion ψ : V → U
of smooth varieties, a (trivial) vector bundle E on V equipped with an algebraic quadratic form q
which is non-degenerate on each fiber and a section s of E such that q ◦ s = f ◦ ψ. The classical
truncation of L is locally isomorphic to s−1(0).

An orientation on L determines a trivialization detE ∼= OV and a morphism

µL : FL[vdimL]→ ϕ!PX

Proof. Recall from Example 3.6 in [14] that the cotangent complex of L has the form

LL = [TV/U → E∨ → T∨
V/U ⊕ T

∨
U ]|L

living in degrees 0,−1,−2. In particular the virtual dimension of L is

vdim(L) = 2dim V − dimU − rkE.

The cotangent complex of the derived critical locus X of f looks like

[TU → T∨
U ]|X

in degrees 0,−1.
These cotangent complexes give us natural isomorphisms det(LL) ∼= det(T∨

U )|L ⊗ det(E)|L and
det(LX) ∼= det(T∨

U )
⊗2|X . The morphism α : det(LL)

⊗2 → (detLX)|L determined by the the

Lagrangian structure can be thought of therefore as a morphism det(T∨
U )

⊗2|L ⊗ (detE)|⊗2
L →

det(T∨
U )

⊗2|L, the orientation β is therefore a trivialization of det(E) along L which comes from
restricting the given isomorphism det(E) ∼= OV to L.
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Now we construct the morphism µ. As in the example we will assume, for notational simplicity,
that Crit(f) is contained in f−1(0). We have the following diagram

X
i // f−1(0) // U

f
// C

L

ϕ

OO

j
// (q ◦ s)−1(0)

ψ0

OO

// V

ψ

OO

s // E

q

OO (5.22)

Let s0 denote the composition (q ◦ s)−1(0) → V → E. Since L = s−1(0) and i is a proper closed
embedding we get the following chain of isomorphisms

ϕ!FL
∼= i∗i!ϕ!FL

∼= i∗ψ0!j!FL ∼= i∗ψ0!s
∗
0F0E ,

(using Lemma 5.13) where F0E is the pushforward of F from the zero section of E to E. Now the
well known description of the sheaf of vanishing cycles of a non-degenerate quadratic function tells
us that F0E

∼= φqFE[rkE]. Composing this with the previous chain of isomorphisms we obtain:

ϕ!FL[−rkE] ∼= i∗ψ0!s
∗
0φqFE (5.23)

Now recall there is a canonical map FE → s∗FV . Applying the functor i∗ψ0!s
∗
0φq to this map we

get a morphism

i∗ψ0!s
∗
0φqFE → i∗ψ0!s

∗
0φqs∗FV

∼= i∗ψ0!s
∗
0s0∗φq◦sFV

∼= i∗ψ0!φq◦sFV . (5.24)

Here we have used (5.12) and the fact that s0 is proper.
As in the previous example, there is a canonical morphism δψ : ψ!FV [2 dimV ] ∼= ψ!orV → orU

∼=
FU [2 dimU ]. We will apply the functor φf to this morphism and then pull back to X via i. Then
precomposing this map with (5.12) we get the map

i∗ψ0!φq◦sFV = i∗ψ0!φf◦ψFV → i∗φfψ!FV → i∗φfFU [2 dimU − 2 dimV ], (5.25)

where the equality follows from the assumption q ◦ s = f ◦ ψ. Finally we compose (5.23), (5.24)
and (5.25) and get

ϕ!FL[−rkE] −→ i∗φfFU [2 dimU − 2 dimV ] = PX [dimU − 2 dimV ],

and the equality follows from the definition of PX . By adjunction, this corresponds to a morphism
µL : FL[vdimL]→ ϕ!PX . �

Remark 5.21. The previous proposition proves Joyce’s conjecture locally (for derived schemes).
The main difficulty in giving a complete proof of the conjecture is to glue these maps along a cover
of L by Darboux charts. Note that these are general maps in Db

c(X), not necessarily perverse and
hence do not glue like sheaves.

We now formulate a more detailed version of Joyce’s conjecture which implies the phrasing in
Conjecture 5.18 and includes the behavior of the map µ under composition of Lagrangian corre-
spondences. In the next section we will use this conjecture to construct a bicategory which is a
linear version of Sympor.

Conjecture 5.22. Let (X0, ω0) and (X1, ω1) be oriented (−1)-symplectic derived stacks. Let φ =
φ0 × φ1 : M → X−

0 ×X1 be an oriented Lagrangian, in the sense of Definition 5.3 such that φ1 is
proper. Then
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(a) There is a map of constructible sheaves

µM : φ∗0PX0 [v]→ φ!1PX1

where v = vdim(M) with given local models in Darboux charts. Moreover, if we reverse the
orientation of M we change the map by −1.

(b) Consider oriented Lagrangians φ :M → X−
0 ×X1 and ψ : N → X−

0 ×X1 and let ρ :M → N
be an oriented Lagrangeomorphism. Then the morphism

φ∗0PX0 [v]
∼= ρ∗ψ∗

0PX0 [v]
ρ∗µN−−−→ ρ∗ψ!

1PX1 = ρ!ψ!
1PX1

∼= φ∗1PX1

agrees with µM in Db
c(M).

(c) Given oriented Lagrangians φ :M → X−
0 ×X1 and ψ : N → X−

1 ×X2 with vM = vdim(M)
and vN = vdim(N) equip the Lagrangian N •M with the orientation constructed in Lemma
5.6. Then the maps

µN•M : (φ0 ◦ πM )∗PX0 [vM + vN ] −→ (ψ2 ◦ πN )
!PX2

and the following composition,

π∗Mφ
∗
0PX0 [vM + vN ]

π∗

M
µM [vN ]

−−−−−−−→ π∗Mφ
!
1PX1 [vN ]

cφ1,ψ1−−−−→ π!Nψ
∗
1PX1 [vN ]

π!
N
µN

−−−−→ π!Nψ
!
2PX2

agree in Db
c(M ×X1 N). Notice that this statement makes sense because vdim(X1) = 0 and

so vdim(M ×X1 N) = vdim(M) + vdim(N).
(d) If φ is the diagonal ∆ : X → X− × X then since vdimX = 0 the resulting morphism

µX : PX → PX is the identity.
(e) If we are given Lagrangians φ :M → X−

0 ×X1 and ψ : N → Y −
0 × Y1 the morphism

PX0×Y0 [vM + vN ] ∼= (PX0 [vM ])⊠ (PY0 [vN ])
µM⊠µN−−−−−→ PX1 ⊠ PY1

∼= PX1×Y1

agrees with the morphism µM×N corresponding to the Lagrangian

φ× ψ :M ×N −→ (X0 × Y0)
− × (X1 × Y1).

where vM = vdimM and vN = vdimN .

