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1 Introduction

A recent research area in geometry is the relation between manifolds with
structure group G2 and almost contact metric manifolds. A manifold with
G2 structure has a 3-form globally defined on its tangent bundle with some
properties. Such manifolds are classified into sixteen classes by Fernández
and Gray in [10] according to the properties of the covariant derivative of
the 3-form.

On an almost contact metric manifold, there exists a global 2-form and
the properties of the covariant derivative of this 2-form yields 212 classes of
almost contact metric manifolds, see [3, 9].

Recently Matzeu and Munteanu constructed almost contact metric struc-
ture induced by the 2-fold vector cross product on some classes of manifolds
with G2 structures [12]. Arikan et.al. proved the existence of almost contact
metric structures on manifolds with G2 structures [4]. Todd studied almost
contact metric structures on manifolds with parallel G2 structures [14].

Our aim is to study almost contact metric structures on manifolds with ar-
bitrary G2 structures. We eliminate some classes that almost contact metric
structure induced from a G2 structure may belong to according to proper-
ties of characteristic vector field of the almost contact metric structure. In
particular, we also investigate the possible classes of almost contact met-
ric structures on manifolds with nearly parallel G2 structures. In addition,
we give examples of almost contact metric structures on manifolds with G2

structures induced by the 2-fold vector cross product.

2 Preliminaries

Consider R7 with the standard basis {e1, ..., e7}. The fundamental 3-form on
R

7 is defined as

ϕ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356

where {e1, ..., e7} is the dual basis of the standard basis and eijk = ei∧ej∧ek.
Then compact, simple and simply connected 14-dimensional Lie group G2 is

G2 := {f ∈ GL(7,R) | f ∗ϕ0 = ϕ0}.

A manifold with G2 structure is a 7-dimensional oriented manifold whose
structure group reduces to the group G2. In this case, there exists a global
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3-form ϕ on M such that for all p ∈ M , (TpM,ϕp) ∼= (R7, ϕ0). This 3-
form is called the fundamental 3-form or the G2 structure on M and gives a
Riemannian metric g, a volume form and a 2-fold vector cross product P on
M defined by ϕ(x, y, z) = g(P (x, y), z) for all vector fields x, y on M [8].

Manifolds (M, g) with G2 structure ϕ were classified according to prop-
erties of the covariant derivative of the fundamental 3-form. The space

W = {α ∈ (R7)∗ ⊗ Λ3(R7)∗|α(x, y ∧ z ∧ P (y, z)) = 0 ∀x, y, z ∈ R
7}

of of tensors having the same symmetry properties as the covariant derivative
of ϕ was written, and then this space was decomposed into fourG2-irreducible
subspaces using the representation of the group G2 on W. Since

(∇ϕ)p∈Wp={α∈T
∗
pM ⊗ Λ3(T ∗

pM)|α(x, y∧ z∧ P (y, z))=0 ∀x, y, z∈TpM}

and there are 16 invariant subspaces of Wp, each subspace corresponds to
a different class of manifolds with G2 structure. For example, the class P,
in which the covariant derivative of ϕ is zero, is the class of manifolds with
parallel G2 structure. A manifold which is in this class is sometimes called a
G2 manifold. W1 corresponds to the class of nearly parallel manifolds, which
are manifolds with G2 structure ϕ satisfying dϕ = k ∗ ϕ for some constant k
[10].

Let M2n+1 be a differentiable manifold of dimension 2n+ 1. If there is a
(1, 1) tensor field φ, a vector field ξ and a 1-form η on M satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1,

then M is said to have an almost contact structure (φ, ξ, η). A manifold with
an almost contact structure is called an almost contact manifold.

If in addition to an almost contact structure (φ, ξ, η), M also admits a
Riemannian metric g such that

g(φ(x), φ(y)) = g(x, y)− η(x)η(y)

for all vector fields x, y, then M is an almost contact metric manifold with
the almost contact metric structure (φ, ξ, η, g). The Riemannian metric g is
called a compatible metric. The 2-form Φ defined by

Φ(x, y) = g(x, φ(y))
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for all x, y ∈ Γ(TM) is called the fundamental 2-form of the almost contact
metric manifold (M,φ, ξ, η, g).

