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It is shown that probability densities of finite-time Lyapunov exponents, corresponding to chimera
states, have a characteristic shape. Such distributions could be used as a signature of chimera states,
particularly in systems for which the phases of all the oscillators cannot be measured directly. In
such cases, the characteristic distribution may be obtained indirectly, via embedding techniques, thus
making it possible to detect chimera states in systems where they could otherwise exist, unnoticed.
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I. INTRODUCTION

Lyapunov characteristic exponents [1, 2], or more
briefly Lyapunov exponents (LEs) [3] characterize the
time-averaged exponential divergence (positive expo-
nents) or convergence (negative exponents) of nearby or-
bits along orthogonal directions in the state space. In
numerical calculations of the LEs the asymptotic time
averaging is usually accomplished by using a sufficiently
long time to allow the averages of the exponents to con-
verge within a set tolerance. Although less frequently
used, probability densities (distributions) of the expo-
nents, averaged over a much shorter time, also contain
valuable dynamic information. Such distributions are
made up of so-called finite-time, or local, Lyapunov ex-
ponents (LLEs) [4–6].

For typical chaos the distribution of LLEs can be accu-
rately fitted to a Gaussian function [4, 5], whereas for in-
termittent chaos, at crises, and for fully developed chaos,
the distributions are characteristically non-Gaussian [7].
In the past the concept of LLEs has been used to char-
acterize how secondary perturbations, localized in space,
grow and spread throughout distributed dynamical (flow)
systems with many degrees of freedom [8]. Variations on
this technique, i.e. of comoving or convective Lyapunov
exponents [8–11], continue to find new applications in
a variety of different contexts, ranging from information
theory [12, 13] to fluid flow (see, for example, Ref. [14],
and the references therein). The notion of finite-time
Lyapunov exponents, averaged over initial conditions,
has also been used to characterize transient chaos [15].

In view of the fact that LLEs have been employed suc-
cessfully to characterize many different types of nonlinear
behaviour, it is natural to ask whether a dynamical sys-
tem in a so-called chimera state [16], may also possess
a characteristic LLE distribution. Chimera states are
a relatively new type of synchronization phenomenon.
They occur in systems of (usually) identical phase os-
cillators, which can be coupled, nonlocally [16–20] (most
frequently the case), globally (all-to-all) [21] or even lo-
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cally [22]. Depending on the nature of the coupling and
the initial conditions, the oscillators may divide up into
two or more spatially distinct groups, producing a spa-
tiotemporal pattern which simultaneously contains do-
mains of coherent and incoherent oscillations. However,
such chimera states are fundamentally merely a different
type of deterministic (hyper)chaos, having one or more
positive LE(s) [23, 24].

Although the existence of chimera states was predicted
more than a decade ago in the seminal paper by Ku-
ramoto and Battogtokh [17], experimental validation has
only occurred recently [21, 25–32]. Other than these
fascinating experiments, chimera states may also be of
physical importance in systems of Josephson junctions
(JJs) [33–35]. Recently the spontaneous appearance of
chimera states was found in numerical simulations of so-
called SQUID metamaterials [36]. The superconducting
quantum interference devices (SQUIDs) are made of JJs.
A SQUID metamaterial is a one-dimensional linear array
consisting of N identical SQUIDs, coupled together mag-
netically. The existence of a chimera state in this model
suggests that they may soon be detected experimentally
in existing one and two-dimensional SQUID metamate-
rials. At present there is a renewed and ongoing inter-
est in these intriguing materials, which have even been
proposed as a way of detecting quantum signatures of
chimera states [37].

Certain highly anisotropic cuprate superconductors,
such as Bi2Sr2CaCu2O8+δ, contain natural arrays of in-
trinsic Josephson junctions (IJJs) [38]. At present there
is a concerted effort being made towards achieving mu-
tual synchronization between stacks of intrinsic JJs, with
the view of enhancing the power of the emitted radiation
in the terahertz region [39]. In such systems the IJJs are
coupled together in a way that is essentially nonlocal; a
result of the breakdown of charge neutrality [40], or a dif-
fusion current [41, 42]. IJJs could also provide a model
for studying other synchronization phenomenon, such as
chaos synchronization [43, 44] and chimera states [45]. To
this end, one of the difficulties that must first be over-
come is related to the fact that, although the voltage
across a stack of junctions can be measured with extreme
precision, present experimental setups do not provide di-
rect access to the voltages across individual junctions.
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Thus the states of the individual junctions have to be
inferred, somehow, from indirect measurements. This
is where the customary method, of phase space recon-
struction via embedding and the local function approx-
imation [3, 5, 46, 47] may play an important role. In
principle, the distribution of LLEs for a stack of intrin-
sic JJs could be obtained from a sufficiently long time
series of the total voltage across the stack; thus, making
it possible to detect the existence of a chimera state in
the stack. At present there are several highly sophisti-
cated techniques that could potentially be of used in this
regard [48–51].