Remark 5.23. We observe that the statements of Conjecture 5.18 and Conjecture 5.22(a) are
equivalent assuming that for a product of oriented (−1)-symplectic derived stacks we have PX0×X1

∼=
PX0 ⊠ PX1 when we take the product orientation on X0 ×X1.

To check this is true first note the isomorphism can be checked locally as they are perverse sheaves.
Examining the Darboux theorem in [6] we can see that if, using the notation from Theorem 5.15,
Xi has local Darboux data Vi, Ui, fi then for the product X1 × X2 we can take V = V1 × V2 −→
Crit(f1 ⊞ f2)

− × X1 × X2, with product morphisms. Then the claim follows from the Thom-
Sebastiani isomorphism (see Theorem 2.1.3 of [3]) for the perverse sheaf of vanishing cycles of
f1 ⊞ f2.

6. A linearization of Sympor

In this section, we will construct a 2-category LSymp, whose objects and 1-morphisms agree with
those of Sympor, but it is linear at the level of 2-morphisms. We will also construct a homomorphism
of bicategories Sympor −→ LSymp. In both cases we will use Conjecture 5.22.



42 LINO AMORIM AND OREN BEN-BASSAT

6.1. A linearized 2-category of symplectic derived stacks.
Here we will define the bicategory LSymp. Before we define the objects and morphism in this

bicategory we make the useful observations. If S is a 0-symplectic derived stack then it has even
virtual dimension and if X is a Lagrangian in S, it follows from the definition of Lagrangian that
vdim(X) = 1

2 vdim(S).

Definition 6.1. The objects of LSymp are the same as the objects of Sympor, namely 0-symplectic
derived stacks (S, ω) together with a line bundle E on S. The 1-morphisms are the same as in
Sympor, so we have LSymp1(S0, S1) := Sympor1 (S0, S1).

If X0 and X1 are 1-morphisms, then by Lemma 5.7, the (−1)-symplectic derived stack X01 =
X0 ×S0×S1 X1 has an induced orientation. Theorem 5.15 then constructs a perverse sheaf PX01 .
We define the graded vector space of 2-morphisms as

LSymp2(X0,X1) := H•(X01,PX01 [−n0 − n1]),

where ni =
1
2 vdim(Si).

We now define the different compositions and identities in LSymp.

Definition 6.2. Composition of 1-morphisms in LSymp is defined in the same way as in Sympor.
Similarly, the identity 1-morphisms idX are defined to be same as the ones in Sympor.

Let Si be objects in LSymp with vdim(Si) = 2ni. Given X0,X1,X2 ∈ LSymp1(S0, S1), Lemma
5.7 implies that the inclusion

φ : X012 → (X12 ×X01)
− ×X02

is a (−1)-Lagrangian of virtual dimension −n0 − n1 equipped with an induced orientation. Here
we reverse the order of the first two factors to respect the usual convention for compositions in a
category. Since φ is proper, Conjecture 5.22(a) combined with Lemma 5.14(a) gives a morphism

(µX012)∗ : H
•(PX12×X01 [−n0 − n1])→ H•(PX02).

Applying the shift [−n0 − n1] and using the isomorphism PX12×X01
∼= PX12 ⊠ PX01 , explained in

Remark 5.23, and the Künneth isomorphism we obtain a map

(µX012)∗[−n0 − n1] : H
•(PX12 [−n0 − n1])⊗H•(PX01 [−n0 − n1])→ H•(PX02 [−n0 − n1]).

We define the vertical composition of 2-morphisms as

α2 ⊙ α1 = (−1)(|α2|−n0−n1)(n0+n1)(µX012)∗[−n0 − n1](α2 ⊗ α1).

Consider Y0, Y1 ∈ LSymp1(S1, S2) and denote Zi = Yi ◦ Xi ∈ LSymp1(S0, S2). By Lemma 3.11
there is a natural Lagrangian

Z0 ×S0×S1×S2 Z1 → (Y01 ×X01)
− × Z01.

As explained in the proof of Proposition 2.19 this Lagrangian can be described as a triple intersection
of oriented 0-Lagrangians and hence Lemma 5.7 (b) assigns it an orientation. As above, since this
Lagrangian is proper, we obtain a map

(µZ0×S0×S1×S2Z1)∗ : H
•(PY01×X01 [v])→ H•(PZ01)

where v = vdim(Z0 ×S0×S1×S2 Z1) = −2n1. If we apply the shift [−n0 − n2] we obtain a map

(µZ0×S0×S1×S2Z1)∗[−n0 − n2] : H
•(PY01 [−n1 − n2])⊗H•(PX01 [−n0 − n1])→ H•(PZ01 [−n0 − n2]).

We define the horizontal composition of 2-morphisms as

β ∗ α = (−1)(n0+n1)(n1+n2)(µZ0×S0×S1×S2Z1)∗[−n0 − n2](β ⊗ α)
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In order to define the identity 2-morphisms, associators and unitors we need the following

Lemma 6.3. Let X0, X1 be 1-morphisms. An oriented Lagrangeomorphism ρ : X0 → X1 deter-
mines a 2-morphism eρ ∈ LSymp2(X0,X1) = H•(PX01 [−n0 − n1]), sometimes we denote it by eM ,
with M = Γρ.

If ρ = idX then eρ is an identity for the operation ⊙. Moreover for any ρ, the 2-morphism eρ is
invertible with respect to ⊙.

Proof. By the definition of Lagrangeomorphism, its graph Γρ : X0 → X01 is an oriented (−1)-
Lagrangian of virtual dimension is n0+n1. This can be thought of as a Lagrangian correspondence
from a point to X01, that is a Lagrangian X0 → (•(−1))

− ×X01. Since it is proper, we can apply
Conjecture 5.22(a) and Lemma 5.14 (a) to this Lagrangian and obtain a map

(µΓρ)∗ : H
•(P•(−1)

[n0 + n1])→ H•(PX01).

Applying the shift [−n0 − n1] and using the fact that H•(P•(−1)
) ∼= F, we obtain the map

(µΓρ)∗[−n0 − n1] : F→ H•(PX01 [−n0 − n1])
∼= LSymp2(X0,X1).