In [9], a classification of almost contact metric manifolds was obtained via
the study of the covariant derivative of the fundamental 2-form. Let (ξ, η, g)
be an almost contact metric structure on R

2n+1. A space

C = {α ∈ ⊗0
3R

2n+1|α(x, y, z) = −α(x, z, y) = −α(x, φy, φz)

+η(y)α(x, ξ, z) + η(z)α(x, y, ξ)}

having the same symmetries as the covariant derivative of the fundamental
2-form was given. First this space was written as a direct sum of three
subspaces

D1 = {α ∈ C|α(ξ, x, y) = α(x, ξ, y) = 0},

D2 = {α ∈ C|α(x, y, z) = η(x)α(ξ, y, z) + η(y)α(x, ξ, z) + η(z)α(x, y, ξ)}

and

C12 = {α ∈ C|α(x, y, z) = η(x)η(y)α(ξ, ξ, z) + η(x)η(z)α(ξ, y, ξ)}

and then, D1, D2 were decomposed into U(n) × 1 irreducible components
C1, . . . , C4 and C5, . . . , C11, respectively. Thus there are 212 invariant sub-
spaces, denoted by C1, . . . , C12, each corresponding to a class of almost con-
tact metric manifolds. For example, the trivial class such that ∇Φ = 0 cor-
responds to the class of cosymplectic [5] (called co-Kähler by some authors)
manifolds, C1 is the class of nearly-K-cosymplectic manifolds, etc.

In the classification of Chinea and Gonzales, it was shown that the space
of quadratic invariants of C is generated by the following 18 elements:

i1(α) =
∑

i,j,k

α(ei, ej , ek)
2 i2(α) =

∑

i,j,k

α(ei, ej , ek)α(ej, ei, ek)

i3(α) =
∑

i,j,k

α(ei, ej , ek)α(φei, φej, ek) i4(α) =
∑

i,j,k

α(ei, ei, ek)α(ej, ej , ek)

i5(α) =
∑

j,k

α(ξ, ej, ek)
2 i6(α) =

∑

i,k

α(ei, ξ, ek)
2

i7(α) =
∑

j,k

α(ξ, ej, ek)α(ej , ξ, ek) i8(α) =
∑

i,j

α(ei, ej , ξ)α(ej, ei, ξ)

i9(α) =
∑

i,j

α(ei, ej , ξ)α(φei, φej , ξ) i10(α) =
∑

i,j

α(ei, ei, ξ)α(ej, ej , ξ)

i11(α) =
∑

i,j

α(ei, ej , ξ)α(ej, φei, ξ) i12(α) =
∑

i,j

α(ei, ej, ξ)α(φej, φei, ξ)
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i13(α) =
∑

j,k

α(ξ, ej, ek)α(φej, ξ, ek) i14(α) =
∑

i,j

α(ei, φei, ξ)α(ej, φej, ξ)

i15(α) =
∑

i,j

α(ei, φei, ξ)α(ej, ej , ξ) i16(α) =
∑

k

α(ξ, ξ, ek)
2

i17(α) =
∑

i,k

α(ei, ei, ek)α(ξ, ξ, ek) i18(α) =
∑

i,k

α(ei, ei, φek)α(ξ, ξ, ek)

where {e1, e2, ..., e6, ξ} is a local orthonormal basis. Also following relations
among quadratic invariants were expressed for manifolds having dimensions
≥ 7, where α ∈ C and A = {1, 2, 3, 4, 5, 7, 11, 13, 15, 16, 17, 18}:
C1 :i1(α) = −i2(α) = −i3(α) = ||α||2; im(α) = 0 (m ≥ 4)
C2 :i1(α) = 2i2(α) = −i3(α) = ||α||2; im(α) = 0 (m ≥ 4)
C3 :i1(α) = i3(α) = ||α||2; i2(α) = im(α) = 0 (m ≥ 4)

C4 :i1(α) = i3(α) =
n

(n−1)2
i4(α) =

n
(n−1)2

2n
∑

k

c212(α)(ek);

i2(α) = im(α) = 0 (m > 4)
C5 :i6(α) = −i8(α) = i9(α) = −i12(α) =

1
2n
i14(α);

i10(α) = im(α) = 0 (m ∈ A)
C6 :i6(α) = i8(α) = i9(α) = i12(α) =

1
2n
i10(α);

i14(α) = im(α) = 0 (m ∈ A)

C7 :i6(α) = i8(α) = i9(α) = −i12(α) =
||α||2

2
;

i10(α) = i14(α) = im(α) = 0 (m ∈ A)

C8 :i6(α) = −i8(α) = i9(α) = −i12(α) =
||α||2

2
;

i10(α) = i14(α) = im(α) = 0 (m ∈ A)

C9 :i6(α) = i8(α) = −i9(α) = −i12(α) =
||α||2

2
;

i10(α) = i14(α) = im(α) = 0 (m ∈ A)

C10 :i6(α) = −i8(α) = −i9(α) = i12(α) =
||α||2

2
;

i10(α) = i14(α) = im(α) = 0 (m ∈ A)
C11 :i5(α) = ||α||2; im(α) = 0 (m 6= 5)
C12 :i16(α) = ||α||2; im(α) = 0 (m 6= 16)

For details, refer to [9].
We give below most studied classes of almost contact metric structures

as direct sum of spaces Ci:

| C |= the class of cosymplectic manifolds.

C1 = the class of nearly-K-cosymplectic manifolds.