While some previous studies of chimera states have
computed their LEs [23, 24], to the best of our knowl-
edge, none has thus far considered the distributions of
LLEs for a chimera state. In view of the above consider-
ations, these distributions may in fact play an important
role in characterizing chimera states in general; but par-
ticularly in systems where the individual oscillators are
not accessible experimentally. To address this deficiency
we compute several distributions of LLEs corresponding
to classic chimera states. We show that these distribu-
tions have a common characteristic shape that can be
used to signal the occurrence of chimera states.

II. MODEL AND METHODS

As a basis for our investigation we consider a general
class of equations that support chimera states:

∂ϕ(xi, t)

∂t
= ωi −

K

N

N∑
j=1

CijG(xi − xj) sin [ϕ(xi, t)

− ϕ(xj , t) + α] . (1)

A similar form to Eq. (1) was originally derived by Ku-
ramoto as an approximation to the complex Ginzburg-
Landau equation, under weak coupling, when amplitude
changes may be neglected [52]. With relatively few excep-
tions [21, 26, 27, 29, 30, 36, 53–62], the form of Eq. (1) en-
compasses the majority of systems that have been consid-
ered in the literature on chimera states (see, for example,
Refs. [16–19, 23, 24, 32, 63–77]). It describes the dynam-
ics of a non-locally coupled system of N phase oscillators,
where ϕ(xi, t) is the phase of the ith oscillator, located at
position xi. For identical oscillators the distribution of
natural frequencies is given by ωi = ω ∀i [16, 17, 19]. The
function G(x) has been normalized to have a unit inte-
gral and it describes the non-local coupling between the
oscillators [16]. K controls the overall coupling strength.
The coefficients Cij are either a coupling matrix consist-
ing of ones and zeros, in the context of networks [75], or
else they are quadrature weights, in models where large
numbers of oscillators have been considered [16–18]. In
the latter models the oscillators are assumed to be contin-
uously distributed throughout a one-dimensional spatial
domain, leading to an integro-differential equation of the

form

∂ϕ

∂t
= ω −

∫
G (x− x′) sin [ϕ (x, t)− ϕ (x′, t) + α] dx′.

(2)
Since neither Cij nor G(xi−xj) depend on the phases,

the Jacobian matrix of the system (1) can be expressed
analytically as

Jik = −K
N

N∑
j=1

CijG(xi − xj) cos [ϕ(xi, t)

−ϕ(xj , t) + α] (δik − δjk) . (3)

Equation (3) allows us to compute the LLEs via the
standard algorithm (see Appendix A for details), which
uses Gram-Schmidt orthonormalization to avoid numer-
ical round off errors [1–3]. In particular, we make use
of the Fortran implementation by Wolf, Swift and Swin-
ney [3] for the case when the system Jacobian is known
analytically. Their code required only minor modifica-
tions. Other than changing the system equations, the
code was modified in such a way that it could be called re-
peatedly over successive segments of the trajectory, at the
same time returning a time series of the trajectory, from
which the averages 〈ϕ̇i〉 could be computed. To integrate
the system Eq. (1) and its linearization, we employed a
fifth-order Runge-Kutta integration scheme, with fixed
time step.

III. RESULTS AND DISCUSSION

Before calculating the local Lyapunov exponent distri-
butions for chimera states, several test runs were made
to reproduce known distributions of LLEs, as reported in
the literature [6, 7]. Fig. 1, for example, shows the result
of our calculations for the case of intermittent chaos in
the well-known Lorenz system, as discussed in Ref. [7].
As can be seen in Fig. 1(a), the time series for the sys-
tem shows irregularly occurring bursts of almost periodic
and chaotic behaviour. This motion corresponds to clas-
sic (Type-I) tangent bifurcation intermittency [78]. In
agreement with Fig. 6 of Ref. [7] the characteristic dis-
tribution of LLEs consists of a superposition of two inde-
pendent Gaussians, with stretched exponential interpola-
tion between the two. Qualitatively, one can rationalize
the shape of the distribution by considering that each
Gaussian is roughly centered on the average value of the
maximal LEs that would characterize each type of mo-
tion separately, i.e. if there was no switching.