We define eρ = (µΓρ)∗[−n0 − n1](1) ∈ LSymp(X0,X1).
Let ρ1 : X0 → X1 and ρ2 : X1 → X2 be Lagrangeomorphisms, recall from the proof of Proposition

3.8 that ρ2 ◦ ρ1 is also a Lagrangeomorphism. Moreover we have an oriented Lagrangeomorphism
Γρ2 ⊙ Γρ1

∼= Γρ2◦ρ1 , where ⊙ is the vertical composition in the category Sympor. We claim that

eρ2 ⊙ eρ1 = eρ2◦ρ1 (6.1)

In order to prove this, we compute

eρ2 ⊙ eρ1 = (−1)n0+n1(µX012)∗[−n0 − n1]
Ä
(µΓρ2 )∗[−n0 − n1](1)⊗ (µΓρ1 )∗[−n0 − n1](1)

ä

= (−1)n0+n1(µX012)∗[−n0 − n1]
Ä
(µΓρ2×Γρ1

)∗[−2n0 − 2n1](1)
ä

= (−1)n0+n1(µX012•(Γρ2×Γρ1 )
)∗[−n0 − n1](1)

= (µΓρ2⊙Γρ1
)∗[−n0 − n1](1)

= (µΓρ2◦ρ1 )∗[−n0 − n1](1) = eρ2⊙ρ1 .

(6.2)

Here the first, fourth and last equalities follow from the definitions, the second from Conjecture
5.22(e) combined with Lemma 5.14(e), the third equality follows from combining Conjecture 5.22(c)
with Lemma 5.14(c) and finally the fifth equality follows Conjecture 5.22(b) and Lemma 5.14(b).

Now equation (6.1) together with Proposition 3.8 immediately implies the second half of the
statement, namely:

eρ ⊙ eidX0
= eρ = eidX1

⊙ eρ

and
eρ ⊙ eρ̃ = eidX0

, eρ̃ ⊙ eρ = eidX1

where ρ̃ is a homotopy inverse of ρ. �

The previous lemma allows us to make the following definition

Definition 6.4. Let S0, S1, S2 and S3 be objects in LSymp and consider Xi ∈ LSymp1(Si−1, Si)
for i = 1, 2, 3. The identity 2-morphism of X1 is defined as 1X1 = eidX1

. Let WX3X2X1 be the

associator in Sympor, we define the associator in LSymp, still denoted WX3X2X1 , as eWX3X2X1
.

Next, we define the unitors in LSymp2(idS0 ◦X1,X1) and LSymp2(X1 ◦ idS1 ,X1) as elX1
and erX1

where lX1 and rX1 are the unitors in Sympor.
By Lemma 6.3 all of these 2-morphisms are 2-isomorphisms as required.
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We now have all the data needed to define a bicategory, we will now check the axioms, we start
with

Lemma 6.5. The vertical composition ⊙ is associative and the 2-morphisms 1X are units for it.

Proof. Consider X0,X1,X2,X3 ∈ LSymp1(S0, S1) and take αi ∈ LSymp1(Xi−1,Xi). We denote
n = vdimXi and compute

α3 ⊙ (α2 ⊙ α1) = (−1)(|α2|+|α3|)n(µX023)∗[−n]((µ∆X23
)∗(α3)⊗ (µX123)∗[−n](α2 ⊗ α1))

= (−1)|α2|n+n(µX023)∗[−n]((µ∆X23
×X123)∗[−n](α3 ⊗ α2 ⊗ α1))

= (−1)|α2|n+n
Ä
µX023•(∆X23

×X012)

ä
∗
[−n](α3 ⊗ α2 ⊗ α1))

(6.3)

where the first equality follows from the definitions, together with Conjecture5.22(d) and Lemma5.14(d);
the second one follows from Conjecture 5.22(e) and Lemma 5.14(e) and the fact that (µX123)∗ has
degree n. Finally the third equality follows from Conjecture 5.22(c) and Lemma 5.14(c).

Similarly,

(α3 ⊙ α2)⊙ α1 = (−1)|α2|n
Ä
µX013•(X123×∆X01

)

ä
∗
[−n](α3 ⊗ α2 ⊗ α1),

hence associativity follows from applying Conjecture 5.22(b) to the Lagrangeomorphism

X023 • (∆X23 ×X012) ∼= (−1)nX013 • (X123 ×∆X01)

proven in Corollary 3.10, without considering the orientations, but that is elementary. The state-
ment about the identity 2-morphisms follows from the second part of Lemma 6.3. �

Lemma 6.6. Consider Xi ∈ LSymp1(S0, S1) and Yi ∈ LSymp1(S1, S2) for i = 0, 1, 2 and denote
Zi = Yi ◦Xi. For αi ∈ LSymp2(Xi−1,Xi) and βi ∈ LSymp2(Yi−1, Yi) for i = 1, 2, we have

(β2 ∗ α2)⊙ (β1 ∗ α1) = (−1)|β1||α2|(β2 ⊙ β1) ∗ (α2 ⊙ α1)

Proof. The proof follows the proof of the same statement for the bicategory Sympor in Theorem
5.12, using Conjecture 5.22 and Lemma 5.14, instead of properties C−. We have

(β2 ∗ α2)⊙ (β1 ∗ α1) = (−1)ǫ1
Ä
µZ012•(Z1×S012Z2×Z0×S012Z1)

ä
∗
[−n0 − n2](β2 ⊗ α2 ⊗ β1 ⊗ α1)

(β2 ⊙ β1) ∗ (α2 ⊙ α1) = (−1)ǫ2
Ä
µ(Z0×S012Z2)•(Y012×X012)•Γρ

ä
∗
[−n0 − n2](β2 ⊗ α2 ⊗ β1 ⊗ α1)

where ǫ1 = (|β2| + |α2| + n0 + n2)(n0 + n2) and ǫ2 = (n0 + n1)(n1 + n2) + (|β2| + n1 + n2)(n1 +
n2) + (|α2|+ n0 + n1)(n0 + n1) + (|β1|+ n1 + n2)(|α2|+ n1 + n2). Here we have used the fact that

(µΓρ)∗(β2 ⊗ β1 ⊗ α2 ⊗ α1) = (−1)(|β1|+n1+n2)(|α2|+n1+n2)β2 ⊗ α2 ⊗ β1 ⊗ α1,

where the sign corresponds to the unshifted degrees in H•(PX12) and H•(PY01).
Note that ǫ1 + ǫ2 = |β1||α2| (mod 2), therefore the statement follows from the existence of the

following oriented Lagrangeomorphism

Z012 • (Z1 ×S012 Z2 × Z0 ×S012 Z1) ∼= (Z0 ×S012 Z2) • (Y012 ×X012) • Γρ,

which is analogous to the one constructed in the proof of Theorem 5.12. �

Lemma 6.7. The associator satisfies the pentagon axiom and the unitors satisfy the triangle axiom.

Proof. Consider Xi ∈ LSymp1(Si−1, Si) = Sympor(Si−1, Si), for i = 1, ..4, the pentagon axiom in
Sympor states that the following oriented (−1)-Lagrangians are Lagrangeomorphic

W43(21) ⊙W(43)21
∼= (1X4 ∗W321)⊙W4(32)1 ⊙ (W432 ∗ 1X1)
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By definition and Lemma 6.3 , we have

W43(21) ⊙W(43)21 = eW43(21)
⊙ eW(43)21

= eW43(21)⊙W(43)21
.