C2 ⊕ C9 = the class of almost cosymplectic manifolds.
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C5 = the class of α-Kenmotsu manifolds.

C6 = the class of α-Sasakian manifolds.

C5 ⊕ C6 = the class of trans-Sasakian manifolds.

C6 ⊕ C7 = the class of quasi-Sasakian manifolds.

C3 ⊕ C7 ⊕ C8 = the class of semi-cosymplectic and normal manifolds.

C1 ⊕ C5 ⊕ C6 = the class of nearly trans-Sasakian manifolds.

C1 ⊕ C2 ⊕ C9 ⊕ C10 = the class of quasi-K-cosymplectic manifolds.

C3 ⊕ C4 ⊕ C5 ⊕ C6 ⊕ C7 ⊕ C8 = the class of normal manifolds.

D1 ⊕C5 ⊕ C6 ⊕ C7 ⊕C8 ⊕C9 ⊕C10 = the class of almost-K-contact manifolds.

C1⊕C2⊕C3⊕C7⊕C8⊕C9⊕C10⊕C11 = the class of semi-cosymplectic manifolds.

Let (M, g) be a 7-dimensional Riemannian manifold with G2 structure ϕ
and the associated 2-fold vector cross product × and let ξ be a nowhere zero
vector field of unit length on M . Then for

φ(x) := ξ × x η(x) := g(ξ, x),

(φ, ξ, η, g) is an almost contact metric structure on M [12, 4]. Throughout
this study, (φ, ξ, η, g) will denote the almost contact metric structure (a.c.m.s)
induced by the G2 structure ϕ on M and Φ the fundamental 2-form of the
a.c.m.s.

3 Almost contact metric structures obtained

from G2 Structures

Let M be a manifold with G2 structure ϕ and ξ a nowhere zero unit vector
field on M and (φ, ξ, η, g) the a.c.m.s. with the fundamental form Φ induced
by the G2 structure ϕ.

If ∇ϕ = 0, then it can be seen that ∇Φ = 0 if and only if ∇ξ = 0 [2, 14].
If ξ is a Killing vector field on a manifold with any G2 structure, then

dη(x, y) = 1
2
{(∇xη)(y)− (∇yη)(x)}

= 1
2
{g(∇xξ, y)− g(∇yξ, x)}

= g(∇xξ, y),
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which implies
dη = 0 ⇔ ∇ξ = 0.

Therefore if the Killing vector field ξ is not parallel, then the a.c.m.s. can
not be nearly-K-cosymplectic (C1).

To deduce further results, we focus on the covariant derivative of the
fundamental 2-form Φ, where the a.c.m.s. (φ, ξ, η, g) is obtained from a G2

structure of any class and ξ is any nonzero vector field. Direct calculation
gives

(∇xΦ)(y, z) = g(y,∇x(ξ × z)) + g(∇xz, ξ × y). (3.1)

We also compute some of ik(∇Φ), (k = 1, ..., 18) to understand which class
∇Φ may belong to.

Proposition 3.1 Let ϕ be a G2 structure on M of an arbitrary class and
(φ, ξ, η, g) an a.c.m.s. obtained from ϕ. Then

a. i6(∇Φ) = 0 if and only if ∇eiξ = 0 for i = 1, · · · , 6 (Note that ∇ξξ
need not be zero),

b. i16(∇Φ) = 0 if and only if ∇ξξ = 0.

Proof By direct calculation, for any i, k ∈ {1, 2, ..., 6}

(∇eiΦ)(ξ, ek) = g(ξ,∇ei(ξ × ek)) + g(∇eiek, ξ × ξ)

= g(ξ,∇ei(ξ × ek))

= −g(∇eiξ, ξ × ek)

and thus, we obtain

i6(∇Φ) =
∑

i,k

((∇eiΦ)(ξ, ek))
2 =

∑

i,k

g(∇eiξ, ξ × ek)
2.

Since ξ × ek is also a frame element, i6(∇Φ) = 0 if and only if ∇eiξ is zero.
Similarly,

(∇ξΦ)(ξ, ek) = g(ξ,∇ξ(ξ × ek)) + g(∇ξek, ξ × ξ)

= −g(∇ξξ, ξ × ek)

for any k ∈ {1, 2, ..., 6}, and we get

i16(∇Φ) =
∑

k

(∇ξΦ)(ξ, ek)
2 =

∑

k

g(∇ξξ, ξ × ek)
2.
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Note that g(∇ξξ, ξ) = 0 since ξ is of unit length. As a result, i16(∇Φ) = 0 if
and only if ∇ξξ = 0.

Proposition 3.2 Let (φ, η, ξ, g) be an almost contact metric structure in-
duced by a G2 structure ϕ. Then,

• i14(∇Φ) = 0 if and only if div(ξ) = 0.