Although the characteristic distributions of LLEs are
stationary over a wide range of averaging times, the av-
eraging time used to compute the LLEs does affect the
widths of the distributions [7]. Our numerical calcula-
tions confirm this observation. For very short averaging
times the distributions are not stationary, i.e. they keep
changing their shape, while in the asymptotic limit of in-
finite averaging times, they all tend towards delta func-
tions. However, provided these two extremes are avoided,
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FIG. 1. (Color online) (a) Time series showing intermittent
chaos in the Lorenz system: ẋ = a(y−x), ẏ = x(r−z)−y, ż =
xy−bz, at parameter values a = 10, r = 100.796 and b = 8/3.
In this simulation a time step ∆t = 1/64 and initial condition
(1,5,10) was used. (b) Logarithmic plot of the corresponding
probability density, P (λ, 2048), for the distribution of (10 000)
maximal LLEs, λ, each obtained by averaging over 2048 time
steps. The bin width was set to 0.02 and the total simulation
time was 320 000.

the distributions are stationary and maintain their char-
acteristic shapes over a relatively wide range of averaging
times.

We now turn our attention to computing the LLEs
for chimera states. We begin by considering an inter-
esting case of Eq. (1), that was analysed in detail by
Wolfrum and Omel’chenko [23]. The parameters N and
R in Ref. [23] correspond to K = N/(2R),

Cij =

{
1 if |i− j| ≤ R or |i− j| ≥ N −R
0 otherwise,

(4)

and G(x) = 1, in Eq. (1). In Fig. 2(a) we show the results
of our simulation of this system after 400 000 time units.

A snapshot of the distribution in phases, ϕi, and time av-
eraged frequencies, 〈ϕ̇i〉 (as well as the time series of the

order parameter Z(t) =
∣∣∣∑N

k=1 exp(iϕk)
∣∣∣, not shown),

clearly indicate that the oscillators are in a chimera state
throughout the whole simulation. In Fig. 2(b) the corre-
sponding distributions for the maximal LLE (blue, solid
line) and all LLEs (red, dashed line), both averaged over
256 time steps, can be seen. As observed in previous

FIG. 2. (Color online) (a) A snapshot of the phases ϕi and
time averaged frequencies 〈ϕ̇i〉 for system (1) in a chimera
state. Parameters: N = 40, R = 14, and α = 1.478. 〈ϕ̇i〉
was averaged over 2048 time steps, with ∆t = 1/128. (b)
Corresponding probability distribution of the maximal LLEs
(blue, solid line) and all LLEs (red, dashed line), averaged
over 256 time steps. The vertical dotted lines indicate the
values of the LEs, the largest being λmax = 0.069.

calculations of the LLEs [7], the distribution of all the
exponents together has roughly the same shape as that
of the maximal exponent alone. It is of course much
smoother, due to the larger number of samples in the
distribution, and is somewhat shifted towards the nega-
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tive exponent side. The distribution shown in Fig. 2(b)
appears to be characteristic to all chimera states arising
from the general class of equations (1). It consists of a
central asymmetric Gaussian-like peak with shoulders on
both sides. One notable common feature in the distri-
butions for chimera states is their approximate symme-
try with respect to the λ = 0 axis, c.f. the intermittent
chaos distribution shown in Fig. 1(b). The feature of hav-
ing two shoulders, one to either side of the main central
peak, appears to be another distinguishing attribute spe-
cific to chimeras. To make these qualitative observations
more precise we have fitted a variety of distributions cor-
responding to chimera states (all obtained from Eq. (1) at
a variety of (very) different parameters) and found that
all such distributions can be fitted accurately by a lin-
ear combination of four fitting functions (see Appendix
B for details). By contrast, distributions of LLEs for in-
termittent chaos can be fitted to a comparable accuracy
by a linear combination of only two Guassians and one
exponential function.