Similarly we have

(1X4 ∗W321)⊙W4(32)1 ⊙ (W432 ∗ 1X1) = e1X4
∗W321 ⊙ eW4(32)1

⊙ eW432∗1X1

= e(1X4
∗W321)⊙W4(32)1⊙(W432∗1X1

),
(6.4)

an therefore the pentagon axiom in LSymp follows from the pentagon axiom in Sympor combined
with Conjecture 5.22(b) and Lemma 5.14(b). By an analogous argument we can see that the
triangle axiom in Sympor implies the triangle axiom in LSymp. �

The proof of the next lemma is very similar to others in this section so we omit it.

Lemma 6.8. The associator and the unitors are natural, meaning that given 2-morphisms γi ∈
LSymp2(Xi, Yi), for i = 1, 2, 3, we have

(γ3 ∗ (γ2 ∗ γ1))⊙WX3X2X1 =WY3Y2Y1 ⊙ ((γ3 ∗ γ2) ∗ γ1),

and
γ0 ⊙ rX0 = rY0 ⊙ (γ0 ∗ 1idS0 ) and γ0 ⊙ lX0 = lY0 ⊙ (1idS1 ∗ γ0).

Summarizing the results from this subsection we have the following

Theorem 6.9. The definitions and lemmas above define a bicategory LSymp enriched over graded
vector spaces. Moreover it has a symmetric monoidal structure.

Proof. The only point left to discuss is the symmetric monoidal structure. At the level of objects
and 1-morphisms it is the same as Sympor. In order to define the monoidal structure on 2-morphisms
we use the following canonical isomorphisms

LSymp2(X0 × Y0,X1 × Y1) ∼= H•(P(X0×Y0)×S0×S1×T0×T1 (X1×Y1)[−nX − nY ])

∼= H•(PX01×Y01 [−nX − nY ])
∼= H•(PX01 [−nX ])⊗H•(PY01)[−nY ]),

(6.5)

where nX = vdimX0×X1 and nY = vdimY0×Y1. The structure of symmetric monoidal structure
can then be constructed in a straightforward way. �

6.2. The linearization functor.
In the previous subsection we used Conjecture 5.22 to construct the 2-category LSymp. In this

subsection, again using Conjecture 5.22 we would like to construct a linearization functor, that
is a (symmetric monoidal) homomorphism of bicategories Sympor → LSymp. This is not possible
since in order to apply Conjecture 5.22 we need proper (−1)-Lagrangians. Because of this we will
introduce a slightly modified version of Sympor.

Proposition 6.10. There is a symmetric monoidal bicategory Symporc defined as the subcategory
of Sympor with the same objects and 1-morphisms and 2-morphisms (Symporc )2(X0,X1) are (equiv-
alence classes) of oriented Lagrangians ψ :M −→ X01, such that ψ is a proper map.

Proof. It easily follows from the definitions that being proper is preserved by both horizontal
and vertical composition in Sympor. All the other data required in the definition of a symmetric
monoidal bicategory (identities, associators, unitors,..) are defined as the graph of some Lagrange-
omorphism which is necessarily proper. �

We can now state the main result of this subsection.
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Theorem 6.11. There is a symmetric monoidal homomorphism of bicategories, in the sense of
Definition 2.2 of [25],

F : Symporc → LSymp

which is the identity on objects and 1-morphisms.

Proof. By definition we have that F (Y ◦ X) = F (Y ) ◦ (X) and F (idS) = idF (S) for any object
S and 1-morphisms X,Y . Now consider a 2-morphism N ∈ (Symporc )2(X0,X1), this is a proper
oriented (−1)-Lagrangian N → (•(−1))

− ×X01. Applying Conjecture 5.22(a) and Lemma 5.14(a)
to this Lagrangian and shifting we obtain a map

(µN )∗[−n0 − n1] : H
•(P•−1 [vdimN − n0 − n1])→ H•(PX01 [−n0 − n1]).

Since F ∼= H•(P•−1), we define

F (N) = (µN )∗[−n0 − n1](1) ∈ LSymp(X0,X1).

This well defined since, by Conjecture 5.22 (b) together with Lemma 5.14 (b), if N ′ is Lagrangeo-
morphic to N then (µN )∗ = (µN ′)∗.

We observe that, by definition we have

F (1X ) = 1F (X), F (WX3X2X1) =WF (X3)F (X2)F (X1), F (rX) = rF (X) and F (lX) = lF (X).

The only conditions left to check are the following

F (N ⊙M) = F (N)⊙ F (M), F (N ∗M) = F (N) ∗ F (M).

Since both can be proved in the same way, we check only the first one. We denote ǫ = vdimN(n0+
n1) and compute

F (N ⊙M) = (µN⊙M )∗[−n0 − n1](1)

= (µ(−1)ǫX012•(M×N))∗[−n0 − n1](1)

= (−1)ǫ
Ä
(µX012)∗ ◦ ((µM×N )∗[−n0 − n1])

ä
[−n0 − n1](1)

= (−1)ǫ(µX012)∗[−n0 − n1]((µM×N )∗[−2n0 − 2n1](1))

= (−1)ǫ(µX012)∗[−n0 − n1]
Ä
(µN )∗[−n0 − n1](1) ⊗ (µM )∗[−n0 − n1](1)

ä

= (−1)ǫ(µX012)∗[−n0 − n1](F (N)⊗ F (M)) = F (N)⊙ F (M),

where the third equality follows from Conjecture 5.22(c) combined with Lemma 5.14(c), the fifth
equality follows from Conjecture 5.22(e) together with Lemma 5.14(e) and the other follow from
the definitions. Finally, in the last equality, we used the fact that |F (N)| = n0 + n1 − vdimN . �

7. Categories of Fillings and mapping stacks

One of the main results in [24] states that under certain conditions, the mapping stackMap(X,S)
is a symplectic derived stack if S is also symplectic. The main condition is that the stack X possess a
d-orientation, rather informally this can be thought of as a volume form that allows us to “integrate
functions” on X. Calaque [8] defined a relative version of orientation and proved that the functor
Map(−, S) sends relative orientations to Lagrangians. In this section we will build a bicategory
of derived stacks with relative orientations, in analogous but dual way to how we constructed
Lag. In the end we will show that under certain conditions, Map(−, S) can be promoted to a
homomorphism of bicategories.
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7.1. Categories of Fillings.
In this section, contrary to the rest of the paper, we will not assume that our derived stacks are

Artin or locally of finite presentation. Instead we will require that the derived stacks be O-compact.
A derived stack is X is O-compact according to [24, Definition 2.1] when for any affine derived

scheme Spec(A) we have that OX×Spec(A) is a compact object of Dqcoh(X × Spec(A)) and for any
perfect complex E on X × Spec(A), the A-dg-module RHom(OX×Spec(A), E) is perfect. As usual,
we make the R implicit from now on. For a derived stack X and an affine derived scheme Spec A,
we use XA to denote X × Spec A.