• i15(∇Φ) = −div(ξ)g(ξ, v), where v =
6
∑

j=1

ej × (∇ejξ).

Proof For any i, j ∈ {1, 2, ..., 6} we have

(∇eiΦ)(φei, ξ) = g(ξ × ei,∇ei(ξ × ξ)) + g(∇eiξ, ξ × (ξ × ei))

= −g(∇eiξ, ei)

= g(ξ,∇eiei).

On the other hand,

6
∑

i=1

∇eiei = −

6
∑

i=1

div(ei)ei − div(ξ)ξ −∇ξξ

and thus

g(ξ,
∑

i

∇eiei) = −g(ξ,
∑

i

div(ei)ei)− g(ξ, div(ξ)ξ)− g(ξ,∇ξξ)

= −div(ξ).

Then

i14(∇Φ) =
∑

i,j

(∇eiΦ)(φei, ξ)(∇ejΦ)(φej , ξ)

=
(

g(ξ,
∑

i

∇eiei)
)(

g(ξ,
∑

j

∇ejej)
)

= (div(ξ))2.

Therefore, i14(∇Φ) is zero if and only if div(ξ) is zero.
Similarly, from equations

(∇eiΦ)(φei, ξ) = −g(∇eiξ, ei) and (∇ejΦ)(ej , ξ) = g(∇ejξ, ξ × ej)
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we have,

i15(∇Φ) =
∑

i,j

(∇eiΦ)(φei, ξ) (∇ejΦ)(ej , ξ)

=
∑

i,j

g(ξ,∇eiei)g(∇ejξ, ξ × ej)

=
(

g(ξ,
∑

i

∇eiei)
)(

∑

j

g(ξ,∇ej(ej × ξ))
)

=
(

g(ξ,−div(ξ)ξ)− g(ξ,
∑

i

div(ei)ei)
)(

∑

j

g(ξ, ej ×∇ejξ)
)

= −div(ξ).g(ξ, v).

Now consider in particular an a.c.m.s. induced by a nearly parallel G2

structure.

Proposition 3.3 Let (φ, η, ξ, g) be an almost contact metric structure in-
duced by a nearly parallel G2 structure. Then,

• i5(∇Φ) = 0 if and only if ∇ξξ = 0.

• If ∇ξξ = 0, then i17(∇Φ) = i18(∇Φ) = 0.

Proof Since ϕ is nearly parallel, for any j, k ∈ {1, 2, ..., 6} we have

(∇ξΦ)(ej , ek) = g(ej,∇ξ(ξ × ek)) + g(∇ξek, ξ × ej)

= g(ej,∇ξξ × ek) + g(ej, ξ ×∇ξek) + g(∇ξek, ξ × ej)

= −g(∇ξξ, ej × ek).

So,

i5(∇Φ) =
∑

j,k

((∇ξΦ)(ej , ek))
2 =

∑

j,k

(g(∇ξξ, ej × ek))
2

which is zero if and only if ∇ξξ is zero. Here, ej × ek is also a frame element.
Similarly, For any i, k ∈ {1, 2, ..., 6},

(∇eiΦ)(ei, φek) = g(ei,∇ei(ξ × (ξ × ek)) + g(∇ei(ξ × ek), ξ × ei)

= g(ei,∇ei(−ek)) + g(∇ei(ξ × ek), ξ × ei)

= g(∇eiei, ek) + g(∇ei(ξ × ek), ξ × ei)
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(∇ξΦ)(ξ, ek) = g(ξ,∇ξ(ξ × ek)) + g(∇ξek, ξ × ξ)

= g(ξ,∇ξξ × ek) + g(ξ, ξ ×∇ξek)

= −g(ek, (∇ξξ)× ξ).

Then

i18(∇Φ) =
∑

i,k

((∇eiΦ)(ei, φek))((∇ξΦ)(ξ, ek))

= −
∑

i,k

(

g(∇eiei, ek) + g(∇ei(ξ × ek), ξ × ei)
)(

g(ek, (∇ξξ)× ξ)
)

= −
∑

i,k

(

g(∇eiei, ek)g(ek, (∇ξξ)× ξ)
)

−
∑

i,k

(

g(∇ei(ξ × ek), ξ × ei)g(ek, (∇ξξ)× ξ)
)

= −
∑

i,k

(

g(∇eiei, ek)g(ek, (∇ξξ)× ξ)
)

+
∑

i,k

(

g(∇eiei, ek)g(ek, (∇ξξ)× ξ)
)

−
∑

i,k

(

g(ξ × ek, ei ×∇eiξ)g(ek, (∇ξξ)× ξ
)

= −
∑

i

g(ξ × (
∑

k

g((∇ξξ)× ξ, ek)ek + g((∇ξξ)× ξ, ξ)ξ), ei ×∇eiξ)

= −
∑

i

g(ξ × ((∇ξξ)× ξ), ei ×∇eiξ)

= −g(∇ξξ,
∑

i

(ei ×∇eiξ)).