Based on their analysis, Wolfrum and Omel’chenko [23]
have suggested that, “chimera states are chaotic tran-
sients”. Notwithstanding the experimental observations,
there have been several counter-examples of numerically
simulated chimera states that are stable, independent of
the population size or initial conditions [21]. In a general
sense, the claim that chimera states are chaotic transients
is therefore certainly not valid [20]. Surprisingly, how-
ever, there have been very few comments about why this
conclusion was reached for the prototype system [32]. In
the course of performing the present simulations, we have
observed that the same system (N = 40, R = 14) is actu-
ally capable of supporting a variety of different chimera
states, depending on the range of the “phase lag” param-
eter α [19, 25]. In our view the existence of chimera states
in this system can be understood in terms of a balance be-
tween the tendency for the oscillators to synchronize, and
the tendency for them not to. At the value α = 1.46, con-
sidered in Ref. [23], the overall coupling in the system was
‘attractive’, thus causing the system to synchronize after
a certain time. The fact that the synchronization time
was shown to be exponentially distributed (with respect
to N) may be related to the probabilities of an individ-
ual oscillator to have an almost matching phase with one
or more of its neighboring oscillators, i.e. as the system
evolves. One can see this qualitatively from the equa-
tions of motion, by considering how α affects the slowing
down or speeding up (ϕ̇) of any individual oscillator due
to its coupling with an equidistant pair of neighboring
oscillators. To make these observations quantitative, is
beyond the scope of the present work. For the system in
Ref. [23] it suffices to say that, depending on the value of
α, we have found that the initial chimera state may (i)
synchronize completely after a certain time, (ii) persist
(apparently) indefinitely, (iii) only appear intermittently
between bursts of chaos, or (iv) collapse to an incoherent
state after a very short time, never to re-appear again.

To investigate the effect of the above four scenarios on

the distribution of LLEs, we have performed many sim-
ulations of the (N = 40, R = 14) system at different
values of α in the range [1.460, 1.571]. Each simulation
had a slightly perturbed initial condition, as described in
Ref. [23]. The outcomes of our simulations all fall within
the above categories: for 1.460 6 α < 1.513, not all the
initial chimera states persisted to the end of the simula-
tion time (400 000 time units). For 1.513 6 α 6 1.553 all
the chimera state persists throughout the whole simula-
tion time. For 1.553 < α 6 1.568 chimera states appear
intermittently, interrupted by bursts of chaos. Lastly, for
1.568 < α 6 1.571 the initial chimera rapidly evolved into
permanent incoherence. In Fig. 3(a) we summarize these
results by displaying time series of the order parameters
at three different values of α. In the lower time series,
for an intermittently occurring chimera at α = 1.568, two
events can be seen where the order parameter drops down
close to zero, i.e. intermittently the system becomes al-
most totally incoherent. For the majority of the simula-
tion time Z(t) hovers around 0.6. Random spot checks on
the phases and averaged frequencies show that the sys-
tem is unambiguously in a chimera state for times when
Z(t) ' 0.4. Fig. 3(b) shows the corresponding distri-
butions of the maximal LLEs corresponding to the cases
(ii), (iii) and (iv), as described above. Here it can be seen
that the characteristic distribution for the chimera state
abruptly becomes flat-topped when the chimera starts to
appear intermittently. Consistent with our expectations,
once the chimera disappears completely the distribution
corresponding to the incoherent oscillators is Gaussian in
form. On the logarithmic plot that is shown in Fig. 3(b)
it appears as a parabola, corresponding to the case of
typical chaos.

We next consider the chimera state that was originally
reported by Abrams and Strogatz [16] for the system
given by Eq. (1), or (2), with the coupling

G(x) =
1

2π
(1 + 0.995 cosx) . (5)

As in Ref. [16], we solve this system for N = K = 256 and
α = π/2− 0.18, using Simpson’s 3/8 rule [79], for which
the quadrature weights in Eq. (1) are given by: Ck 1 =
3h/8, Ck 2 = 9h/8, Ck 3 = 9h/8, Ck 4 = 6h/8, Ck 5 =
9h/8 , Ck 6 = 9h/8, Ck 7 = 6h/8, . . . , CkN−1 = 9h/8,
CkN = 3h/8. Here the space variable x runs from −π to
π with periodic boundary conditions, and h = 2π/N is
the separation between the identical oscillators.

Fig. 4(a) shows the distribution of phases, averaged
frequencies, and the time series of the order parameter
for this chimera state. More importantly, Fig. 4(b) shows
the distributions of all the LLEs, obtained by averaging
over three different time intervals. As was previously
mentioned, although all three distributions are stationary
and maintain the shape of the characteristic distribution,
their widths decrease as the averaging time increases from
128 to 512 time steps.



5

FIG. 3. (Color online) (a) Time series of the order parameter

Z(t) =
∣∣∣∑N

k=1 exp(iϕk)
∣∣∣ for three different types of chimera

states. In the top figure (α = 1.481) the state is transient and
the oscillators all synchronize for t ' 225 000 In the middle
figure (α = 1.513) the state is stable, while in the bottom
figure (α = 1.568) it appears intermittently. (b) The char-
acteristic distributions of the maximal LLEs for stable and
intermittent chimera states. For comparison the Gaussian
distribution, expected for typical chaos (with no chimera), is
also shown.