Lemma 7.1. Given a diagram

W1
j1
←− X

j2
−→W2

of O-compact derived stacks, their homotopy pushout, in the category of derived stacks, is O-
compact.

Proof. Let us denote the homotopy pushout by Y . Then YA is a homotopy pushout of

(W1)A
j1,A
←− XA

j2,A
−→ (W2)A.

Consider the resulting canonical maps j1,A : (W1)A → YA, j2,A : (W2)A → YA, and jA : XA → YA.
We can write the (stable∞-) categories of quasi-coherent sheaves and perfect complexes on YA as a
homotopy limit of the corresponding categories on (W1)A, (W2)A, and XA. This means that given
an object on YA it is determined by objects on (W1)A, (W2)A, and XA related by the appropriate
pullbacks. Since homotopy colimits and finite homotopy limits commute in the stable context, this
correspondence is preserved by homotopy filtered colimits. In particular, working in the derived
categories of quasi-coherent sheaves, for any E ∈ Dqcoh(Y × Spec(A)) the set Hom(OYA , E) is the
limit of the diagram

Hom(O(W1)A , E|(W1)A)
j∗1,A
−→ Hom(OXA , E|XA)

j∗2,A
←− Hom(O(W2)A , E|(W2)A).

Notice that these pullbacks commute with homotopy filtered colimits in the E variable, that (W1)A,
(W2)A, and XA are O-compact and that finite limits and filtered colimits in the category of sets
commute. Putting this all together, this diagram commutes with homotopy colimits in the E
variable and so YA is O-compact. In a similar way, considering the functor Hom(OYA ,−) we
obtain the exact triangle

Hom(OYA , E)→ Hom(OXA , E|(W1)A)⊕Hom(O(W2)A , E|(W2)A)→ Hom(OXA , E|XA).

Since the restrictions of E are perfect, and because (W1)A, (W2)A, and XA are O-compact we can
conclude that Hom(OXA , E|(W1)A) Hom(O(W2)A , E|(W2)A) Hom(OXA , E|XA) are all perfect. This
implies that Hom(OYA , E) is perfect, which completes the proof. �

We now review the definition of orientation following [24]. From now on we use the notation
C(X,E) = RHom(OX , E), for a complex E on X.

Let η : C(X,OX ) → k[−d] be a morphism in the derived category D(k), this defines, for any
perfect complex E on XA, a morphism

(− ∩ η)A : C(XA, E)→ C(XA, E
∨)∨[−d] (7.1)

corresponding to the composition

C(XA, E) ⊗C(XA, E
∨)→ C(XA, E ⊗ E

∨)→ C(XA,O) ∼= C(X,OX)⊗A→ A[−d]

where the first map is the cup product, the second is the trace and the last is η ⊗ idA.
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Definition 7.2. Let X be a O-compact derived stack, an O-orientation of degree d (usually
abbreviated to d-orientation) consists of a morphism [X] : C(X,OX) → k[−d] such that for any

A ∈ cdga≤0
k and any perfect complex E on XA, the morphism

(− ∩ [X])A : C(XA, E)→ C(XA, E
∨)∨[−d] (7.2)

is a quasi-isomorphism of A-dg-modules.

From now on, however, we will suppress this notation from our calculations, and just use the
notation

− ∩ [X] : C(X,E)→ C(X,E∨)∨[−d]

for the entire family of morphisms in (7.2) for all possible choices of A and E.

Remark 7.3. If X is equipped with an orientation [X] which is understood, we sometimes use X
to denote (X,−[X]).

We now recall the definitions of boundary structure and relative orientation (which we will call
a filling) from [8]. Let X be a d-oriented derived stack and f : X → W be a morphism of derived
stacks. Denote by f∗[X] be the composition

C(W,OW )→ C(X,OX )
[X]
−−→ k[−d],

where the first morphism is pullback. Note that we can rewrite − ∩ f∗[X] as the composition

C(W,E)→ C(X, f∗E)→ C(X, f∗E∨)∨[−d]→ C(W,E∨)∨[−d] (7.3)

given by pullback, cap with [X] and finally the shifted dual of pullback.

Definition 7.4. Let (X, [X]) be aO-compact derived stack with a d-orientation. A boundary struc-
ture [8] on a morphism f : X → W is a path γ from f∗[X] to 0 in the spaceMap(C(W,OW ), k[−d]).

Suppose we have a morphism f : X → Y of derived stacks and an object E ∈ Perf(Y ). We
define C(f,E) by the exact triangle

C(Y,E) −→ C(X, f∗E) −→ C(f,E) −→ .

Notice that for a pair of morphisms of derived stacks X
f
−→ Y

g
−→ Z, C(f,E) and C(g,E) are

related by the following exact triangle

C(g,E) −→ C(g ◦ f,E) −→ C(f, g∗E) −→,

in the derived category D(k).
A boundary structure γ induces the following diagram

C(W,E)

Θγ

{{①①
①①
①①
①①
①①
①①
①①
①①
①①
①①
①①

��
0

##●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●

C(X, f∗E)

−∩[X]
��

C(f,E∨)∨[−d] // C(X, f∗E∨)∨[−d] // C(W,E∨)∨[−d]

✓✓✓✓
EM

(7.4)

This is because γ determines a homotopy between 0 and the composition (7.3) which, since the
bottom row is exact, determines the lift Θγ . A boundary structure γ is called non-degenerate if the
associated morphism Θγ is a quasi-isomorphism.
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Definition 7.5. Consider a O-compact derived stack X with a d-orientation [X]. If γ is a non-
degenerate boundary structure on f : X → W , we call the pair (f, γ) a filling of X. Denote the set
of fillings for a fixed morphism f by Fill(f, [X]).

From now on in this subsection, we will assume that all the derived stacks are in fact classical
stacks and all the morphism are closed immersions. We will see that fillings have many of the same
formal properties as Lagrangians, just dualized. The following is the analogue of Example 2.3 and
Proposition 2.5.

Proposition 7.6. Let X and W be O-compact derived stacks and f : X −→ W a morphism of
derived stacks. We have the following:

(a) Consider the empty set as a d-oriented derived stacks. A d-filling of the morphism ∅ −→ X
is equivalent to a (d+ 1)-orientation on X.