Thus, if ∇ξξ is zero, so is i18(∇Φ).
For i17 we compute

(∇eiΦ)(ei, ek) = g(ei,∇ei(ξ × ek)) + g(∇eiek, ξ × ei)

and

(∇ξΦ)(ξ, ek) = g(ξ,∇ξ(ξ × ek)) + g(∇ξek, ξ × ξ)

= −g(∇ξξ, ξ × ek)

= g(ek, ξ × (∇ξξ))
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for any i, k ∈ {1, 2, ..., 6} and obtain

i17(∇Φ) =
∑

i,k

((∇eiΦ)(ei, ek))((∇ξΦ)(ξ, ek))

=
∑

i,k

(

− g(∇eiei, ξ × ek)− g(ek,∇ei(ξ × ei)
)(

g(ek, ξ × (∇ξξ)
)

=
∑

i,k

g(ek, ξ × (∇eiei)g(ek, ξ ×∇ξξ)−
∑

i,k

g(ek, ξ × (∇eiei)g(ek, ξ ×∇ξξ)

+
∑

i,k

g(ek, ei ×∇eiξ)g(ek, ξ ×∇ξξ)

=
∑

i,k

g(ek, ei ×∇eiξ)g(ek, ξ ×∇ξξ)

= g(ξ × (∇ξξ),
∑

i

ei × (∇eiξ))

Thus, if ∇ξξ = 0, then i17(∇Φ) = 0.
Similarly, if ∇ξ is zero, then so is i15(∇Φ).
Before giving results on possible classes of a.c.m.s. induced by G2 struc-

tures, note that δη = −div(ξ). To see this, consider the orthonormal basis
{e1, · · · , e6, ξ}. Then

div(ξ) =

6
∑

i=1

g(∇eiξ, ei) + g(∇ξξ, ξ)

=

6
∑

i=1

g(∇eiξ, ei).

On the other hand, since

(∇eiη)(ei) = ei[η(ei)]− η(∇eiei)

= g(∇eiξ, ei) + g(ξ,∇eiei)− g(ξ,∇eiei)

= g(∇eiξ, ei),

we have

δη = −

6
∑

i=1

(∇eiη)(ei) = −

6
∑

i=1

g(∇eiξ, ei) = −div(ξ).
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Theorem 1 Let M be a manifold with a G2 structure ϕ and (φ, ξ, η, g) be
an almost contact metric structure (a.c.m.s.) obtained from ϕ.
(a) If ∇ξξ 6= 0, then ∇Φ can not be in classes D2, C1, C2, · · · , C11.
(b) If div(ξ) 6= 0, then the almost contact metric structure can not belong to
classes D1, Ci for i = 1, 2, 3, 4, 6, 7, · · · , 12 and can not be semi-cosymplectic
(C1 ⊕ C2 ⊕ C3 ⊕ C7 ⊕ C8 ⊕ C9 ⊕ C10 ⊕ C11).

In following proofs we use the relations below given in [9] together with
properties of im for each Ci:
If α ∈ D1, then im(α) = 0 for m ≥ 5.
If α ∈ D2, then im(α) = 0 for m = 1, 2, 3, 4, 16, 17, 18.

Proof (a) Let ∇ξξ 6= 0. Then by the proposition [3.1], we have i16(∇Φ) 6= 0.
This implies ∇Φ /∈ D2. In addition, ∇Φ can not belong to any of the classes
Ci, i = 1, . . . , 11.

(b)If div(ξ) 6= 0, then the proposition [3.2] yields that i14(∇Φ) = (div(ξ))2 6=
0. Hence ∇Φ can not satisfy the defining relations of the classes

D1 = C1 ⊕ C2 ⊕ C3 ⊕ C4,

C1, C2, C3, C4, C6, · · · , C12.

Besides, the defining relation of semi cosymplectic manifolds is

δΦ = 0 and δη = 0.

Since div(ξ) 6= 0, δη 6= 0, and thus the a.c.m.s. is not semi cosymplectic.
Note that if ∇ξξ 6= 0, then since ∇Φ /∈ D2 = C5 ⊕ . . .⊕ C11, the a.c.m.s.

can not be contained in any subclass of D2. In particular, the a.c.m.s. can
not be α-Kenmotsu, α-Sasakian, trans-Sasakian or quasi-Sasakian.

If div(ξ) 6= 0, then we have ∇Φ /∈ D1 = C1 ⊕ . . . ⊕ C4. In this case,
the a.c.m.s. can not be nearly-K-cosymplectic. Also, since the a.c.m.s. can
not be semi-cosymplectic, it can not be almost-cosymplectic, α-Kenmotsu, α-
Sasakian, trans-Sasakian, normal semi-cosymplectic or quasi-K-cosymplectic.