IV. CONCLUSION

We have calculated the probability distributions of
the local Lyapunov exponents (LLEs) corresponding to
chimera states and found that they form a very charac-
teristic distribution which appears to be specific to the
state’s characteristic spatiotemporal pattern of synergis-
tic coherent and incoherent motion. In principle a knowl-
edge of this expected characteristic distribution can be
used to identify the occurrence of chimera states in real
physical systems, particularly in those for which it may

FIG. 4. (Color online) (a) The chimera state for the system
described in Ref. [16], showing a snapshot of the phases ϕ(x)
and time averaged phase velocities 〈ϕ̇(x)〉, after an integration
time of 20000 dimensionless units. The averaging for ϕ̇ was
done over 1024 time steps, each of duration ∆t = 1/128. The
lower figure shows the time series of the order parameter Z(t).
(b) Comparison of the characteristic distributions of all LLEs
for the system in (a), obtained by averaging the LLEs over
128, 256 and 512 time steps, respectively.

not be possible to measure, directly the phases of of all
the oscillators. In such cases, we envisage that advanced
embedding techniques could be employed to extract the
characteristic distribution of LLEs, which would then be
a useful signature of the chimera state (for it would oth-
erwise have been undetectable). The present results may
thus find application in a variety systems where chimera
states are relevant, but not necessarily directly observ-
able. A comprehensive review of the relevant real-world
systems may be found in Ref. [32] and the references
therein.

The case of intermittently appearing chimeras, as dis-
cussed in connection with Fig. 3, is currently of particu-
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lar interest, in view of the fact that intermittent chaotic
chimeras have only recently been reported in the liter-
ature for a much more complicated system [31]. This
system consisted of two symmetrically coupled popula-
tions of N oscillators, where one population is synchro-
nized and the other jumps erratically between laminar
and turbulent phases [31]. The present considerations
indicate that such intermittency also arises in the origi-
nal prototype system for chimera states, although it was
not previously reported.
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Appendix A: Probability density of LLEs defined

Consider an autonomous n-dimensional continuous dy-
namical system of the form ẋ = F (x). The probability
density (distribution) of the mth LLE, P (λm, N), is de-
fined so that P (λm, N) dλm equals the probability that
λmN takes on a value between λm and λm + dλm, where

λmN =
1

N

N∑
j=1

ln
∥∥emj ∥∥ . (A1)

Here em0 is themth vector of the initial set of orthonormal
vectors, and emj is its time evolved value under the action
of the linearized equations of motion after j time steps.
Thus the emj are obtained by solving the equations

ėm = {JF (x)} em, (A2)

where J is the system Jacobian. Notice that λmN is the
mth exponent averaged over N time steps. Because the
vectors em diverge exponentially in magnitude, and tend
to align themselves along the local direction of most rapid
growth, their exact directions may rapidly become nu-
merically indistinguishable. To overcome this difficulty,
as explained in Refs. [1–3], Gram-Schmidt orthogonal-
ization can be performed on the set of frame vectors. In
the present work we have performed the Gram-Schmidt
orthogonalization after every time step.

Appendix B: Fitting the characteristic distribution

It is found that the characteristic distribution of LLEs
for chimera states can be fitted accurately by a lin-
ear combination of the form g1(x) + f(x) + g2(x) +
B exp(−x/τ), where g1 and g2 are Gaussians given by

gi(x) =
Ai

σi
√

2π
exp

[
−
(

(x− µi) /
√

2σ2
i

)2
]

, (B1)

and f(x) is an exponentially modified Gaussian, given by

f(x) =
Aγ

2
exp

(
µ− x+ γσ2

2/γ

)
erfc

(
µ+ γσ2 − x√

2σ2

)
,

(B2)
where erfc is the complementary error function [79]. To
perform the fitting we made use of the Python package
lmfit [80], which stands for Non-Linear Least-Squares
Minimization and Curve-Fitting for Python. The ini-
tial parameters were chosen so that the Guassians were
roughly centered on the two shoulders of the distribu-
tion, with f(x) on the central main peak. In all cases,
the distributions could be fitted with reduced chi-square
values of less than 0.002.