(b) If (X, [X]) is d-oriented, there is a bijection between Fill(f, [X]) and Fill(f,−[X]).
(c) Let X1 and X2 be d-oriented derived stacks and suppose we have fillings f1 : X1 −→ W1

and f2 : X2 −→ W2. Then X1
∐
X2 has an induced d-orientation and the morphism

f1
∐
f2 : X1

∐
X2 −→W1

∐
W2 is a filling.

Proof. In order to prove (a), notice that a boundary structure on i : ∅ → X is just a loop γ at
0 in Map(C(X,OX), k[−d]). This is the same as a point in Map(C(X,OX), k[−(d + 1)]). The
associated morphism

− ∩ [X] : C(X,E)→ C(X,E∨)∨[−(d+ 1)]

is equivalent to

C(X,E)
Θi→ C(i, E∨)∨[−d] ∼= C(X,E∨)[−1]∨[−d] ∼= C(X,E∨)∨[−(d+ 1)]

and so each is non-degenerate if and only if the other is. Points (b) and (c) are obvious. �

The following is an analogue of Proposition 2.7

Proposition 7.7. Suppose that X0 and X1 are d-oriented derived stacks and we are given a filling
f = (f0, f1) : X0

∐
X1 →W . For a morphism of derived stacks g : X0 → U , consider the associated

morphism bf (g) : X1 → U
∐
X0
W . Then there is a map

Bf : Fill(g, [X0])→ Fill(bf (g), [X1]).

Proof. First note that Lemma 7.1 guarantees that U
∐
X0
W is O-compact. Let us denote by γ the

boundary structure for the map f , that is a path from−f0∗[X0]+f1∗[X1] to 0 inMap((C(W,OW ), k[−d]),
or equivalently, a path γ from f1∗[X1] to f0∗[X0]. Let δ be a filling of g, that is a path from g∗[X0]
to 0. Consider the homotopy commutative diagram

U
∐
X0
W

U

iU
::✉✉✉✉✉✉✉✉✉

W

iW
ff◆◆◆◆◆◆◆◆◆◆◆

X0
∐
X1

f

OO

X0

f0

@@✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁

g

[[✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻✻ j0

88♣♣♣♣♣♣♣♣♣♣♣♣
X1

j1

dd■■■■■■■■■

f1

[[✼✼✼✼✼✼✼✼✼✼✼✼✼✼✼✼✼

(7.5)
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The fact that the square on the left is homotopy commutative determines a path from iW∗f0∗[X0]
to iU∗g∗[X0]. Consider the concatenation

Bf (δ) = (iW∗γ) • c • (iU∗δ).

It is a path from (iW f1)∗[X1] to 0. Since iW f1 = bf (g) we have produced a boundary structure
on bf (g). We will now prove that it is non-degenerate if δ is non-degenerate. Let T = U

∐
X1
W .

Given F ∈ Perf(U
∐
X1
W ) we have an exact triangle

F → iU∗i
∗
UF ⊕ iW∗i

∗
WF → (iW ◦ f0)∗(iW ◦ f0)

∗F → .

applying this to E and E∨ and taking derived global sections over T we get a commutative diagram

C(T,E)

��

// C(U, i∗UE)⊕ C(W, i∗WE) //

(Θδ ,Θγ)

��

C(X1, f
∗
0 i

∗
WE) //

(−)∩[X1]
��

C(iW ◦ f1, E
∨)∨[−d] // C(g, i∗UE

∨)∨[−d]⊕ C(f, i∗WE
∨)∨[−d] // C(X1, f

∗
0 i

∗
WE

∨)∨[−d] //

(7.6)
Consider

X1
j1−→ X0

∐
X1
∼= X0

∐
X0

(X0

∐
X1)

(g,f)
−→ U

∐
X0

W.

Because (g, f) ◦ j2 ∼= i2 ◦ f1 we get an exact triangle

C(j2, (g, f)
∗E∨)∨ −→ C(i2 ◦ f1, E

∨)∨ −→ C((g, f), E∨)∨ −→

also have

C(X1, j
∗
1F )⊕ C(X2, j

∗
2F ) = C(X1

∐
X2, F ) −→ C(X2, j

∗
2F ) −→ C(j2, F ) −→

Therefore, C(j2, F ) ∼= C(X1, j
∗
1F )[+1]. And so

C(X1, j
∗
1F )

∨[−1] ∼= C(j2, F )
∨ (7.7)

and

C((g, f), E∨) ∼= C(g, i∗UE
∨)⊕ C(f, i∗WE

∨). (7.8)

So we get the exact triangle

C(X0, f
∗
0 i

∗
WE

∨)∨[−1] −→ C(iW ◦ f0, E
∨)∨ −→ C(g, i∗UE

∨)∨ ⊕ C(f, i∗WE
∨)∨ −→ .

Shifting and rotating it we have the exact triangle

C(iW ◦ f2, E
∨)∨[−d] −→ C(g, i∗UE

∨)∨[−d]⊕ C(f, i∗WE
∨)∨[−d] −→ C(X1, f

∗
0 i

∗
WE

∨)∨[−d] −→ .

Therefore, the bottom row in (7.6) is an exact triangle. The top row is an exact triangle as well.
Therefore the left vertical arrow in (7.6) is an equivalence in the homotopy category. This agrees
with the morphism ΘBf (δ) which is induced by the path Bf (δ) by the mechanism explained in

(7.4). �

The following lemma is the analogue of Proposition 2.6 and Corollary 2.9.

Lemma 7.8. Suppose that X is a d-oriented derived stack. The natural morphism ∇ : X
∐
X → X

has a canonical filling. Moreover, given fillings f1 : X → W1 and f2 : X → W2 of X then the
(homotopy) pushout W1

∐
XW2 has an induced (d+ 1)-orientation.
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Proof. The pushforward of [X ] to X is of course −[X] and so we can use that to find a path to
zero from the pushforward of [X

∐
X] to X. It induces a morphism C(X,E) → C(∇, E∨)∨[−d]

which we want to show is a quasi-isomorphism. If we consider the inclusion of the first factor

X
j
→ X

∐
X, then ∇ ◦ j is the identity and the exact triangle

C(X,E∨)→ C(X
∐

X,∇∗E∨)→ C(X,E∨)

shows that C(∇, E∨) ∼= C(X,E∨) and in fact C(X,E)→ C(∇, E∨)∨[−d] actually agrees with the
original morphism (−) ∩ [X] : C(X,E)→ C(X,E∨)∨[d] itself so it is a quasi-isomorphism.

The second statement is an immediate corollary of the first and Proposition 7.7. Indeed by
Proposition 7.6 (3) we have a filling X

∐
X →W1

∐
W2. By the first statement, we have the filling

∇ : (X
∐
X)

∐
∅ → X. By applying Proposition 7.7 we see that ∅ → (W1

∐
W2)

∐
X
∐
X X is a

d-filling and so Proposition 7.6 (1) corresponds to a (d+1)-orientation on (W1
∐
W2)

∐
X
∐
X X

∼=

W1
∐
XW2. �

The following proposition is an analogue of Theorem 2.13.