Note also that the class C12 is not contained in the class of semi-cosymplectic
manifolds. We give a proof together with examples in [13]. For completeness,
we also remind the proof here.

The defining relation of C12 gives

∇ξΦ(ξ, x) = −(∇ξη)(φ(x)),
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which does not have to be zero. Assume that

(∇ξη)(φ(x)) = 0

for all vector fields x. Then replacing x with φ(x), we get (∇ξη)(x) = 0, but
then the defining relation of C12 implies ∇xΦ = 0 for all x, that is there is no
element in C12 which is not in the trivial class. Thus there is a vector field
x0 on M such that

(δΦ)(x0) = −∇ξΦ(ξ, x0) = (∇ξη)(φ(x0)) 6= 0.

Therefore the class C12 is not semi-cosymplectic.
Consider an a.c.m.s. induced by a nearly parallelG2 structure. We deduce

following results.

Theorem 2 Let (φ, ξ, η, g) be an a.c.m.s. obtained from a nearly parallel G2

structure ϕ. If ∇ξξ 6= 0, then ∇Φ can not be in classes D1,D2, C12.(∇Φ may
be contained by the classes D1 ⊕D2,D1 ⊕ C12,D2 ⊕ C12,D1 ⊕D2 ⊕ C12).

Proof Let ∇ξξ 6= 0. By proposition [3.3], i5(∇Φ) 6= 0. So, ∇Φ can not be
in D1 and C12. Besides, by the proposition [3.1], we have i16(∇Φ) 6= 0, then
∇Φ can not be in D2.

In particular, the a.c.m.s. can not belong to any subclasses of D1 and D2.

Theorem 3 Let (φ, ξ, η, g) be an a.c.m.s. obtained from a nearly parallel G2

structure ϕ. Then, ∇ξξ = 0 if and only if M is almost K-contact.

Proof The defining relation of almost K-contact manifolds is ∇ξφ = 0. Since
ϕ is nearly parallel, for any vector field x,

(∇ξφ)(x) = ∇ξ(φx)− φ(∇ξx) = ∇ξ(ξ × x)− ξ ×∇ξx

= (∇ξξ × x) + (ξ ×∇ξx)− (ξ ×∇ξx) = ∇ξξ × x,

that is zero if and only if ∇ξξ is zero.

Theorem 4 Let (φ, η, ξ, g) be an almost contact metric structure induced by
a G2 structure and v =

∑6
i=1 ei × ∇eiξ. If g(ξ, v) 6= 0, then ∇Φ is not of

classes D1, C5, C7, C8, C9, C10, C11, C12.

12



Proof First to compute i10(∇Φ), we write

(∇eiΦ)(ei, ξ) = g(ei,∇ei(ξ × ξ)) + g(∇eiξ, ξ × ei)
= g(ei ×∇eiξ, ξ),

and we obtain

i10(∇Φ) =

6
∑

i,j=1

g(ei ×∇eiξ, ξ)g(ej ×∇ejξ, ξ) = g2(v, ξ).

Assume that g(ξ, v) 6= 0. Then i10(∇Φ) = g(ξ, v)2 6= 0 and the classes
D1, C5, C7, C8, C9, C10, C11, C12 are eliminated similar to previous proofs.

Corollary 5 If g(ξ, v) 6= 0 and div(ξ) 6= 0, then ∇Φ is not an element of
the classes Ci, for i = 1, · · · , 12.

Next we give examples of a.c.m.s. induced by a parallel G2 structure and
a nearly parallel G2 structure, respectively. The a.c.m.s. induced by the
parallel G2 structure is in the class D1, whereas that induced by the nearly
parallel G2 structure is almost-K-contact.

Example 6 Let (K, gK) be a 4-dimensional Kähler manifold with an exact
Kähler form Ω, i.e. Ω = dλ, where λ is a 1-form on K. Consider R

3 with
coordinates (x1, x2, x3) and Euclidean metric h = dx2

1+dx2
2+dx2

3. It is known
that (M = R

3 ×K, g = h× gK) admits a parallel G2 structure

ϕ = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ Ω + dx2 ∧ Reθ − dx3 ∧ Imθ,

where θ is a volume form on K.
For all p ∈ K, there exist complex coordinates (z1, z2) near p such that

gK = |dz1|
2 + |dz2|

2, Ω =
i

2
(dz1 ∧ dz1 + dz2 ∧ dz2), θ = dz1 ∧ dz2

at p. Setting z1 = x4 + ix5, z2 = x6 + ix7, one has

gK = dx2
4 + . . .+ dx2

7, Ω = dx4 ∧ dx5 + dx6 ∧ dx7,

Reθ = dx4 ∧ dx6 − dx5 ∧ dx7, Imθ = dx4 ∧ dx7 + dx5 ∧ dx6
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at p. Thus g = h× gK = dx2
1 + . . .+ dx2

7 and

ϕ = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ (dx4 ∧ dx5 + dx6 ∧ dx7)
+dx2 ∧ (dx4 ∧ dx6 − dx5 ∧ dx7)− dx3 ∧ (dx4 ∧ dx7 + dx5 ∧ dx6).