For the data corresponding to the solid (blue) curve in
Fig. 2(b), for example, the fitting routine produced the
following output:

[[Model]]
(((Model(gaussian, prefix=’g1_’)
+ Model(expgaussian, prefix=’f_’))
+ Model(gaussian, prefix=’g2_’))
+ Model(exponential, prefix=’exp_’))

[[Fit Statistics]]
# function evals = 970
# data points = 161
# variables = 12
chi-square = 0.088
reduced chi-square = 0.001

[[Variables]]
exp_amplitude: -0.00123468 (init = 0.0)
exp_decay: -0.16029312 (init =-0.33)
g1_sigma: 0.08416450 (init = 0.085)
g1_center: -0.53906326 (init =-0.54)
g1_amplitude: 0.09116373 (init = 0.1)
f_amplitude: 0.87642684 (init = 0.9)
f_sigma: 0.09597549 (init = 0.09)
f_center: -0.29751003 (init =-0.3)
f_gamma: 3.40994342 (init = 1)
g2_sigma: 0.14054123 (init = 0.094)
g2_center: 0.59176841 (init = 0.56)
g2_amplitude: 0.09098822 (init = 0.054)

The fitted distribution has also been plotted in Fig. 2(b)
as a dotted (black) line.
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Krischer, and Vladimir Garćıa-Morales, “Coexistence of

synchrony and incoherence in oscillatory media under
nonlinear global coupling,” Chaos 24, 013102 (2014)

[22] Carlo R. Laing, “Chimeras in networks with purely local
coupling,” Phys. Rev. E 92, 050904 (2015)

[23] Matthias Wolfrum and Oleh E. Omel’chenko, “Chimera
states are chaotic transients,” Phys. Rev. E 84,
015201(R) (2011)

[24] M. Wolfrum, O. E. Omel’chenko, S. Yanchuk, and
Y. L. Maistrenko, “Spectral properties of chimera states,”
Chaos 21, 013112 (2011)

[25] Daniel Michael Abrams, Two Coupled Oscillator Models:
The Millennium Bridge and the Chimera State, Ph.D.
thesis, Cornell University, Ithaca, New York (2006)

[26] Aaron M. Hagerstrom, Thomas E. Murphy, Rojarshi
Roy, Philipp Hoevel, Iryna Omelchenko, and Ecke-
hard Schoell, “Experimental observation of chimeras in
coupled-map lattices,” Nat. Phys. 8, 658 (2012)

[27] Mark R. Tinsley, Simbarashe Nkomo, and Kenneth
Showalter, “Chimera and phase-cluster states in popu-
lations of coupled chemical oscillators,” Nature Physics
8, 662 (2012)

[28] Laurent Larger, Bogdan Penkovsky, and Yuri
Maistrenko, “Virtual chimera states for delayed-feedback
systems,” Phys. Rev. Lett. 111, 054103 (2013)

[29] Erik Andreas Martens, Shashi Thutupalli, Antoine
Fourrière, and Oskar Hallatscheka, “Chimera states
in mechanical oscillator networks,” PNAS 110, 10563
(2013)

[30] Tomasz Kapitaniak, Patrycja Kuzma, Jerzy Wojewoda,
Krzysztof Czolczynski, and Yuri Maistrenko, “Imperfect
chimera states for coupled pendula,” Scientific Reports
4, 6379 (2014)

[31] Simona Olmi, Erik A. Martens, Shashi Thutupalli, and
Alessandro Torcini, “Intermittent chaotic chimeras for
coupled rotators,” Phys. Rev. E 92, 030901 (2015)

[32] Mark J. Panaggio and Daniel M. Abrams, “Chimera
states: Coexistence of coherence and incoherence in net-
works of coupled oscillators,” Nonlinearity 28, R67–R87
(2015)

[33] Kurt Wiesenfeld and James W. Swift, “Averaged equa-
tions for Josephson junction series arrays,” Phys. Rev. E
51, 1020 (1995)

[34] G. Filatrella, N. F. Pedersen, and K. Wiesenfeld, “Gen-
eralized coupling in the Kuramoto model,” Phys. Rev. E
75, 017201 (2007)

[35] G. Filatrella, “Josephson junctions as a prototype for
synchronization of nonlinear oscillators,” in New De-
velopments in Josephson Junctions Research, edited by
Sergei Sergeenkov (Transworld Research Network, Ker-
ala, India, 2010) p. 83

[36] N. Lazarides, G. Neofotistos, and G. P. Tsironis,
“Chimeras in SQUID metamaterials,” Phys. Rev. B 91,
054303 (2015)

[37] V. M. Bastidas, I Omelchenko, A. Zakharova, E. Schöll,
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