Proposition 7.9. Suppose that X is a d-oriented derived stack. Suppose that we are given three
d-fillings X →Wi for i = 1, 2, 3. The natural morphism

φ : (W1

∐
X

W2)
∐

(W2

∐
X

W3)
∐

(W3

∐
X

W1)→W1

∐
X

W2

∐
X

W3

is a filling.

Proof. The derived stack W1
∐
XW2

∐
XW3 is O-compact by Lemma 7.1. The construction of the

natural boundary structure is analogous to the construction of the isotropic structure in Theorem
2.13 and Proposition 3.9 and so is omitted. We will prove that this boundary structure is non-
degenerate.

Denote by Wij = Wi
∐
XWj the (d+ 1)-oriented derived stacks constructed in Lemma 7.8. Let

T = W1
∐
XW2

∐
XW3. Notice that T ∼= W01

∐
W1

W12. Consider E ∈ Perf(T ), there is an exact
triangle

C(T,E) −→ C(W01, E)⊕ C(W12, E) −→ C(W1, E) −→ .

Denote by q the composition

W20
i
−→W01

∐
W12

∐
W02

φ
−→ T.

This gives an exact triangle

C(i, φ∗E)∨ −→ C(q,E)∨ −→ C(φ,E)∨ −→ .

Notice also that C(i, φ∗E) ∼= C(W01
∐
W12, φ

∗E)[1] and we have a co-Cartesian square

X

f1
��

// W20

q

��

W1 π
// T

(7.9)

and therefore C(q,E) ∼= C(f1, π
∗T ) for all E ∈ Perf(T ). Combining the above we get an exact

triangle
C(W01, E)∨[−1]⊕ C(W12, E)∨[−1] −→ C(f1, E)∨ −→ C(φ,E)∨ −→

and by shifting and rotating, an exact triangle

C(φ,E)∨[−d− 1] −→ C(W01, E)∨[−d− 1]⊕ C(W12, E)∨[−d− 1] −→ C(f1, E)∨[−d].
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In conclusion, we get a diagram with exact triangles as rows

C(T,E)

Θγ012
��

// C(W01, E)⊕ C(W12, E) //

((−)∩[W01],(−)∩[W12])
��

C(W1, E) //

Θγ1
��

C(φ,E∨)∨[−d− 1] // C(W01, E
∨)∨[−d− 1]⊕ C(W12, E

∨)∨[−d− 1] // C(f1, E
∨)∨[−d] //

Because the middle and final vertical arrow are quasi-isomorphisms, the first is as well. �

Definition 7.10. Let X be a d-oriented derived stack and let i0 : X → W0 and i1 : X → W1

be fillings of X. A filleomorphism between W0 and W1 is a triple consisting of an equivalence of
derived stacks g : W0 →W1, a homotopy between g◦i0 and i1 and a filling of the induced morphism

g
∐
X

idW1 : W0

∐
X

W1 −→ W1.

Using Proposition 7.6, Proposition 7.9 we can redo the entirety of sections 2, 3, 4 of this article in
this “dual” picture where symplectic structures are replaced with O-orientations, Lagrangians are
replaced by fillings and Lagrangeomorphisms are replaced by filleomorphisms and all the morphisms
go in the opposite direction. For example composition of 1-morphism and vertical composition of
2-morphisms are defined using the morphisms

Fill(W1

∐
X

W2)×Fill(W2

∐
X

W3)→ Fill(W1

∐
X

W3),

constructed by combining Proposition7.6 and Proposition 7.9, as in Corollary 2.14.
We spare the reader the details and summarize the result in the following:

Theorem 7.11. Let (X, [X]) be a d-oriented stack. There exists a bicategory Fill(X, [X]) whose
objects are fillings (f : X → W,γ), 1-morphisms between two fillings (f1 : X → W1, γ1) and
(f2 : X → W2, γ2) are the fillings of W1

∐
XW2, equipped with the orientation defined in Lemma

7.8. The 2-morphisms between two such fillings (W1
∐
XW2 → Q1, τ1) and (W1

∐
XW2 → Q2, τ2)

are fillings of Q1
∐

(W1

∐
X
W2)Q2 up to filleomorphism.

In the special case of the (d− 1)-oriented derived stack ∅, this theorem constructs a bicategory

Fill(∅), which we denote by Ord, whose objects are d-oriented derived stacks. Analogous to the
symplectic case, in this case it has a symmetric monoidal structure.

Theorem 7.12. The bicategory Ord is a symmetric monoidal bicategory. The monoidal structure

Ord × Ord → Ord,

at the level of objects, sends ((X1, [X1]), (X2, [X2])) to (X1
∐
X2, [X1

∐
X2]) and has the point ∅ as

the unit.

Proof. We define the monoidal structure on morphisms by the coproduct of fillings, as defined in
Proposition 7.6(c). Together with some natural isomorphisms which we do not write down, this
defines a symmetric monoidal bicategory. �

7.2. From fillings to Lagrangians.
Let X be a d-oriented derived stack and S be a n-symplectic derived stack. Consider a subcat-

egory of Fill(X, [X]), such that the restriction of the functor Map(−, S) has image in the category
of derived Artin stacks. We will see that the functor Map(−, S) defines a homomorphism of bi-
categories to Lag(Map(X,S)). The material here is a modest elaboration on the ideas in [8]. We
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start by reviewing how an orientation determines an “integral”. Recall from [24] that for if X is
O-compact, then for any derived stack Z there is a natural map

DR(X × Z) −→ C(X,OX )⊗DR(Z).

If we are given a morphism η : C(X,O) −→ k[−d], we can compose it with the previous map and
get a map

DR(X × Z) −→ DR(Z)[−d],

which, in particular, induces a map∫
η
: A2,cl(X × Z, n) −→ A2,cl(Z, n − d).

We collect a few useful properties of this construction.

Lemma 7.13. The assignment η 7→
∫
η(−), determines a continuous map

Map(C(X,OX ), k[−d])→Map(A2,cl(X × Z, n),A2,cl(Z, n − d)).

Let f : X → Y and g : Z0 → Z1 be morphisms of O-compact derived stacks. If [X] : C(X,OX)→
k[−d], the following holds:∫

f∗[X]
(−) =

∫
[X]

(f × id)∗(−) and g∗
Ä ∫

[X]
(−)
ä
=

∫
[X]

(id× g)∗(−).