(see [11]).
Consider the a.c.m.s. (φ, ξ, η, g) on M induced by the parallel G2 structure

ϕ, for ξ = x2∂x1 and φ(x) = ξ×x. For the covariant derivative of the metric
on a product manifold, see [6].

(∇∂x2
Φ)(∂x2, ∂x3) = g(∂x2,∇∂x2

(x2∂x1 × ∂x3)) + g(∇∂x2
∂x3, x2∂x1 × ∂x2)

= −g(∂x2,∇∂x2
(x2∂x2))

= −g(∂x2, ∂x2[x2]∂x2)
= −1,

and thus the structure is not cosymplectic. We show that this structure is in
the class D1. Since ∇ξξ = x2∂x1[x2]∂x1 = 0, we have

(∇ξΦ)(y, z) = g(y,∇ξ(ξ × z)) + g(∇ξz, ξ × y)
= g(y, (∇ξξ)× z) + g(y, ξ ×∇ξz) + g(∇ξz, ξ × y)
= g(y, (∇ξξ)× z)
= 0.

In addition, ∇xξ = ∇xx2∂x1 = x[x2]∂x1 + x2∇x∂x1 for any vector field
x. It can be seen that ∇x∂x1 = 0 for any x ∈ M = R

3 × K and thus
∇xξ = x[x2]∂x1. Then

(∇xΦ)(ξ, y) = g(ξ,∇x(ξ × y)) + g(∇xy, ξ × ξ)
= g(ξ, (∇xξ)× y) + g(ξ, ξ ×∇xy)
= −g((∇xξ)× ξ, y)
= −x[x2]x2g(∂x1 × ∂x1, y)
= 0.

As a result, ∇Φ ∈ D1 by the definition of the space D1.

Example 7 A Sasakian manifold is a normal contact metric manifold, or
equivalently, an almost contact metric structure (φ, ξ, η, g) such that

(∇xφ)(y) = g(x, y)ξ − η(y)x,
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see [5]. A 7-dimensional 3-Sasakian manifold is a Riemannian manifold
(M, g) equipped with three Sasakian structures (φi, ξi, ηi, g), i = 1, 2, 3 satis-
fying

[ξ1, ξ2] = 2ξ3, [ξ2, ξ3] = 2ξ1, [ξ3, ξ1] = 2ξ2

and
φ3 ◦ φ2 = −φ1 + η2 ⊗ η3, φ2 ◦ φ3 = φ1 + η3 ⊗ η2,

φ1 ◦ φ3 = −φ2 + η3 ⊗ η1, φ3 ◦ φ1 = φ2 + η1 ⊗ η3,

φ2 ◦ φ1 = −φ3 + η1 ⊗ η2, φ1 ◦ φ2 = φ3 + η2 ⊗ η1.

There exists a local orthonormal frame {e1, · · · , e7} such that e1 = ξ1,
e2 = ξ2 and e3 = ξ3. The corresponding coframe via the Riemannian metric
is denoted by {η1, · · · , η7}. The differentials dηi, i = 1, 2, 3 are

dη1 = −2(η23+η45+η67), dη2 = 2(η13−η46+η57), dη3 = −2(η12+η47+η56).

The 3-form

ϕ =
1

2
η1 ∧ dη1 −

1

2
η2 ∧ dη2 −

1

2
η3 ∧ dη3

is a nearly parallel G2 structure (i.e. dϕi = −4 ∗ ϕi) on M , constructed
in [1]. For properties and examples of Sasakian and 3-Sasakian manifolds
[7] is a good reference. The brackets of e1, · · · , e7 are computed by using
the differentials dηi and by the equation dη(ei, ej) = −η([ei, ej]) for frame
elements ei, ej.

[e1, e2] = 2e3, [e2, e3] = 2e1, [e3, e1] = 2e2,

[e4, e5] = 2e1, [e6, e7] = 2e1, [e4, e6] = 2e2,

[e5, e7] = −2e2, [e4, e7] = 2e3, [e5, e6] = 2e3.