Theorem 7.14 ([24], Theorem 2.6). Let (X, [X]) be a d-oriented derived stack, (S, ω) be a n-
symplectic derived stack and assume that Map(X,S) is a derived Artin stack. Denote by ev :
X ×Map(X,S)→ S the evaluation map. Then

∫
[X] ev

∗ω is an (n− d)-shifted symplectic structure

on Map(X,S)

Theorem 7.15 ([8], Theorem 2.11). Let f : X −→ W be a filling and assume that Map(W,S)
and Map(X,S) are derived Artin stacks. The induced morphism Map(f, S) : Map(W,S) →
Map(X,S) has an induced Lagrangian structure.

Proof. We will explain how a boundary structure in f determines an isotropic structure on
Map(f, S) and refer the reader to [8] for a proof that this assignment preserves non-degeneracy.

For simplicity of notation, we denote MS(X) = Map(X,S) and MS(W ) = Map(W,S) and
MS(f) for the morphism Map(W,S) → Map(X,S) the morphism induced by f : X → W . A
boundary structure on f : X →W consists of a path from f∗[X] to 0. By the first part of Lemma
7.13, this induces a path from

∫
f∗[X] π

∗ω to 0. Again using Lemma 7.13 we have

MS(f)
∗
∫
[X]

π∗ω =

∫
[X]

(id×MS(f))
∗π∗ω =

∫
f∗[X]

π∗ω

so we have a path fromMS(f)
∗
∫
[X] π

∗ω to 0, in other words an isotropic structure onMS(f). �

This proof points the way to some helpful notation. If f : X → W has a boundary structure,
that is a path γf from 0 to f∗[X] then we defineMS(γf ) to be the corresponding path in the space
of closed 2-forms on Map(W,S) fromMS(f)

∗
∫
[X] π

∗ω to 0.

Proposition 7.16. Let X0, X1 be d-oriented derived stacks, let f = (f0, f1) : X0
∐
X1 → W and

g : X0 → U be fillings and consider the filling bf (g) : X1 → U
∐
X0
W , constructed in Proposition

7.7. Assuming that the following mapping stacks are Artin, then an equivalence (determined by the
universal property)

Map(U
∐
X0

W,S) ∼= Map(U,S) ×Map(X0,S) Map(W,S)
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can be upgraded to a Lagrangeomorphism of Lagrangians in Map(X1, S). Here the Lagrangian
structure on the right side is constructed by applying Proposition 2.7 and the Lagrangian structure
on the left hand side comes from applying Theorem 7.15 to bf (g).

Proof. Let γ be the path from f0∗[X0] to f1∗[X1]. It gives rise to a path fromMS(f1)
∗
∫
[X1]

π∗1ω

toMS(f0)
∗
∫
[X0]

π∗0ω in the space of closed 2-forms on Map(W,S). Similarly, we haveMS(γg), a

path fromMS(g)
∗
∫
[X0]

π∗gω to 0 in the space of closed 2-forms on Map(U,S). The canonical path

connecting the pullbacks of MS(f0)
∗
∫
[X0]

π∗0ω and MS(g)
∗
∫
[X0]

π∗gω in the space of forms on the

right hand side is induced using from the canonical path from the two different pushforwards of [X0]
to the space Map(C(U

∐
X0
W ), k[−d]). ThereforeMS((iW∗γ)•c•(iU∗γg)) is homotopy equivalent

to the path made by connecting the pullbacks of MS(iW )∗(MS(γ)) and MS(iU )
∗(MS(γg)). We

can now complete the proof by appealing to Corollary 3.5. �

By taking X1 to be a point, we obtain the following corollary, which can be found in [8]

Corollary 7.17. Given two fillings X → W1 and X →W2, the equivalence of derived stacks

Map(W1

∐
X

W2, S)→Map(W1, S)×Map(X,S) Map(W2, S)

is a symplectomorphism, assuming these are derived Artin stacks.

We now have all the ingredients necessary to show that Map(−, S) defines a homomorphism
from Fill(X) to Lag(Map(X,S), modulo the question of the required mapping stacks being derived
Artin stacks. We fix this problem by restricting the domain of the homomorphism.

Definition 7.18. Let S be a derived Artin stack. Fix a subcategory C of the category Stci, closed
under pushouts, such that for any X in C, the mapping stack Map(X,S) is a derived Artin stack.

Let (X, [X]) be a d-oriented derived stack, such thatX is an object of C. We define the bicategory
FillC(X) as the subcategory of Fill(X), where all the fillings are objects and morphisms in C. Note
this defines a subcategory since C is closed under pushouts.

We are aware of two examples of categories C which fulfill the conditions of Definition 7.18. It
would be interesting to identify other examples.

Example 7.19. Let S be an arbitrary derived Artin stack. We can take C to be the category of
“constant stacks”, that is to say, stacks whose value on any cdga is the same topological space
(which has the homotopy type of a finite CW complex) and whose value on any morphism is the
identity. The homotopy pushout of a diagram of such constant stacks is just the constant stack with
value the homotopy pushout of the corresponding topological spaces. Moreover, as explained in [24],
for any such stack X, Map(X,S) is a derived Artin stack.

Example 7.20. Assume that S is a smooth quasi-projective variety, or a classifying stack BG.
Take C to be the category whose objects are finite homotopy colimits (in the category of derived
stacks) of diagrams of smooth proper Deligne-Mumford stacks with morphisms closed immersions.
As explained in [24], if X is a smooth proper Deligne-Mumford stack then Map(X,S) is a derived
Artin stack. Therefore for any object Y in C, then Map(Y, S) is a derived Artin stack since it is
a finite homotopy limit of derived Artin stacks.

Theorem 7.21. Let S n-symplectic derived stack and pick a category C as in Definition 7.18. If
(X, [X]) is a d-oriented derived stack belonging to C, Then there is a morphism of bicategories

M : FillC(X)→ Lag(Map(X,S))

where Map(X,S) is equipped with (n− d)-shifted symplectic structure
∫
[X] π

∗ωS discussed above.



55

Proof. The definition of this homomorphism on objects was explained in the proof of Lemma 7.17.
Since the 1-morphisms and 2-morphisms in the category Fill(X) are given by fillings, and similarly
the 1-morphisms and 2-morphisms in the category Lag(Map(X,S)) are again given Lagrangians,
the main thing to check is the compatibility of this assignment with the two types of composition
of 1-morphisms and with the composition of 2-morphisms. This a long but tedious check which
boils down to a repeated use of Proposition 7.16 and Corollary 7.17. �

As a special case of this, taking X = ∅ we have the following

Corollary 7.22. Let S n-symplectic derived stack and pick a category C as in Definition 7.18.
There is a homomorphism of symmetric monoidal bicategories

M : OrdC → Sympn−d

which at the level of object sends a d-oriented derived stack X to the n-symplectic derived Artin
stack Map(X,S).

The claim that this respects the monoidal structure is an easy consequence of the fact that
Map(−, S) sends coproducts to products.
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