By the Kozsul formula we obtain ∇eiei = 0 and

∇e1e2 = e3,∇e1e3 = −e2,∇e1e4 = −e5,∇e1e5 = e4,∇e1e6 = −e7,∇e1e7 = e6,

∇e2e1 = −e3,∇e2e3 = e1,∇e2e4 = −e6,∇e2e5 = e7,∇e2e6 = e4,∇e2e7 = −e5,

∇e3e1 = e2,∇e3e2 = −e1,∇e3e4 = −e7,∇e3e5 = −e6,∇e3e6 = e5,∇e3e7 = e4,

∇e4e1 = −e5,∇e4e2 = −e6,∇e4e3 = −e7,∇e4e5 = e1,∇e4e6 = e2,∇e4e7 = e3,

∇e5e1 = e4,∇e5e2 = e7,∇e5e3 = −e6,∇e5e4 = −e1,∇e5e6 = e3,∇e5e7 = −e2,
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∇e6e1 = −e7,∇e6e2 = e4,∇e6e3 = e5,∇e6e4 = −e2,∇e6e5 = −e3,∇e6e7 = e1,

∇e7e1 = e6,∇e7e2 = −e5,∇e7e3 = e4,∇e7e4 = −e3,∇e7e5 = e2,∇e7e6 = −e1.

By the local expression of

ϕ = 1
2
η1 ∧ dη1 −

1
2
η2 ∧ dη2 −

1
2
η3 ∧ dη3

= η123 − η145 − η167 + η246 − η257 + η347 + η356,

the 2-fold vector cross products of frame elements are

e1×e2 = e3, e1×e3 = −e2, e1×e4 = −e5, e1×e5 = e4, e1×e6 = −e7, e1×e7 = e6,

e2 × e3 = e1, e2 × e4 = e6, e2 × e5 = −e7, e2 × e6 = −e4, e2 × e7 = e5,

e3 × e4 = e7, e3 × e5 = e6, e3 × e6 = −e5, e3 × e7 = −e4,

e4×e5 = −e1, e4×e6 = e2, e4×e7 = e3, e5×e6 = e3, e5×e7 = −e2, e6×e7 = −e1.

Consider the a.c.m.s. (φ, ξ, η, g) on M induced by the 2-fold vector cross
product of the nearly parallel G2 structure ϕ, where ξ = e1 = ξ1, η = dη1 and
φ(x) = ξ × x. First, since

(∇xΦ)(y, z) = g(y,∇x(e1 × z)) + g(∇xz, e1 × y),

we have
(∇e2Φ)(e1, e2) = 1 6= 0

and thus the a.c.m.s. is not cosymplectic. In addition,

∇e2Φ(ξ, e2) = ∇e2Φ(e1, e2) = 1,

implying that ∇Φ /∈ D1 = C1 ⊕ C2 ⊕ C3 ⊕ C4. On the other hand

(∇ξΦ)(x, y) = g(x,∇e1(e1 × y)) + g(∇e1y, e1 × x)
= g(x, (∇e1e1)× y) + g(x, e1 ×∇e1y) + g(∇e1y, e1 × x)
= ϕ(e1,∇e1y, x) + ϕ(e1, x,∇e1y)
= 0,

which gives that the a.c.m.s. is almost-K-contact, that is, an element of the
class

D1 ⊕ C5 ⊕ C6 ⊕ C7 ⊕ C8 ⊕ C9 ⊕ C10.
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Moreover,

δΦ(e1) = −

7
∑

i=2

(∇eiΦ)(ei, e1)− (∇e1Φ)(e1, e1) = −2

yields the a.c.m.s. is not semi-cosymplectic (C1 ⊕ C2 ⊕ C3 ⊕ C7 ⊕ C8 ⊕ C9 ⊕
C10 ⊕ C11). The a.c.m.s. is not trans-Sasakian (C5 ⊕ C6):

(∇e2Φ)(e1, e2) = 1,

whereas
1

3
{g(e2, e1)η(e2)− g(e2, e2)η(e1)} = −

1

3
,

i.e., the defining condition of being trans-Sasakian is not satisfied. In par-
ticular, the a.c.m.s. is not α-Sasakian or α-Kenmotsu. Note that we started
with a Sasakian structure on a manifold, then we used the 2-fold vector cross
product of the nearly parallel G2 structure ϕ, however the induced a.c.m.s. is
not Sasakian.

In fact, consider the a.c.m.s. induced by ϕ, where ξ = ae1 + be2 + ce3 for
constants a, b, c. Assume that this structure is Sasakian. Then we have

(∇xφ)(y) = g(x, y)ξ − η(y)x

for all vector fields x, y. For x = e1, y = e2, we get b = ±1
3
. If x = e1,

y = e4, we obtain b = 0. Thus the a.c.m.s. is not Sasakian. Note that
since (∇e1Φ)(e1, e2) = b, (∇e1Φ)(e1, e3) = c and (∇e2Φ)(e2, e1) = a, ∇Φ 6= 0
unless ξ is zero. Thus the a.c.m.s. is not cosymplectic.

By direct calculation, it can be seen that for ξ = ae1 + be2 + ce3, one has
∇ξξ = 0. By Theorem [3], the a.c.m.s. is almost-K-contact.
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